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| Introduction

® Friendship with someone different
from us is possible, e.g.
particle physics and cosmology!

® Particle physics provides motivated models for high energy
physics. On the other hand, cosmological data provide tests and
constrains, e.g from BBN, the spectrum of CMB fluctuations,
Non-Gaussianities...
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Decays: how they affect

primordial perturbations
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I Non-linear perturbations

Let us consider a cosmological perfect fluid:
Ta,b — (P + P) UqUp T Pgab-

From the energy-momentum tensor conservation, it follows that the
perturbations

- 1 Pa
=N g (ﬁA) ’

are conserved for adiabatic fluids, such that: P = wp. In the presence
of several fluids we can define:

Ca =Cp =Cr (adiabatic mode)

Sa=3(Ca— ) (isocurvature modes) I



I Evolution of perturbations

Let us focus on the decay of some species ¢. What is its impact on the
primordial perturbations?

® Sudden decay approximation: H; =1T',.
® On the decay hypersurface (uniform energy) 6N = (.

® Decay in several species with branching ratios:

_ Tas _
Var = T FU:%:FAJ.

® Arbitrary EOS w = P/p for all the involved fluids.

The final goal is the calculation of the (4, after the decay, as a function

of the (4_ before the decay. I



| After the decay

From the energy conservation:

ZﬁA_e?)(l—l—’wA)(CA—_C) = Ddecay = ZﬁB+€3(1+wB)(CB+_C),
A B

It follows that the perturbations at third order are given by

CA+—ZTA CB- +ZUA (B—Co—+ Y VIPls_(e—(p-,

B,C,D

where the coefficients of T', U and V are functions of:

We wB YBo Po PB (B # o)

That is, they only depend on the homogeneous parameters!

Langlois & AL (2010), Langlois &Takahashi (2010) I



An application:

the curvaton model
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| The curvaton

A curvaton ¢ is a light scalar field during inflation (m < H). When
m ~ H it oscillates and eventually decays.

Linde & Mukhanov (1996),

Inp Enqvist & Sloth (2001),
Lyth & Wands(2001)
Ina
® Mixed inflaton-curvaton perturbations. Langlois & Vernizzi (2004)
® Production of isocurvature perturbations: Lyth & Wands (2003)

SA = 3(CA — Cr) I



Calculation of perturbations

Let us consider radiation (r), cold dark matter (c¢) and a curvaton (o).
® Perturbation from the inflaton decay: ¢, ¢;

® Curvaton entropy perturbation: S, = S5 — 152 + 1 6%

® Before the decay (.- = (,— = (ins-

The curvaton decay yields:

N 1 - 1 -
Cr = Ginf + 215 + 52’252 =+ 82’353,
T
SC = 815 + 5828 + 6835 y

where the coefficients z and s depend on v4,, Q2,, 24 through:

ezt i 3%
Qy 1-Q,

Langlois & AL (2010), Langlois &Takahashi (2010)

L /YAO'QO'
fa =
QA + /YAO'QO'

=N

§
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I Power.spectrum

For a generic perturbation ¢, the power spectrum is defined as:

(Cr C) = 2m)26@ (ky + ko) Pe(k1)  Po(k) = =5 Pc(k)

The power spectrum of S, generated during inflation, is given by

Pg(k) = 42 (gﬂ)z

O-*
,rQ ,],,2
In our model: Peo = Pee T 5775 =z 3735*
Ps, = (fe— T)ZPS ;

where = is the fraction of the power spectrum due to the curvaton and
fe, rdepend on v4,,,, Q4.



I Non-adiabaticity

Perturbations are mostly adiabatic: o=

depending on the correlation: C =

Constraints at 95% C.L.
® (C=0,e.g. axion: o < 0.064.

® (C =1, e.g. "pure” curvaton: o < 0.0037. Komatsu et al. (2010)
In our model:
f 2
a:9(1——c) = C =sgn(f. —r)VE
r

Henceweneed = < lor |f, — 7| < 7. I



| NG - adiabatic case

NG of local type arise from a perturbation of the kind:

C=0+ ﬂmm¢,

The bispectrum of ¢ is defined as:

6 (local)

(G, S, Ciy) = (27T)35(§3z'/5i)g NL P (k1) P, (k) + perms]

Constraints at 95% C.L.

—10 < f(local) < 74 Komatsu et al. (2010)

Detection of significant fy;, would rule out the simplest models of

Inflation. I



I NG - beyond adiabaticity

When several observable quantities X' are present:
X1 =Nl + %N(fbgb“gbb ...,
where the ¢* are Gaussian random fields, such that
(0% (k)" (k")) = (2m)* P**(k) 6 (k + k') ,
we can define the generalized bispectra:
(XE XZ XE) = (2m)6(Sik) BX (kv ko, ks)

In our case we have X! = ¢, S..



