FLAVOUR ISSUES FOR HEAVY SCALAR SPECTRA AND A LOW MASS GLUINO: THE G2-MSSM CASE

> K. KADOTA, G. KANE, J. KERSTEN & L. V-S (CINVESTAV-MEXICO) arXiv:1107.3105

> > DESY THEORY WORKSHOP 09/29/2011

Thursday, September 29, 11

PROGRAMME

- Overview of G2-MSSM models
- How can Flavour arise?
- Constraints from Vacuum Stability
- Constraints from Flavour & CP violation
- Could there be Signals at the LHC?
- Summary

OVERVIEW OF G2-MSSM MODELS

ACHARYA & DENEF, VALANDRO, JHEP 0506 TH/0502060

ACHARYA, BOBKOV, KANE, KUMAR, SHAO PRD 76, TH/ 0701034

ACHARYA, BOBKOV, KANE, KUMAR, VAMAN PRL 97, TH/0606262

Аснакуа & вовкоу, 0810.3285...

OVERVIEW OF G2-MSSM MODELS

ACHARYA & DENEF, VALANDRO, JHEP 0506 TH/0502060

ACHARYA, BOBKOV, KANE, KUMAR, SHAO PRD 76, TH/ 0701034

ACHARYA, BOBKOV, KANE, KUMAR, VAMAN PRL 97, TH/0606262

Аснакуа & вовкоу, 0810.3285...

ACHARYA, BOBKOV, KANE, KUMAR, SHAO PRD 76, TH/ 0701034

ACHARYA, BOBKOV, KANE, KUMAR, VAMAN PRL 97, TH/0606262

ACHARYA & BOBKOV, 0810.3285...

- Dynamics of the Hidden Sector
 - Generates the hierarchy between MPlanck and MEW
 - Supersymmetry breaking also stabilize the moduli, with M $\sim m_{3/2}$ \gtrsim 20 TeV
- The cosmological moduli solutions are based on:
 - Non-thermal, moduli dominated, pre BBN cosmology is very plausibly "a generic" outcome of string/M theory
 - A non-thermal WIMP miracle occurs for wine-like Dark Matter particles produced when the moduli decay before BBN
 - Wino DM consistent with indirect detection (PAMELA, Fermi)

• Spectra

• m
$$\sim m_{3/2}$$

• m $\sim O(|TeV)$

- despite heavy scalars, there is a light Higgs → EWSB achieved
- while FCNC under control,

BOUNDS ON Y, AND SOFT TERMS CAN BE OBTAINED

HOW CAN FLAVOUR ARISE?

HOW CAN FLAVOUR ARISE?

In the effective supergravity limit of G2-MSSM models we know, the Kähler potential:

4. We take the flat light vie $M_{\rm P}$ - $\langle \vec{p}, \vec{m} \rangle$ $\langle \vec{p}, \vec{p} \rangle$ $\langle \vec{p} \rangle$

5where \tilde{K}_{alg} the $\tilde{K}_{c_{a}}^{2} \mathcal{K}_{p}$ by this initial $\tilde{G}_{i_{c}}$ and $\tilde{K}_{i}^{c_{b}}$ is the formula for the formula for the trilinear couplings in $\mathcal{F}^{\bar{\phi}_{1}}$ and $\tilde{G}_{a}^{2} \mathcal{K}_{g}^{\bar{\phi}_{1}}$ and $\tilde{G}_{a}^{2} \mathcal{K}_{g}^{\bar{\phi}_{1}}$ and $\tilde{G}_{a}^{2} \mathcal{K}_{g}^{\bar{\phi}_{1}}$ by $\mathcal{K}_{m}^{\bar{\phi}_{1}} = \partial/\partial h_{m}^{*}$, and e.g. $\langle \mathcal{F}_{q}^{\bar{\phi}_{1}} \rangle$ $\langle \mathcal{F}^{\bar{\phi}_{1}} \rangle \partial/\partial \bar{\phi}_{1_{i}}$. We we expressed the formula for the trilinear couplings in Y' for convenience, where it is possible without ambiguity. Primes denote particular the formula for the trilinear couplings in $\mathcal{K}_{m}^{\mathrm{exp}}$ before canonical normalisation. There are different \mathcal{F} -term vevs associated flavon, $\langle \mathcal{F}^{\phi_{n}} \rangle = c_{n}m_{3/2} \langle \bar{\phi}_{n} \rangle$ [2,3], where $c_{n} \neq c_{m}$ for $n \neq m$.⁴

4. We take the flat light vie $M_{\rm P}$ - $\langle \vec{p}, \vec{m} \rangle$ $\langle \vec{p}, \vec{p} \rangle$ $\langle \vec{p} \rangle$

5where \tilde{K}_{alg} the $\tilde{M}_{C_{a}}^{2}K_{p}$ for initial \tilde{G}_{i} to $\tilde{H}_{si}^{c\dagger}$ if $\tilde{H}_{si}^{c\dagger}$ if $\tilde{H}_{si}^{c\dagger}$ if \tilde{H}_{si}^{c} is \tilde{H}_{i}^{c} if \tilde{H}_{si}^{c} is \tilde{H}_{i}^{c} if \tilde{H}_{si}^{c} is \tilde{H}_{i}^{c} if \tilde{H}_{i}^{c} is \tilde{H}_{i}^{c} is \tilde{H}_{i}^{c} if \tilde{H}_{i}^{c} is \tilde{H}_{i}^{c} if \tilde{H}_{i}^{c} is \tilde{H}_{i}^{c} if \tilde{H}_{i}^{c} is \tilde{H}_{i}^{c} is

