
Flavour issues for  
heavy scalar spectra 

and a low mass gluino: 
the g2-mssm case

 K. Kadota, G. Kane, J. Kersten & L. V-S
(CINVESTAV-Mexico) arXiv:1107.3105

DESY THEORY WORKSHOP  
09/29/2011

1Thursday, September 29, 11



PROGRAMME
•Overview of G2-MSSM models

• How can Flavour arise?

• Constraints from Vacuum Stability 

• Constraints from Flavour & CP violation

• Could there be Signals at the LHC?

• Summary

2Thursday, September 29, 11



3Thursday, September 29, 11



OVERVIEW OF G2-MSSM 
MODELS

acharya, bobkov, kane, kumar, vaman  PRL 97, 
th/0606262 

Acharya & bobkov, 0810.3285...

acharya, bobkov, kane, kumar, shao  PRD 76, th/
0701034 

Acharya & denef, valandro, JHEP 0506 
th/0502060

D=4 sugra eff. theory with 
SM content  →G2-MSSM

Compactification with 
a  d=7 manifold with 

G2 holonomy

ar
X

iv
:h

ep
-th

/0
60

62
62

v2
  2

1 
N

ov
 2

00
6

IC/2006/43
MCTP-06-12

M theory Solution to the Hierarchy Problem

Bobby Acharya
Abdus Salam ICTP, Strada Costiera 11, Trieste, Italy

Konstantin Bobkov, Gordon Kane, Piyush Kumar, and Diana Vaman
MCTP, University of Michigan, Ann Arbor, MI, USA

(Dated: February 1, 2008)

An old idea for explaining the hierarchy is strong gauge dynamics. We show that such dynamics
also stabilizes the moduli in M theory compactifications on manifolds of G2-holonomy without fluxes.
This gives stable vacua with softly broken susy, grand unification and a distinctive spectrum of TeV
and sub-TeV sparticle masses.
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1. Stabilizing Hierarchies and Moduli
M theory (and its weakly coupled string limits) is a con-
sistent quantum theory including gravity, particle physics
and much more. Although apparently unique, the the-
ory has a large number of solutions, manifested by the
presence of moduli: massless scalar fields with classically
undetermined vacuum expectation values (vevs), whose
values determine the masses and coupling constants of
the low energy physics.

In recent years, there has been substantial progress
in understanding mechanisms which stabilize moduli in
various corners of the M theory moduli space. In par-
ticular, the stabilization of all moduli by magnetic fields
(fluxes) in the extra dimensions, perhaps also combined
with other quantum effects, has been reasonably well
understood in the context of Type IIB string theory
[1, 2], M theory [3] and Type IIA string theory [4]. Af-
ter stabilizing the moduli, one still has to explain why
MW /mpl ∼ 10−16.

The effective potential of these compactifications fits
into the framework of a low energy supergravity theory
in four dimensions. A well known property of the latter is
that there is a universal contribution to scalar masses of
order the gravitino mass m3/2. Therefore, without mirac-
ulous cancellations, in theories in which m3/2 is large,
the Higgs mass is also large. In M theory and Type IIA
flux vacua the vacuum superpotential is O(1) or larger in
Planck units. This gives a large m3/2 (unless the volume
of the extra dimensions is large, ruining standard unifi-
cation). In heterotic flux vacua [5] m3/2 can be smaller,
but only by a few orders of magnitude. Thus, in these
vacua, stabilizing the moduli using fluxes fails to solve
the hierarchy problem, viz. to generate and stabilize the
hierarchy between the electroweak and Planck scales.

In Type IIB theory, this is not so: m3/2 can be tuned
small by choosing fluxes. One can also address the possi-
bility of generating the hierarchy through warping [6] in
this framework [1]. The hierarchy problem is less well un-
derstood in other corners of the M theory moduli space.

Our focus will be M theory, and we will henceforth
switch off all the fluxes else the hierarchy will be de-
stroyed. Supersymmetry then implies that the seven ex-
tra dimensions form a space X with G2-holonomy. In

these vacua, non-Abelian gauge fields are localized along
three dimensional submanifolds Q ⊂ X at which there
is an orbifold singularity [7] and chiral fermions are lo-
calized at points at which there are conical singularities
[8, 9, 10].

