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Introduction

Friendship with someone different
from us is possible, e.g.
particle physics and cosmology!

Particle physics provides motivated models for high energy
physics. On the other hand, cosmological data provide tests and
constrains, e.g from BBN, the spectrum of CMB fluctuations,
Non-Gaussianities...

Homogeneous universe

Perturbations II order Perturbations I order
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Decays: how they affect

primordial perturbations
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Non-linear perturbations

Let us consider a cosmological perfect fluid:

Tab = (ρ + P )uaub + Pgab.

From the energy-momentum tensor conservation, it follows that the
perturbations

ζ
A

= δN +
1

3(1 + w
A
)

ln

(

ρ
A

ρ̄
A

)

,

are conserved for adiabatic fluids, such that: P = wρ . In the presence
of several fluids we can define:

ζA = ζB = ζr (adiabatic mode)

SA ≡ 3(ζA − ζr) (isocurvature modes)

TBW
Primordial decays and non-Gaussianities. – p. 4



Evolution of perturbations

Let us focus on the decay of some species σ. What is its impact on the
primordial perturbations?

Sudden decay approximation: Hd = Γσ.

On the decay hypersurface (uniform energy) δN = ζ.

Decay in several species with branching ratios:

γAσ ≡ ΓAσ

Γσ

, Γσ ≡
∑

A

ΓAσ .

Arbitrary EOS w = P/ρ for all the involved fluids.

The final goal is the calculation of the ζA+ after the decay, as a function

of the ζA− before the decay.
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After the decay

From the energy conservation:

∑

A

ρ̄A−e3(1+wA)(ζA−
−ζ) = ρ̄decay =

∑

B

ρ̄B+e3(1+wB)(ζB+−ζ),

It follows that the perturbations at third order are given by

ζA+ =
∑

B

T B
A ζB− +

∑

B,C

UBC
A ζB−ζC− +

∑

B,C,D

V BCD
A ζB−ζC−ζD−,

where the coefficients of T , U and V are functions of:

wσ wB γBσ ρ̄σ ρ̄B (B 6= σ)

That is, they only depend on the homogeneous parameters!

Langlois & AL (2010), Langlois &Takahashi (2010)
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An application:

the curvaton model
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The curvaton

A curvaton σ is a light scalar field during inflation (m < H). When
m ∼ H it oscillates and eventually decays.

!"#$%&

ρσ ∝ a
−3

ρr ∝ a
−4

Linde & Mukhanov (1996),
Enqvist & Sloth (2001),

Lyth & Wands(2001)

Mixed inflaton-curvaton perturbations.

Production of isocurvature perturbations:

SA ≡ 3(ζA − ζr)

Langlois & Vernizzi (2004)

Lyth & Wands (2003)
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Calculation of perturbations

Let us consider radiation (r), cold dark matter (c) and a curvaton (σ).

Perturbation from the inflaton decay: ζinf ;

Curvaton entropy perturbation: Sσ = Ŝ − 1
4 Ŝ2 + 1

12 Ŝ3

Before the decay ζc− = ζr− = ζinf .

The curvaton decay yields:

ζr = ζinf + z1Ŝ +
1

2
z2Ŝ

2 +
1

6
z3Ŝ

3 ,

Sc = s1Ŝ +
1

2
s2Ŝ

2 +
1

6
s3Ŝ

3 ,

where the coefficients z and s depend on γAσ, Ωσ, ΩA through:

fA ≡ γAσΩσ

ΩA + γAσΩσ

r ≡ ξ r̃ ξ ≡ fr

Ωσ

r̃ ≡ 3Ωσ

4 − Ωσ

Langlois & AL (2010), Langlois &Takahashi (2010)
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Power spectrum

For a generic perturbation ζ, the power spectrum is defined as:

〈ζ~k1
ζ~k2

〉 = (2π)3δ(3)(k1 + k2)Pζ(k1) Pζ(k) =
2π2

k3
Pζ(k)

The power spectrum of Ŝ, generated during inflation, is given by

PŜ(k) =
4

σ2
∗

(

H∗

2π

)2

In our model: Pζr
= Pζinf

+
r2

9
PŜ ≡ Ξ−1 r2

9
PŜ

PSc
= (fc − r)2PŜ ,

where Ξ is the fraction of the power spectrum due to the curvaton and
fc, r depend on γAσ, Ωσ, ΩA.
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Non-adiabaticity

Perturbations are mostly adiabatic: α ≡ PSc

Pζr

≪ 1 ,

depending on the correlation: C ≡ PSc,ζr
√

PSc
Pζr

.

Constraints at 95% C.L.

C = 0, e.g. axion: α < 0.064.

C = 1, e.g. ”pure” curvaton: α < 0.0037. Komatsu et al. (2010)

In our model:

α = 9

(

1 − fc

r

)2

Ξ C = sgn(fc − r)
√

Ξ

Hence we need Ξ ≪ 1 or |fc − r| ≪ r.
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NG - adiabatic case

NG of local type arise from a perturbation of the kind:

ζ = φ +
3

5
f

(local)
NL φ2 ,

The bispectrum of ζ is defined as:

〈ζ~k1
ζ~k2

ζ~k3
〉 = (2π)3δ(Σi

~ki)
6

5
f

(local)
NL [Pζr

(k1)Pζr
(k2) + perms]

Constraints at 95% C.L.