4. We take the flat light vie $M_{\rm P}$ - $\langle \vec{p}, \vec{m} \rangle$ $\langle \vec{p}, \vec{p} \rangle$ $\langle \vec{p} \rangle$

5where \tilde{K}_{alg} the $\tilde{M}_{C_{a}}^{2}K_{p}$ by this initial $\tilde{G}_{i_{c}}$ and $\tilde{K}_{i_{c}}^{c_{i}}$ by \tilde{K}_{a} by $\tilde{K$

4. We take the flat light vie $M_{\rm P}$ - $\langle \vec{p}, \vec{m} \rangle$ $\langle \vec{p}, \vec{p} \rangle$ $\langle \vec{p} \rangle$

5where \tilde{K}_{alg} the $\tilde{M}_{C_{a}}^{2}$ be twintin \tilde{G}_{i} for \tilde{H}_{i} $\tilde{H}_{$

4. We take the flat light vie $M_{\rm P}$ - $\langle \vec{p}, \vec{m} \rangle$ $\langle \vec{p}, \vec{p} \rangle$ $\langle \vec{p} \rangle$

5where \tilde{K}_{alg} the \tilde{W}_{car}^{2} betwint \tilde{W}_{i}^{2} betwint \tilde{W}_{i}^{c} for \tilde{W}_{i}^{c} between \tilde{W}_{i}^{c} before canonical normalisation. There are different \mathcal{F} -term vevs associated where $c_{n} \neq c_{m}$ for $n \neq m$.⁴

4. We take the flat hight vie $M_{\rm P}$ - $\langle \vec{p} \cdot \vec{n} \cdot \vec{n} \rangle$ $\langle \vec{p} \cdot \vec{p} \cdot \vec{n} \rangle$ $\langle \vec{p} \cdot \vec{p}$

5where \tilde{K}_{alg} the \tilde{K}_{alg}^{2} \tilde{K}_{alg} \tilde{K}_{alg}^{2} \tilde{K}_{alg} \tilde{K}_{alg}^{2} $\tilde{K}_$

4. We take the flat light vie $M_{\rm P}$ - $\langle \vec{p} \cdot \vec{n} \cdot \vec{p} \cdot \vec{p}$

5wWeree Kale the \tilde{K}_{i}^{2} to the the \tilde{K}_{i}^{c} the \tilde{K}_{i}^{c} to $\tilde{$

5where $\tilde{\mathbf{A}}_{a}$ the $\tilde{\mathbf{A}}_{c}$ $\tilde{\mathbf$

5where $\tilde{K}_{l} = \frac{\tilde{k}_{l}^{2} \tilde{k}_{l} \tilde{k}_{l}^{\dagger} \tilde{k}_{l}^{\dagger}$

only one flavon in the theory and thus only one \mathcal{F} term, then we can immed ... Up to Eqs. (9) that when going to the canonical basis there would be no off terms, even with a non-trivial Kähler metric. On the other hand it can b computed [4] that with at least two different flavons and consequently di

- In ST, the Yukawa couplings are given generically by $Y_{ij}^f = e^{-V_{ij}}$
- Where

 V_{ij} are parameters related to the moduli of the internal space of the theory

In ST it has been considered that it is just a matter of computation.... while this is done we can constrain the size by phenomenological observations

Kähler metric for matter not fully explored $\Leftrightarrow V_{ij}$ can be phenomenologically constrained (e.g. FCNC)

Once $K_{\rm H}$ and V_{ij} are specified, all mass squared masses and trilinear terms can be computed

$$\begin{split} \mathbf{m}_{\bar{\alpha}\beta}^{\prime 2} &= \widehat{\mathbf{m}_{3/2}^{2} \langle \tilde{K}_{\bar{\alpha}\beta} \rangle} - \left\langle \mathcal{F}^{*\bar{m}} \left(\partial_{\bar{m}}^{*} \partial_{n} \tilde{K}_{\bar{\alpha}\beta} - (\partial_{\bar{m}}^{*} \tilde{K}_{\bar{\alpha}\gamma}) \tilde{K}^{\gamma \bar{\delta}} \partial_{n} \tilde{K}_{\bar{\delta}\beta} \right) \mathcal{F}^{n} \right\rangle, \\ a'_{\alpha\beta\gamma} &= \underbrace{\left\langle \mathcal{F}^{m} \right\rangle \left[\left\langle \frac{\partial_{m} K_{\mathrm{H}}}{M_{\mathrm{P}}^{2}} \right\rangle Y'_{\alpha\beta\gamma} + \frac{\mathcal{N} \partial Y_{\alpha\beta\gamma}}{\partial \langle h_{m} \rangle} \right] \\ - \left\langle \mathcal{F}^{m} \right\rangle \left[\left\langle \tilde{K}^{\delta \bar{\rho}} \left(\partial_{m} \tilde{K}_{\bar{\rho}\alpha} \right) \right\rangle Y'_{\delta\beta\gamma} + (\alpha \leftrightarrow \beta) + (\alpha \leftrightarrow \gamma) \right], \\ F \to \hat{F} \equiv V_{F}^{-1} F \quad , \quad f^{c} \to \hat{f}^{c} \equiv f^{c} V_{f^{c}}^{-1 \dagger} \quad , \quad H_{f} \to \hat{H}_{f} \equiv \tilde{K}_{H_{f}^{\dagger} H_{f}}^{\frac{1}{2}} H_{f}, \\ V_{F}^{\dagger} \tilde{K}_{F^{\dagger} F} V_{F} = \mathbb{1} \quad , \quad V_{f^{c}}^{\dagger} \tilde{K}_{f^{c} f^{c} \dagger} V_{f^{c}} = \mathbb{1} \end{split}$$

