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Outlook

Considering an effective approach we can interpret the existence of
a Minimal Length (ML) scale with the restriction Axpj, > 0.

Extending this idea to 4D plus the requirement of reference frame
invariance faces us with Double Special Relativity (DSR).

Experimental observation that can be related with this ML/DSR
common framework

» OPERA 11'": super-luminal neutrino — Ax/At > 1.
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1D-ML at finite order in p

» First order approximation for modified [x, p] commutator
- 2.2 h 2 2
[x,p] = il(1+ I“p°) = AxAp> 5(1—1—/ pe).
» Considering the limiting case

ho1
Ax(Ap) = E(A_p +PAp) = Axo=hl.

» Modified action of operators on x or p space.

» If we consider usual H(x, p) we obtain modified Schroedinger
equations — ML phenomenology.

» From this example we can extend to N-Dimensional ML and
more orders in /| — ML literature.
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4D-ML at every order in p

We assume p#(p) = (F(p°), p'F(p)) as the generator of
translations in x* (h = c =1, n" = diag(1,-1,-1,-1))

[, 0 (P)] = —inf™ =[x, p*] = —idp" /9pu(p).
From which we can obtain the GUPs in time and position
AXOAp® > = <3P°/8p (P%), AxX'Ap’ > <8p’/3p '(p))-

Considering the limiting case we can derive the squeezed
equations:

(i0/0p° + ikop®(P°)) 07 (0°) =
(i0/0p + ikp(p))¥i(p) =

b After solving these equations we can compute the expressions

for At(k%) and Ax(k) and minimize with respect to k" and k.
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» From the computation of the minimal lengths for time and
distance we can notice that not every p*(p) function is useful
to construct a ML scenario. For example:

GOOD function

BAD function

Axo=1 Atg=T

Bounded function

Unbounded function

» Main message from 4D-ML: the functions p#(p) have to be

Bounded to get a ML scenario.
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Reference frame invariance

» 4D-ML is based in the commutator structure

X, 0" (p)] = —in"" = [x*,p"] = —idp”/0pu(p)-

» What about the invariance of this structure under Lorentz
transformations generated by the operator J#*
» Operator p* bounded —<— p* transforming as a LV.
» [x,p] =n and p* bounded — < x* transforming as a LV.
» Operator p* is unbounded — p* transforming as a LV.
b Given p* transforming as a LV we can find the commutator
between x* and J* using the Jacobi ldentity.

. 0 Ip.(p) Ip.(p)
o V] — W v T
P, S = ix - (p . " "op,
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» While the transformation of the operator p* is as usual, the
transformation of x* is now dependent on the momentum
through the p#(p) map.

b The finite transformation of x* is in principle difficult to find,
however we can use the previous algebra to find a function of

x* and p” that transform as a LV. This function is given by:
. Opu
XM, (p) with £,7(p) = g2
b In terms of this object we can write the modified Lorentz
transformations for our system:

/

ptt = NL(B)p”
Xalfau(p/) = Auu(ﬂ)xafau(p)'

b This kind of transformations belong to the general subject of
Double Special Relativity.
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ML/DSR transformations

» To understand the action of these DSR transformations let me
consider a massive particle at rest.

g" =(m,0,0,0) and y* = (t,0,0,0).

» Using the GOOD function defined for the ML scenario we can
compute a DSR boost for a parameter (3, then

p' = (ysm,vsmp)
X|  cosh®(Ip)

v = =——00.
x0  cosh?(Tpo)

b From these expressions we can identify two well known
problems associated to DSR: the soccer ball problem and
violation of locality.
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» Solution: in order to implement a simple solution for both
problems we choose the ML parameters T and / as given by:
T=1/armand | =1/a;m.
» Then v(p) is distorted but independent of the mass —
no violation of locality.
» ML/DSR effects are appreciably only for Highly Relativistic
objects — no soccer ball problem.

b With this parametrization we can obtain a suggestive formula
for v in terms of E, p and m

coshz(alim) . m2
V= ——F—— - —.
coshz(aTLm) E?
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ML/DSR Phenomenology

b Given the previous parametrization in terms of ar and «; we
can distinguish three cases:
P ar < a; — v < Under-luminal particles.

b at = oy — Allows a smooth limit m — 0 (Photons).
» at > a; — v > 3 Potential super-luminal particles.

b Given the very NEW results from OPERA 11" about
super-luminal neutrinos we are going to consider the third
case.

» Writing the relation between the ML parameters as
a2T =1+ a% we get ar = 10° — Axp ~ 10712 meters.
(we are considering m,, ~ 1eV and v, = 1.00001)
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» Using the value at; = 10° we can visualize the super-luminal
behavior for neutrinos, electrons, muons and taus
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Summary

p Systematic extension of ML formalism to 4D considering all
orders in p.

» Considering the 4D-ML formulation we derive the associated
DSR transformations.

b After implementing a simple solution for locality and the
soccer ball problem the formalism is parametrized in terms of
aT and «y.

» Considering a27- =1+ a% we get a reasonable value for Axg
for neutrinos and also we can accommodate a super-luminal
behavior, as measured by OPERA 11"
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