−10 ≤ f
(local)
NL ≤ 74 Komatsu et al. (2010)

Detection of significant fNL would rule out the simplest models of

inflation.
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NG - beyond adiabaticity

When several observable quantities XI are present:

XI = N I
aφa +

1

2
N I

abφ
aφb + . . . ,

where the φa are Gaussian random fields, such that

〈φa(~k)φb(~k′)〉 = (2π)3 P ab(k) δ(~k + ~k′) ,

we can define the generalized bispectra:

〈XI
~k1

XJ
~k2

XK
~k3
〉 = (2π)3δ(Σi

~ki)B
IJK(k1, k2, k3) .

In our case we have XI = ζ, Sc.
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The bispectrum

In our case XI = ζ, Sc and we have only one DOF Ŝ:

ζr = ζinf + z1Ŝ +
1

2
z2Ŝ

2 + . . . Sc = s1Ŝ +
1

2
s2Ŝ

2 + . . .

It follows that the generalized bispectrum takes the form:

BIJK(k1, k2, k3) = b
I,JK
NL

P
Ŝ
(k2)P

Ŝ
(k3) + b

J,KI
NL

P
Ŝ
(k1)P

Ŝ
(k3) + b

K,IJ
NL

P
Ŝ
(k1)PŜ

(k2),

with

bI,JK
NL ≡ N I

(2)N
J
(1)N

K
(1),

Nζ

(2) = z2, NS
(2) = s2, Nζ

(1) = z1, NS
(1) = s1

Hence NG is quantified through six independent parameters!
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NG for the curvaton model

The b parameters are proportional to the ”standard” f parameters

f̃ I,JK
NL ≡ 6

5
f I,JK

NL =

(

PŜ

Pζ

)2

bI,JK
NL ,

where
(

PŜ

Pζ

)2

=
Ξ2

z4
1

Primordial decays and non-Gaussianities. – p. 15



NG for the curvaton model

The b parameters are proportional to the ”standard” f parameters

f̃ I,JK
NL ≡ 6

5
f I,JK

NL =

(

PŜ

Pζ

)2

bI,JK
NL ,

It follows:

f̃ ζ,ζζ
NL = z2

z2
1

Ξ2, f̃ζ,ζS
NL = s1z2

z3
1

Ξ2, f̃ζ,SS
NL =

s2
1z2

z4
1

Ξ2,

f̃S,ζζ
NL = s2

z2
1

Ξ2, f̃S,ζS
NL = s1s2

z3
1

Ξ2, f̃S,SS
NL =

s2
1s2

z4
1

Ξ2 .

Primordial decays and non-Gaussianities. – p. 15



NG for the curvaton model

The b parameters are proportional to the ”standard” f parameters

f̃ I,JK
NL ≡ 6

5
f I,JK

NL =

(

PŜ

Pζ

)2

bI,JK
NL ,

It follows:

f̃ ζ,ζζ
NL = z2

z2
1

Ξ2, f̃ζ,ζS
NL = s1z2

z3
1

Ξ2, f̃ζ,SS
NL =

s2
1z2

z4
1

Ξ2,

f̃S,ζζ
NL = s2

z2
1

Ξ2, f̃S,ζS
NL = s1s2

z3
1

Ξ2, f̃S,SS
NL =

s2
1s2

z4
1

Ξ2 .

For instance the purely adiabatic coefficient is:

f̃ζζζ
NL =

(

3

2r
+

2

ξ
− 4 − r

ξ2

)

Ξ2
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The parameter space

The relevant parameters are:

The ratio between the curvaton and the inflaton contributions to
the radiation spectrum Pζr

:

λ ≡ (r2/9)PŜ

Pζinf

=
Ξ

1 − Ξ

The fraction of CDM generated by the curvaton decay:

fc ≡ γcσΩσ

Ωc + γcσΩσ

The transfer efficiency times energy fraction:

r =

(

γrσ

1 − (1 − γrσ)Ωσ

)(

3Ωσ

4 − Ωσ

)
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The parameter space

CASE 1: fc = 0

Pink region: ruled out.

λ ≪ 1 is required.

Relevant NG
only for small r.

fζζ,ζ
NL ∝ α2r−1.

f̃ I,JK
NL ≃ (−3)IS f̃ζ,ζζ

NL ,
IS is the number of S

among the indices.
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Picture from Langlois & Takahashi (2010)
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The parameter space

CASE 1: fc = 10−4

Pink region: ruled out.

New region at λ ∼ 1

|fc − r| ≪ r required.

fζζ,ζ
NL dominates.

fS,ζ,ζ
NL may be ≃ fζζ,ζ

NL .