MFV AT MPLANCK

$$\begin{split} m_{\tilde{F}^{\dagger}\tilde{F}}^{\prime 2} &= m_0^2 \quad \mathbb{1} \\ m_{\tilde{f}^c\tilde{f}^{c\dagger}}^{\prime 2} &= m_0^2 \quad \mathbb{1} \\ \end{split}$$

$$\begin{split} m_{\tilde{f}^c\tilde{f}^{c\dagger}}^{\prime 2} &= m_0^2 \quad \mathbb{1} \\ \end{split}$$

$$\end{split}$$

$$\begin{split} m_{\tilde{f}^c\tilde{f}^{c\dagger}}^{\prime 2} &= m_0^2 \quad \mathbb{1} \\ \end{split}$$

$$\end{split}$$

-11

TRILINEAR COUPLINGS PROPORTIONAL TO YUKAWA COUPLINGS

Thursday, September 29, 11

IN FAMILY SYMMETRIES

$$m_{\bar{\alpha}\beta}^{\prime 2} = m_{3/2}^{2} \langle \tilde{K}_{\bar{\alpha}\beta} \rangle - \left\langle \mathcal{F}^{*\bar{m}} \left(\partial_{\bar{m}}^{*} \partial_{n} \tilde{K}_{\bar{\alpha}\beta} - (\partial_{\bar{m}}^{*} \tilde{K}_{\bar{\alpha}\gamma}) \tilde{K}^{\gamma\bar{\delta}} \partial_{n} \tilde{K}_{\bar{\delta}\beta} \right) \mathcal{F}^{n} \right\rangle$$
$$a_{\alpha\beta\gamma}^{\prime} = \left\langle \mathcal{F}^{m} \right\rangle \left[\left\langle \frac{\partial_{m} K_{\mathrm{H}}}{M_{\mathrm{P}}^{2}} \right\rangle Y_{\alpha\beta\gamma}^{\prime} + \frac{\mathcal{N}\partial Y_{\alpha\beta\gamma}}{\partial \langle h_{m} \rangle} \right]$$
$$- \left\langle \mathcal{F}^{m} \right\rangle \left[\left\langle \tilde{K}^{\delta\bar{\rho}} \left(\partial_{m} \tilde{K}_{\bar{\rho}\alpha} \right) \right\rangle Y_{\delta\beta\gamma}^{\prime} + (\alpha \leftrightarrow \beta) + (\alpha \leftrightarrow \gamma) \right],$$

$$\longrightarrow$$
 $\langle \mathcal{F}^m \rangle$

 $(a^f)_{ij} = c^f_{ij} A_{\tilde{f}} Y^f_{ij}$

DEPEND NON TRIVIALLY ON FLAVON FIELDS (SCALARS BREAKING THE FS) HENCE IN GENERAL

MFV LOST EVEN AT MPLANCK

IN FAMILY SYMMETRIES

$$m_{\bar{\alpha}\beta}^{\prime 2} = m_{3/2}^{2} \langle \tilde{K}_{\bar{\alpha}\beta} \rangle - \left\langle \mathcal{F}^{*\bar{m}} \left(\partial_{\bar{m}}^{*} \partial_{n} \tilde{K}_{\bar{\alpha}\beta} - (\partial_{\bar{m}}^{*} \tilde{K}_{\bar{\alpha}\gamma}) \tilde{K}^{\gamma\bar{\delta}} \partial_{n} \tilde{K}_{\bar{\delta}\beta} \right) \mathcal{F}^{n} \right\rangle,$$

$$a_{\alpha\beta\gamma}^{\prime} = \langle \mathcal{F}^{m} \rangle \left[\left\langle \frac{\partial_{m} K_{\mathrm{H}}}{M_{\mathrm{P}}^{2}} \right\rangle Y_{\alpha\beta\gamma}^{\prime} + \frac{\mathcal{N}\partial Y_{\alpha\beta\gamma}}{\partial \langle h_{m} \rangle} \right]$$

$$- \langle \mathcal{F}^{m} \rangle \left[\left\langle \tilde{K}^{\delta\bar{\rho}} \left(\partial_{m} \tilde{K}_{\bar{\rho}\alpha} \right) \right\rangle Y_{\delta\beta\gamma}^{\prime} + (\alpha \leftrightarrow \beta) + (\alpha \leftrightarrow \gamma) \right],$$

$$\longrightarrow$$
 $\langle \mathcal{F}^m \rangle$

$$(a^f)_{ij} = c^f_{ij} A_{\tilde{f}} Y^f_{ij}$$

$$\begin{array}{ll} m_{\tilde{F}^{\dagger}\tilde{F}}^{\prime 2} \neq m_{0}^{2} & 1 \\ m_{\tilde{f}^{c}\tilde{f}^{c\dagger}}^{\prime 2} \neq m_{0}^{2} & 1 \end{array}$$