These vacua can have interesting phenomenological
features, independently of how moduli are stabilized: the
Yukawa couplings are hierarchical; proton decay proceeds
at dimension six with distinctive decays; grand unifica-
tion is very natural; the µ-term is zero in the high scale
lagrangian [8, 11, 12, 13]. Also, since the Q’s generically
do not intersect each other, supersymmetry breaking will
be gravity mediated in these vacua. Therefore, it is of
considerable interest to understand whether or not there
exist mechanisms which can a) stabilize the moduli of
such compactifications, b) generate a hierarchy of scales,
and if so, c) what is the resulting structure of the soft
terms and their implications for LHC?

All the moduli fields si have axionic superpartners ti,
which, in the absence of fluxes, enjoy a Peccei-Quinn shift
symmetry. This is an important difference with respect
to other M theory limits such as heterotic or Type IIB.
Therefore, in the zero flux sector, the only contributions
to the superpotential are non-perturbative. These can
arise either from strong gauge dynamics or from mem-
brane instantons. Since the theory of membrane instan-
tons in G2 manifolds is technically challenging [14], we
will restrict our attention to the strong gauge dynamics
case henceforth.

Furthermore, unlike its weakly coupled string limits, in
M theory the non-perturbative superpotential in general
depends upon all the moduli. Hence, one would expect
that the effective supergravity potential has isolated min-
ima. Our main conclusion is that strong gauge dynamics
produces an effective potential which indeed stabilizes all
moduli and generates an exponential hierarchy of scales.
After describing this result, we also briefly describe the
pattern of soft breaking terms which these vacua predict
and begin to discuss the consequences for the LHC.
2. The Moduli Potential
The moduli Kahler potential is difficult to calculate ex-
plicitly. However, a family of Kahler potentials, consis-
tent with G2-holonomy and known to describe accurately
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that the effective supergravity potential has isolated min-
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• Dynamics of the Hidden Sector

• Generates the hierarchy between MPlanck and MEW

• Supersymmetry breaking also stabilize the moduli, with M ~           ≳   
20 TeV

• The cosmological moduli solutions are based on:

• Non-thermal, moduli dominated, pre BBN cosmology is very plausibly 
“a generic” outcome of string/M theory

• A non-thermal WIMP miracle occurs for wine-like Dark Matter 
particles produced when the moduli decay before BBN

• Wino DM consistent with indirect detection (PAMELA, Fermi)

ar
X

iv
:h

ep
-th

/0
60

62
62

v2
  2

1 
N

ov
 2

00
6

IC/2006/43
MCTP-06-12

M theory Solution to the Hierarchy Problem

Bobby Acharya
Abdus Salam ICTP, Strada Costiera 11, Trieste, Italy

Konstantin Bobkov, Gordon Kane, Piyush Kumar, and Diana Vaman
MCTP, University of Michigan, Ann Arbor, MI, USA

(Dated: February 1, 2008)

An old idea for explaining the hierarchy is strong gauge dynamics. We show that such dynamics
also stabilizes the moduli in M theory compactifications on manifolds of G2-holonomy without fluxes.
This gives stable vacua with softly broken susy, grand unification and a distinctive spectrum of TeV
and sub-TeV sparticle masses.

PACS numbers: 11.25.Mj 11.25.Wx 11.25.Yb 12.10.-g 12.60.Jv 14.80.Ly

1. Stabilizing Hierarchies and Moduli
M theory (and its weakly coupled string limits) is a con-
sistent quantum theory including gravity, particle physics
and much more. Although apparently unique, the the-
ory has a large number of solutions, manifested by the
presence of moduli: massless scalar fields with classically
undetermined vacuum expectation values (vevs), whose
values determine the masses and coupling constants of
the low energy physics.

In recent years, there has been substantial progress
in understanding mechanisms which stabilize moduli in
various corners of the M theory moduli space. In par-
ticular, the stabilization of all moduli by magnetic fields
(fluxes) in the extra dimensions, perhaps also combined
with other quantum effects, has been reasonably well
understood in the context of Type IIB string theory
[1, 2], M theory [3] and Type IIA string theory [4]. Af-
ter stabilizing the moduli, one still has to explain why
MW /mpl ∼ 10−16.