I The bispectrum

In our case X! = ¢, S. and we have only one DOF S:
Cr:Cinf+Zlg+%Zgg2—l—... 50:51S+352S2+...
It follows that the generalized bispectrum takes the form:
BT E (ky, ko, k) = b1 " Pg(ka)Pg(ks) + by ' Pa(k1)Pg(ks) 4 by ” Pg(k1)Pg(ka),
with
by = Ny Ny N,

Niyy =z, N =s, Nyy=z, Nj=s

Hence NG is quantified through six independent parameters! I



| NG for the curvaton model

The b parameters are proportional to the "standard” f parameters
2
gk _ 6 0 Pg B[ K
NL — ngL —\p NL >
q

where (&
Fe



| NG for the curvaton model

The b parameters are proportional to the "standard” f parameters

2

gk _ 6 0 Pg B[ K

N =xive = |7 NL
5 P

~C7CC . R2 ':‘2 NCaCS S122 ':'2 NCa‘SS S172 =2

NL T Z% — N L - z:f —_— NIL — Z:A‘LL —
It follows:

£S,¢¢ _ S22 =2 £S,¢S 8182 =2 fSaSS __ 5152 =2

NL — z% = NL — z3 = NL 4



| NG for the curvaton model

The b parameters are proportional to the "standard” f parameters

2
gk _ 6 0 Pg B[ K
NL = ngL =\ 5 NL

fCaCC o z2 =2 FC,CS _ s129 =2
NL T Z% — N L - z:f —_— NIL — Z:A‘LL —
It follows:
~SaCC __ S2 /=2 ~S7CS __ 8182 =2 ~SaSS __ 5152 =2
ND=FEL NN =S2E N =00 E



I The parameter space

The relevant parameters are:
® The ratio between the curvaton and the inflaton contributions to

the radiation spectrum P :

® The fraction of CDM generated by the curvaton decay:

£ = Yeo$lo
T Qe+ Yo Qs

® The transfer efficiency times energy fraction:

(o) () |




The parameter space
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Picture from Langlois & Takahashi (2010)




I The parameter space

CASE 1: f. = 10—*
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I The parameter space

Case 3: » = 107°, A = 1073 three regimes are shown:
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Picture from Langlois & Takahashi (2010)



| Conclusions

® |tis possible to treat systematically linear and non linear
cosmological perturbations.

® This generic approach can be used in a wide range of
models.

® As an example, a model where one or two curvatons
participate together with the inflaton to the production of
perturbations is analyzed.

® In the presence of isocurvature modes, local NG are
parametrized through six independent parameters.

® The set of six independent NG parameters can be

constrained using CMB data. I



The end

Thank you for your kind attention
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I The parameter space

The relevant parameters are:
® The ratio between the curvaton and the inflaton contributions to

the radiation spectrum P :

® The fraction of CDM generated by the curvaton decay:

£ = Yeo$lo
T Qe+ Yo Qs

® The transfer efficiency times energy fraction:

(o) () |




| Scenario.with two curvatons

As a second application of our formalism we considered a model
where two curvatons, ¢ and y, decay in radiation and cold dark matter:

A 1 1

Cl“ — CrO+ZJSJ+ZXgX+ZJXgUSX+52005'%_4_52:)0(5’3(
A R o 1 . 1 -
Sc = 5050+ 55 x + Sox S0y + 580050 + §SXXSX

Since the spectra of o and x are independent, Ps = APs, we end up
with six independent NG parameters:

byt =NLNINE + ANL (NJNE + NJNE) + AN NJNE

XXT XX 7

B



| Towards.observations

We can define the reduced bispectrum b;,;,;,:

gml m2m3

<allm1al2m2al3m3> 111515 l1l2l37

where q;,,, are the coefficients of the expansion:

o = dr(=i)! [ 55 (Z X! (Rl <k>> Vi, (B)



I Towards observations - bispectrum

Hence we can express the bispectrum as:

by =3 30 NGNINE [ rtard, ()5 00550,
I,J,K

with

Bl == [ WdkaGen)gl (), BE0) = 2 [ Kdkidkngl ()P0,

It follows that isocurvature and mixed NG modes can be constrained

by using CMB data (Langlois & van Tent, 2011).



| The curvaton

Before its decay, the curvaton o obeys:

pe = mio?.

Its iInhomogeneous energy density on a spatially flat hypersurface is:
.5 = m?(G+d0)°,

from which follows that the curvaton entropy perturbation contains a
linear gaussian part S and a non-linear part:

1 4 1 - A do
~5%2 4y =93 ith S =9"*
10 T M 5.

the x indicates the epoch of Hubble radius crossing. I

S, =85 —




| The z.and.s coefficients

N 1 N 1 A
Cr = Cinf + 215 + 52’252 + 62353’

_r
Zl—§

Sc:slg—k

z2:1—%[3—87“—|—‘2—’°—2

2 3 2 2
_r° [ 6r’ 24r=  4r®  48r
23 = B4 ( ¢4 + £2 £3 3

1
—5
552

n 1
SQ + 68353 y

,',,2
)

— 15 G 4 18 36)

s1= (fe —7) 52211—2[3fc(1_2fc)_r(3_8r+4£_r_QZ_E)}’

2 3 2 2
s3=—3f2(3—4f) — T3 (Gg; + 3 - - I edr 4 2B - 36)

L ’YAJQJ
fa =
QA + /YAO'QO'

=
]
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