TRILINEAR COUPLINGS & SQUARED MASS TERMS ARE NOT PROPORTIONAL TO YUKAWA COUPLINGS

> MFV LOST EVEN AT MPLANCK

IN FAMILY SYMMETRIES

$$m_{\bar{\alpha}\beta}^{\prime 2} = m_{3/2}^{2} \langle \tilde{K}_{\bar{\alpha}\beta} \rangle - \left(\mathcal{F}^{*\bar{m}} \left(\partial_{\bar{m}}^{*} \partial_{n} \tilde{K}_{\bar{\alpha}\beta} - (\partial_{\bar{m}}^{*} \tilde{K}_{\bar{\alpha}\gamma}) \tilde{K}^{\gamma\bar{\delta}} \partial_{n} \tilde{K}_{\bar{\delta}\beta} \right) \mathcal{F}^{n} \right),$$

$$a_{\alpha\beta\gamma}^{\prime} = \langle \mathcal{F}^{m} \rangle \left[\left\langle \frac{\partial_{m} K_{\mathrm{H}}}{M_{\mathrm{P}}^{2}} \right\rangle Y_{\alpha\beta\gamma}^{\prime} + \frac{\mathcal{N} \partial Y_{\alpha\beta\gamma}}{\partial \langle h_{m} \rangle} \right]$$

$$- \langle \mathcal{F}^{m} \rangle \left[\left\langle \tilde{K}^{\delta\bar{\rho}} \left(\partial_{m} \tilde{K}_{\bar{\rho}\alpha} \right) \right\rangle Y_{\delta\beta\gamma}^{\prime} + (\alpha \leftrightarrow \beta) + (\alpha \leftrightarrow \gamma) \right],$$

 $\longrightarrow \langle \mathcal{F}^m \rangle$

DEPEND NON TRIVIALLY ON FLAVON FIELDS (SCALARS BREAKING THE FS) HENCE IN GENERAL

$$(a^f)_{ij} = c^f_{ij} A_{\tilde{f}} Y^f_{ij}$$

$$\begin{array}{ll} m_{\tilde{F}^{\dagger}\tilde{F}}^{\prime 2} \neq m_0^2 & 1 \\ m_{\tilde{f}^c\tilde{f}^{c\dagger}}^{\prime 2} \neq m_0^2 & 1 \end{array}$$

TRILINEAR COUPLINGS & SQUARED MASS TERMS ARE NOT PROPORTIONAL TO YUKAWA COUPLINGS

> MFV LOST EVEN AT MPLANCK

IN G2-MSSM MODELS?

$$\begin{split} m_{\bar{\alpha}\beta}^{\prime 2} &= m_{3/2}^{2} \langle \tilde{K}_{\bar{\alpha}\beta} \rangle - \left\langle \mathcal{F}^{*\bar{m}} \left(\partial_{\bar{m}}^{*} \partial_{n} \tilde{K}_{\bar{\alpha}\beta} - (\partial_{\bar{m}}^{*} \tilde{K}_{\bar{\alpha}\gamma}) \tilde{K}^{\gamma\bar{\delta}} \partial_{n} \tilde{K}_{\bar{\delta}\beta} \right) \mathcal{F}^{n} \right\rangle \\ a_{\alpha\beta\gamma}^{\prime} &= \langle \mathcal{F}^{m} \rangle \left[\left\langle \frac{\partial_{m} K_{\mathrm{H}}}{M_{\mathrm{P}}^{2}} \right\rangle Y_{\alpha\beta\gamma}^{\prime} + \frac{\mathcal{N}\partial Y_{\alpha\beta\gamma}}{\partial \langle h_{m} \rangle} \right] \\ &- \langle \mathcal{F}^{m} \rangle \left[\left\langle \tilde{K}^{\delta\bar{\rho}} \left(\partial_{m} \tilde{K}_{\bar{\rho}\alpha} \right) \right\rangle Y_{\delta\beta\gamma}^{\prime} + (\alpha \leftrightarrow \beta) + (\alpha \leftrightarrow \gamma) \right], \end{split}$$

FIXED (MODULI STABILIZATION) THE REST OF THE TERMS, REGARD MATTER K AND WHILE COMPATIBLE WITH MSUGRA, THERE MAY BE DEVIATIONS THAT ARE WORTH EXPLORING IMPORTANT CONSTRAINTS: NO NEW CP PHASES APPEARING

KANE, KUMAR & SHAO, PRD 82, 0905.2986

STRATEGY: START PROBING WITH YUKAWA TEXTURES THAT ARE WELL KNOWN AND DEVIATIONS FROM MINIMALITY AT

MPLANCK

$$\begin{array}{rcl} m_{\tilde{F}^{\dagger}\tilde{F}}^{\prime 2} & = & m_0^2 & \mathbb{1} \\ m_{\tilde{f}^c\tilde{f}^{c\dagger}}^{\prime 2} & = & m_0^2 & \mathbb{1} \end{array}$$

$$(a^f)_{ij} = c^f_{ij} A_{\tilde{f}} Y^f_{ij}$$

REAL

CONSTRAINTS FROM VACUUM STABILITY

Vacuum stability of the effective MSSM scalar potential When K_{M} trivial there is no problem (like msugra \rightarrow just worry about Higgs scalar sector) \checkmark