Region λ ≪ 1

When r ≪ fc ≪ 1,
fS,SS

NL dominates.
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The parameter space

Case 3: r = 10−5, λ = 10−3: three regimes are shown:

fc ≪ r ≪ 1

f̃ I,JK
NL ≃ (−3)IS f̃ζ,ζζ

NL ,
IS = number of S

among the indices.

|fc − r| ≪ r

fζζ,ζ
NL dominates.

r ≪ fc ≪ 1

fS,SS
NL dominates.
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Picture from Langlois & Takahashi (2010)
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Conclusions

It is possible to treat systematically linear and non linear

cosmological perturbations.

This generic approach can be used in a wide range of

models.

As an example, a model where one or two curvatons

participate together with the inflaton to the production of

perturbations is analyzed.

In the presence of isocurvature modes, local NG are

parametrized through six independent parameters.

The set of six independent NG parameters can be

constrained using CMB data.
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The end

Thank you for your kind attention
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The parameter space

The relevant parameters are:

The ratio between the curvaton and the inflaton contributions to
the radiation spectrum Pζr

:

λ ≡ (r2/9)PŜ

Pζinf

=
Ξ

1 − Ξ

The fraction of CDM generated by the curvaton decay:

fc ≡ γcσΩσ

Ωc + γcσΩσ

The transfer efficiency times energy fraction:

r =

(

γrσ

1 − (1 − γrσ)Ωσ

)(

3Ωσ

4 − Ωσ

)
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Scenario with two curvatons

As a second application of our formalism we considered a model
where two curvatons, σ and χ, decay in radiation and cold dark matter:

ζr = ζr0 + zσŜ σ + zχŜ χ + zσχŜ σŜ χ +
1

2
zσσŜ2

σ +
1

2
zχχŜ2

χ

Sc = sσŜ σ + sχŜ χ + sσχŜ σŜ χ +
1

2
sσσŜ2

σ +
1

2
sχχŜ2

χ

Since the spectra of σ and χ are independent, PSχ
≡ ΛPSσ

we end up
with six independent NG parameters:

bI,JK
NL ≡ N I

σσNJ
σ NK

σ + ΛN I
σχ

(

NJ
σ NK

χ + NJ
χ NK

σ

)

+ Λ2N I
χχNJ

χ NK
χ ,

Primordial decays and non-Gaussianities. – p. 20



Towards observations

We can define the reduced bispectrum bl1l2l3 :

〈al1m1
al2m2

al3m3
〉 = Gm1m2m3

l1l2l3
bl1l2l3 ,

where alm are the coefficients of the expansion:

∆T (n̂)

T
=
∑

lm

almYlm(n̂) .

The transfer function gI
l (k), enables us to write:

alm = 4π(−i)l

∫

d3~k

(2π)3

(

∑

I

XI(~k)gI
l (k)

)

Y ∗

lm(~̂k).
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Towards observations - bispectrum

Hence we can express the bispectrum as:

bl1l2l3 = 3
∑

I,J,K

N I
abN

J
c NK

d

∫

∞

0

r2drβ̃I
(l1

(r)βJ,ac
l2

(r)βK,bd

l3)
(r),

with

β̃I
l (r) ≡ 2

π

∫

k2dkjl(kr)gI
l (k), βI,ab

l (r) ≡ 2

π

∫

k2dkjl(kr)gI
l (k)P ab(k) .

It follows that isocurvature and mixed NG modes can be constrained
by using CMB data (Langlois & van Tent, 2011).

Primordial decays and non-Gaussianities. – p. 22



The curvaton

Before its decay, the curvaton σ obeys:

ρσ = m2σ2 .

Its inhomogeneous energy density on a spatially flat hypersurface is:

ρ̄σeSσ = m2 (σ̄ + δσ)2 ,

from which follows that the curvaton entropy perturbation contains a
linear gaussian part Ŝ and a non-linear part:

Sσ = Ŝ − 1

4
Ŝ2 +

1

12
Ŝ3 , with Ŝ ≡ 2

δσ∗

σ̄∗

the ∗ indicates the epoch of Hubble radius crossing.
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The z and s coefficients

ζr = ζinf + z1Ŝ +
1

2
z2Ŝ

2 +
1

6
z3Ŝ

3 , Sc = s1Ŝ +
1

2
s2Ŝ

2 +
1

6
s3Ŝ

3 ,

z1 = r
3 z2 = r

18

[

3 − 8r + 4r
ξ
− 2 r2

ξ2

]

z3 = r2

54

(

6r3

ξ4 + 24r2

ξ2 − 4r2

ξ3 − 48r
ξ

− 15r
ξ2 + 64r + 18

ξ
− 36

)

s1 = (fc − r) s2 = 1
12

[

3fc(1 − 2fc) − r
(

3 − 8r + 4r
ξ
− 2 r2

ξ2

)]

,

s3 = − 1
2f2

c (3 − 4fc) − r2

18

(

6r3

ξ4 + 24r2

ξ2 − 4r2

ξ3 − 48r
ξ

− 15r
ξ2 + 64r + 18

ξ
− 36

)

fA ≡ γAσΩσ

ΩA + γAσΩσ

r ≡ ξ r̃ ξ ≡ fr

Ωσ

r̃ ≡ 3Ωσ

4 − Ωσ
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