ACHARYA & BOBKOV, 0810.3285 When trilinears and mass squared terms not trivial, there are some extra-constaints

$$-\mathcal{L}_{\text{soft}} = \tilde{q}_{Li}^{\dagger} (m_{\tilde{Q}}^{2})^{ij} \tilde{q}_{Lj} + \tilde{u}_{Rj} (m_{\tilde{u}}^{2})^{ji} \tilde{u}_{Ri}^{*} + \tilde{d}_{Rj} (m_{\tilde{d}}^{2})^{ji} \tilde{d}_{Ri}^{*} + \tilde{l}_{Li}^{\dagger} (m_{\tilde{L}}^{2})^{ij} \tilde{l}_{Lj} + \tilde{e}_{Rj} (m_{\tilde{e}}^{2})^{ji} \tilde{e}_{Ri}^{*} + \tilde{\nu}_{Rj} (m_{\tilde{\nu}}^{2})^{ji} \tilde{\nu}_{Ri}^{*} + m_{h_{d}}^{2} h_{d}^{\dagger} h_{d} + m_{h_{u}}^{2} h_{u}^{\dagger} h_{u} + (B\mu h_{d} h_{u} + \frac{1}{2} B_{\nu}^{ij} M_{\nu}^{ij} \tilde{\nu}_{Ri}^{*} \tilde{\nu}_{Rj}^{*} + \text{h.c.}) + \left(-a_{d}^{ij} h_{d} \tilde{d}_{Ri}^{*} \tilde{q}_{Lj} + a_{u}^{ij} h_{u} \tilde{u}_{Ri}^{*} \tilde{q}_{Lj} - a_{l}^{ij} h_{d} \tilde{e}_{Ri}^{*} \tilde{l}_{Lj} + a_{\nu}^{ij} h_{u} \tilde{\nu}_{Ri}^{*} \tilde{l}_{Lj} + \frac{1}{2} M_{1} \widetilde{B} \widetilde{B} + \frac{1}{2} M_{2} \widetilde{W}^{a} \widetilde{W}^{a} + \frac{1}{2} M_{3} \widetilde{G}^{a} \widetilde{G}^{a} + \text{h.c.} \right),$$

• An undesiderable deep CCB minimum appears, unless

$$\begin{aligned} |\hat{a}_{ij}^{e}|^{2} &\leq ((\hat{Y}_{ii}^{e})^{2} + (\hat{Y}_{jj}^{e})^{2})(m_{\tilde{e}_{L_{i}}}^{2} + m_{\tilde{e}_{R_{j}}}^{2} + m_{H_{d}}^{2} + |\mu|^{2}), \\ |\hat{a}_{ij}^{d}|^{2} &\leq ((\hat{Y}_{ii}^{d})^{2} + (\hat{Y}_{jj}^{d})^{2})(m_{\tilde{d}_{L_{i}}}^{2} + m_{\tilde{d}_{R_{j}}}^{2} + m_{H_{d}}^{2} + |\mu|^{2}), \\ |\hat{a}_{ij}^{u}|^{2} &\leq ((\hat{Y}_{ii}^{u})^{2} + (\hat{Y}_{jj}^{u})^{2})(m_{\tilde{u}_{L_{i}}}^{2} + m_{\tilde{u}_{R_{j}}}^{2} + m_{H_{u}}^{2} + |\mu|^{2}). \end{aligned}$$

• UFB require

 $\begin{aligned} |\hat{a}_{ij}^{e}|^{2} &\leq ((\hat{Y}_{ii}^{e})^{2} + (\hat{Y}_{jj}^{e})^{2})(m_{\tilde{e}_{L_{i}}}^{2} + m_{\tilde{e}_{R_{j}}}^{2} + m_{\tilde{\nu}_{m}}^{2}), \\ |\hat{a}_{ij}^{d}|^{2} &\leq ((\hat{Y}_{ii}^{d})^{2} + (\hat{Y}_{jj}^{d})^{2})(m_{\tilde{d}_{L_{i}}}^{2} + m_{\tilde{d}_{R_{j}}}^{2} + m_{\tilde{\nu}_{m}}^{2}), \\ |\hat{a}_{ij}^{u}|^{2} &\leq ((\hat{Y}_{ii}^{u})^{2} + (\hat{Y}_{jj}^{u})^{2})(m_{\tilde{u}_{L_{i}}}^{2} + m_{\tilde{u}_{R_{j}}}^{2} + m_{\tilde{e}_{L_{p}}}^{2} + m_{\tilde{e}_{R_{q}}}^{2}) \\ \end{aligned}$ $CCB \& UFB \text{ problems do not go away with} \\ \text{heavy scalars} \end{aligned}$

CONSTRAINTS FROM FLAVOUR & CPVIOLATION

- FLAVOUR & CP PROBLEMS: Arbitrary values of masses and trilinear terms in supersymmetric breaking terms give arbitrary FCNC and can easily exceed CP bounds!
- With heavy scalars, is there a problem?
 - Strong constraints from Kaon mixing
 - Tachyonic particles?

ARKANI-HAMED & MURAYAMA, PRD D56, PH/9703259 GIUDICE, NARDECCHIA & ROMANINO, NPB 813, PH/0812.3610

- 1. $\Delta F = 1$ processes
 - (a) $l_i \to l_j \gamma$
 - (b) $b \to s\gamma$
 - (c) $b \to sl^+l^-$, in particular $l = \mu$ and $l = \nu$
 - (d) $s \to d\gamma$
 - (e) top decays
- 2. $\Delta F = 2$ processes
 - (a) $B_q \bar{B}_q$, in particular q = s(b) $K_0 - \bar{K}_0$ mixing (ϵ_k) (c) $D_0 - \bar{D}_0$ mixing

- 1. $\Delta F = 1$ processes
 - (a) $l_i \to l_j \gamma$
 - (b) $b \to s\gamma$
 - (c) $b \to sl^+l^-$, in particular $l = \mu$ and $l = \nu$
 - (d) $s \to d\gamma$
 - (e) top decays
- 2. $\Delta F = 2$ processes
 - (a) $B_q \bar{B}_q$, in particular q = s(b) $K_0 - \bar{K}_0$ mixing (ϵ_k) (c) $D_0 - \bar{D}_0$ mixing

- Other observables:
 - 3. g 2
 - 4. $B^- \to \tau^- \bar{\nu}_{\tau}$
 - 5. Precision observables
 - (a) M_W (b) $\sin^2 \theta_{eff}$
 - (c) M_z
 - (d) m_h

- 1. $\Delta F = 1$ processes
 - (a) $l_i \to l_j \gamma$
 - (b) $b \to s\gamma$
 - (c) $b \to sl^+l^-$, in particular $l = \mu$ and $l = \nu$
 - (d) $s \to d\gamma$
 - (e) top decays
- 2. $\Delta F = 2$ processes
 - (a) $B_q \bar{B}_q$, in particular q = s(b) $K_0 - \bar{K}_0$ mixing (ϵ_k)
 - (c) $D_0 \bar{D}_0$ mixing

Other observables: 3. g-2

5. Precision observables

4. $B^- \to \tau^- \bar{\nu}_{\tau}$

(a) M_W

(c) M_z

(d) m_h

(b) $\sin^2 \theta_{eff}$

- 1. $\Delta F = 1$ processes
 - (a) $l_i \to l_j \gamma$
 - (b) $b \to s\gamma$
 - (c) $b \to sl^+l^-$, in particular $l = \mu$ and $l = \nu$
 - (d) $s \to d\gamma$
 - (e) top decays
- 2. $\Delta F = 2$ processes
 - (a) $B_q \bar{B}_q$, in particular q = s(b) $K_0 - \bar{K}_0$ mixing (ϵ_k) (c) $D_0 - \bar{D}_0$ mixing

- Other observables:
 - 3. g 2
 - 4. $B^- \to \tau^- \bar{\nu}_{\tau}$
 - 5. Precision observables
 - (a) M_W (b) $\sin^2 \theta_{eff}$
 - (c) M_z
 - (d) m_h

1. $\Delta F = 1$ processes

Kaon Mixing in the SM

Due to the unitarity of VO(I) contributions cancel (GIM mechanism),

$$\epsilon^{\text{SM}} = (1.91 \pm 0.30) \times 10^{-3},$$

 $|\epsilon|^{\text{exp}} = (2.228 \pm 0.011) \times 10^{-3}$

$$0 < \operatorname{Re}(\epsilon'/\epsilon)_{SM} < 3.3 \times 10^{-3}$$
$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right)_{exp} = (1.65 \pm 0.26) \times 10^{-3}$$

Very large hadronic uncertainties but in some SUSY models, contributions could be fairly large

$$\begin{aligned} & \left[\begin{array}{c} \text{extures:} \\ Y^{d} = \frac{\sqrt{2}m_{b}}{v\cos\beta} 0.27 \left[\begin{array}{c} 0.0014 + 0.0007i & 0.0009 + 0.0111i & 0.13 + 0.13i \\ 0.0055 & 0.046 + 0.118i & 0.35 + 0.19i \\ 0.0018 - 0.0009i & 0.069 + 0.058i & -0.90 + 0.08i \end{array} \right] \\ & Y^{u} = \frac{\sqrt{2}m_{t}}{v\sin\beta} 0.53 \left[\begin{array}{c} -1.58 \times 10^{-6} - 0.000017i & -0.000076 + 0.000032i & 0.0020 + 0.0020i \\ -0.00034 + 0.00024i & 0.0020 + 0.0002i & 0.011 + 0.011i \\ -0.0057 - 0.0024i & 0.0044 + 0.0115i & 0.70 + 0.71i \end{array} \right] \end{aligned}$$

$\sqrt{2}m$	0.0014 - 0.0007i	0.0005 - 0.0056i	0.13 - 0.13i
$Y^e = \frac{\sqrt{2m_\tau}}{2}$	0.0082	0.023 - 0.059i	0.18 - 0.1i
$v\cosar{ ho}$	0.0018 + 0.0009i	0.035 - 0.029i	-0.99 - 0.09i

 $Y^{e} = \frac{\sqrt{2}m_{\tau}}{v\cos\beta} \begin{bmatrix} 0.0014 - 0.0007i & 0.0005 - 0.0056i & 0.13 - 0.13i \\ 0.0082 & 0.023 - 0.059i & 0.18 - 0.1i \\ 0.0018 + 0.0009i & 0.035 - 0.029i & -0.99 - 0.09i \end{bmatrix}$

These textures can be explained in the context of $SU(5)_{GUT} \times U(1)_{Family Symmetry}$ model

$$\begin{aligned} & \left[\text{extures:} \\ Y^{d} = \frac{\sqrt{2}m_{b}}{v\cos\beta} 0.27 \left[\begin{array}{cccc} 0.0014 + 0.0007i & 0.0009 + 0.0111i & 0.13 + 0.13i \\ 0.0055 & 0.046 + 0.118i & 0.35 + 0.19i \\ 0.0018 - 0.0009i & 0.069 + 0.058i & -0.90 + 0.08i \end{array} \right] \\ & Y^{u} = \frac{\sqrt{2}m_{t}}{v\sin\beta} 0.53 \left[\begin{array}{cccc} -1.58 \times 10^{-6} - 0.000017i & -0.000076 + 0.000032i & 0.0020 + 0.0020i \\ -0.00034 + 0.00024i & 0.0020 + 0.0002i & 0.011 + 0.011i \\ -0.0057 - 0.0024i & 0.0044 + 0.0115i & 0.70 + 0.71i \end{array} \right] \end{aligned}$$

$$Y^{e} = \frac{\sqrt{2}m_{\tau}}{v\cos\beta} \begin{bmatrix} 0.0014 - 0.0007i & 0.0005 - 0.0056i & 0.13 - 0.13i \\ 0.0082 & 0.023 - 0.059i & 0.18 - 0.1i \\ 0.0018 + 0.0009i & 0.035 - 0.029i & -0.99 - 0.09i \end{bmatrix}$$

These textures can be explained in the context of $SU(5)_{GUT} \times U(1)_{Family Symmetry}$ model Deviations: $(a^{f})_{ij} = c^{f}_{ij}A_{\tilde{f}}Y^{f}_{ij}$ $\begin{bmatrix} (a) \ c^{f}_{ij} = 1, \\ (b) \ c^{f}_{ij} = x^{f}_{ij}, \ x^{f}_{ij} \in (0, \sqrt{2}) \text{ a random number} \end{bmatrix}$

Thursday, September 29, 11

G2-MSSM benchmark points:

ACHARYA & BOBKOV, 0810.3285

parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7
$m_{3/2}$	20000	20000	20000	20000	30000	50000	30000
δ	-15	-12	0	-15	15	-15	-15
c	0	0	0	0.1	0.5	0	0
aneta	3	2.65	2.65	3	3	2.5	3
μ	-11943	-13377	-13537	-10969	-10490	-34019	+17486
LSP type	Wino	Wino	Bino	Bino	Bino	Wino	Bino
M_1	165	173	203	181	484	434	252
M_2	158	173	225	189	662	421	242
M_3	262	297	423	328	1328	673	395
$m_{ ilde{g}}$	401	449	622	492	1784	1001	596.8
$m_{\widetilde{\chi}_1^0}$	145.1	155.6	189	170	473	373.4	271
$m_{\widetilde{\chi}^0_2}$	153	159	214.3	181.5	702.4	397	334.2
$m_{\widetilde{\chi}^0_3}$	11905	13321	13479	10938	10486	33886	17441
$m_{\widetilde{\chi}^0_4}$	11906	13322	13479	10939	10487	33886	17442
$m_{\widetilde{\chi}_1^{\pm}}$	145.2	155.8	214.5	181.7	702.6	373.6	334.2
$m_{\widetilde{\chi}^{\pm}_2}$	11970	13383	13540	11001	10560	34044	17540

G2-MSSM benchmark points:

ACHARYA & BOBKOV, 0810.3285

parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7
$m_{3/2}$	20000	20000	20000	20000	30000	50000	30000
δ	-15	-12	0	-15	15	-15	-15
с	0	0	0	0.1	0.5	0	0
aneta	3	2.65	2.65	3	3	2.5	3
μ	-11943	-13377	-13537	-10969	-10490	-34019	+17486
LSP type	Wino	Wino	Bino	Bino	Bino	Wino	Bino
M_1	165	173	203	181	484	434	252
M_2	158	173	225	189	662	421	242
M_3	262	297	423	328	1328	673	395
$m_{ ilde{g}}$	401	449	622	492	1784	1001	596.8
$m_{\widetilde{\chi}_1^0}$	145.1	155.6	189	170	473	373.4	271
$m_{\widetilde{\chi}^0_2}$	153	159	214.3	181.5	702.4	397	334.2
$m_{\widetilde{\chi}^0_3}$	11905	13321	13479	10938	10486	33886	17441
$m_{\widetilde{\chi}^0_4}$	11906	13322	13479	10939	10487	33886	17442
$m_{\widetilde{\chi}_1^{\pm}}$	145.2	155.8	214.5	181.7	702.6	373.6	334.2
$m_{\widetilde{\chi}_2^{\pm}}$	11970	13383	13540	11001	10560	34044	17540

$m_{ ilde{d}_L}, m_{ ilde{s}_L}$	19799	19803	19809	18785	21052	49524	29727
$m_{ ilde{u}_L}, m_{ ilde{c}_L}$	19801	19812	19818	18784	21034	49600	29725
$m_{ ilde{b}_1}$	15342	15250	15224	14635	16783	38473	23236
$m_{ ilde{t}_1}$	9130	8779	8662	8928	11151	22887	14264
$m_{ ilde{e}_L}, m_{ ilde{\mu}_L}$	19948	19948	19951	18926	21164	49889	29930
$m_{ ilde{ u}_{e_L}}, m_{ ilde{ u}_{\mu_L}}$	19950	19954	19952	18927	21168	49903	29934
$m_{ ilde{ au}_1}$ –	19934	19941	19940	18914	21156	49874	29909
$m_{ ilde{ u}_{ au_L}}$	19936	19944	19942	18916	21158	49876	29913
$m_{ ilde{d}_B}$	19848	19851	19845	18832	21096	49694	29794
$m_{ ilde{u}_R}, m_{ ilde{c}_R}$	19850	19853	19858	18832	21094	49700	29792
$m_{ ilde{s}_R}$	19849	19851	19856	18832	21096	49695	29767
$m_{ ilde{b}_2}$	19829	19833	19838	18810	21075	49669	29758
$m_{ ilde{t}_2}$	15342	15251	15224	14635	16783	38470	23235
$m_{ ilde{e}_R}, m_{ ilde{\mu}_R}$	19978	19977	19977	18953	21196	49948	29966
$m_{ ilde{ au}_2}$	19948	19957	19955	18930	21174	49904	29928
m_{h_0}	116.4	114.3	114.6	116.0	115.9	115.1	114.6
$m_{H_0}, m_{A_0}, m_{H^\pm}$	24614	25846	25943	23158	25029	65690	36623
$ ilde{A}_t$	12159	11539	11445	10898	9626	30139	18812
$ ilde{A}_b$	27381	27321	27427	24744	21850	68441	41148
$ ilde{A}_{ au}$	30068	30092	30124	27109	23022	75221	45099

$m_{ ilde{d}_L}, m_{ ilde{s}_L}$	19799	19803	19809	18785	21052	49524	29727
$m_{ ilde{u}_L}, m_{ ilde{c}_L}$	19801	19812	19818	18784	21034	49600	29725
$m_{ ilde{b}_1}$	15342	15250	15224	14635	16783	38473	23236
$m_{ ilde{t}_1}$	9130	8779	8662	8928	11151	22887	14264
$m_{ ilde{e}_L}, m_{ ilde{\mu}_L}$	19948	19948	19951	18926	21164	49889	29930
$m_{ ilde{ u}_{e_L}}, m_{ ilde{ u}_{\mu_L}}$	19950	19954	19952	18927	21168	49903	29934
$m_{ ilde{ au}_1}$ –	19934	19941	19940	18914	21156	49874	29909
$m_{ ilde{ u}_{ au_L}}$	19936	19944	19942	18916	21158	49876	29913
$m_{ ilde{d}_B}$	19848	19851	19845	18832	21096	49694	29794
$m_{ ilde{u}_R}, m_{ ilde{c}_R}$	19850	19853	19858	18832	21094	49700	29792
$m_{ ilde{s}_R}$	19849	19851	19856	18832	21096	49695	29767
$m_{ ilde{b}_2}$	19829	19833	19838	18810	21075	49669	29758
$m_{ ilde{t}_2}$	15342	15251	15224	14635	16783	38470	23235
$m_{ ilde{e}_R}, m_{ ilde{\mu}_R}$	19978	19977	19977	18953	21196	49948	29966
$m_{ ilde{ au}_2}$	19948	19957	19955	18930	21174	49904	29928
m_{h_0}	116.4	114.3	114.6	116.0	115.9	115.1	114.6
$m_{H_0}, m_{A_0}, m_{H^\pm}$	24614	25846	25943	23158	25029	65690	36623
$ ilde{A}_t$	12159	11539	11445	10898	9626	30139	18812
$ ilde{A}_b$	27381	27321	27427	24744	21850	68441	41148
$ ilde{A}_{ au}$	30068	30092	30124	27109	23022	75221	45099

(a^f)_{ij} =
$$A_f Y_{ij}^f$$

(a^f)_{ij} = $A_f Y_{ij}^f$
(b^f) = $Experimental \epsilon$ @ 95% C.L.
SM central value
(a^f)_{ij} = $G_2 MSSM + SM 95\%$ C.L.
(a^f)_{ij} = $G_2 MSSM Point$
(a^f)_{ij} = $G_2 MSSM Point$
(b^f)_{ij} = $G_2 MSSM Point$

b)
$$(a^f)_{ij} = c^f_{ij} A_{\tilde{f}} Y^f_{ij}$$

 $c^f_{ij} = x^f_{ij}, \ x^f_{ij} \in (0, \sqrt{2}) \text{ a random number}$

Thursday, September 29, 11

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) \sim |0|^{-8}$$

Really safe (mainly due to boundary conditions) $m'_{\tilde{F}^{\dagger}\tilde{F}}^{2} = m_{0}^{2} 1$ $m'_{\tilde{f}^{c}\tilde{f}^{c\dagger}}^{2} = m_{0}^{2} 1$

Tachyonic particles here are not an issue All other bounds really safe!

How important are the absence of new phases?

COULD THERE BE SIGNALS AT THE LHC?

 In general of G2-MSSM: Sure! special signatures of low gluinos with heavy scalars

FELDMAN, KANE, LU & NELSON, 1002.2430 KANE, KUFLIK, LU & WANG, 1101.1963

 In particular regarding Yukawa & other flavour couplings: difficult but not impossible due to the involved couplings in the typical decay chains

Gluino coupling: flavour blind,
 involved couplings just
 f
 f

SUMMARY

 $m_{\tilde{F}^{\dagger}\tilde{F}}^{\prime 2}$ = m_0^2 1

 $m_{\tilde{f}^c\tilde{f}^c\tilde{f}^{c\dagger}}^{\prime 2}$ = m_0^2 1

 $Y_{ij}^f = e^{-V_{ij}}$

 $(a^f)_{ij} = c^f_{ij} A_{\tilde{f}} Y^f_{ij}$

REAL

- Typical flavour structure in G2-models:
 - Couplings:
 - Squared mass matrices
- Vij can be constrained
- FCNC under control with specific forms of Yukawa couplings, Yu small mixings, while Yd can allow certain large mixings

$$Y^{d} = \frac{\sqrt{2}m_{b}}{v\cos\beta} 0.27 \begin{bmatrix} 0.0014 + 0.0007i & 0.0009 + 0.0111i & 0.13 + 0.13i \\ 0.0055 & 0.046 + 0.118i \\ 0.0018 - 0.0009i & 0.069 + 0.058i \end{bmatrix} \begin{bmatrix} 0.13 + 0.13i \\ 0.35 + 0.19i \\ -0.90 + 0.08i \end{bmatrix}$$

SUMMARY

- Typical flavour structure in G2-models:
- $Y_{ij}^f = e^{-V_{ij}}$