The effective potential of these compactifications fits
into the framework of a low energy supergravity theory
in four dimensions. A well known property of the latter is
that there is a universal contribution to scalar masses of
order the gravitino mass m3/2. Therefore, without mirac-
ulous cancellations, in theories in which m3/2 is large,
the Higgs mass is also large. In M theory and Type IIA
flux vacua the vacuum superpotential is O(1) or larger in
Planck units. This gives a large m3/2 (unless the volume
of the extra dimensions is large, ruining standard unifi-
cation). In heterotic flux vacua [5] m3/2 can be smaller,
but only by a few orders of magnitude. Thus, in these
vacua, stabilizing the moduli using fluxes fails to solve
the hierarchy problem, viz. to generate and stabilize the
hierarchy between the electroweak and Planck scales.

In Type IIB theory, this is not so: m3/2 can be tuned
small by choosing fluxes. One can also address the possi-
bility of generating the hierarchy through warping [6] in
this framework [1]. The hierarchy problem is less well un-
derstood in other corners of the M theory moduli space.

Our focus will be M theory, and we will henceforth
switch off all the fluxes else the hierarchy will be de-
stroyed. Supersymmetry then implies that the seven ex-
tra dimensions form a space X with G2-holonomy. In

these vacua, non-Abelian gauge fields are localized along
three dimensional submanifolds Q ⊂ X at which there
is an orbifold singularity [7] and chiral fermions are lo-
calized at points at which there are conical singularities
[8, 9, 10].

These vacua can have interesting phenomenological
features, independently of how moduli are stabilized: the
Yukawa couplings are hierarchical; proton decay proceeds
at dimension six with distinctive decays; grand unifica-
tion is very natural; the µ-term is zero in the high scale
lagrangian [8, 11, 12, 13]. Also, since the Q’s generically
do not intersect each other, supersymmetry breaking will
be gravity mediated in these vacua. Therefore, it is of
considerable interest to understand whether or not there
exist mechanisms which can a) stabilize the moduli of
such compactifications, b) generate a hierarchy of scales,
and if so, c) what is the resulting structure of the soft
terms and their implications for LHC?

All the moduli fields si have axionic superpartners ti,
which, in the absence of fluxes, enjoy a Peccei-Quinn shift
symmetry. This is an important difference with respect
to other M theory limits such as heterotic or Type IIB.
Therefore, in the zero flux sector, the only contributions
to the superpotential are non-perturbative. These can
arise either from strong gauge dynamics or from mem-
brane instantons. Since the theory of membrane instan-
tons in G2 manifolds is technically challenging [14], we
will restrict our attention to the strong gauge dynamics
case henceforth.

Furthermore, unlike its weakly coupled string limits, in
M theory the non-perturbative superpotential in general
depends upon all the moduli. Hence, one would expect
that the effective supergravity potential has isolated min-
ima. Our main conclusion is that strong gauge dynamics
produces an effective potential which indeed stabilizes all
moduli and generates an exponential hierarchy of scales.
After describing this result, we also briefly describe the
pattern of soft breaking terms which these vacua predict
and begin to discuss the consequences for the LHC.
2. The Moduli Potential
The moduli Kahler potential is difficult to calculate ex-
plicitly. However, a family of Kahler potentials, consis-
tent with G2-holonomy and known to describe accurately

4Thursday, September 29, 11



• Spectra

• despite heavy scalars, there is a light Higgs → EWSB achieved

• while FCNC under control, 

bounds on Y ,   AND soft terms can be obtained
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In the effective supergravity limit of G2-MSSM models 
we know, the Kähler potential: 

HOW CAN FLAVOUR ARISE? 

• This can be achieved in an underlying sugra 
scenario: Knowing the form W, K, f      then we 

can calculate��
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Figure 2: Diagram relevant for the Kähler potential.
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO

⌅�̄
, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.

4. We take the flat limit, i.e. MP ⇥ ⇤ and m2
3/2 = ⌃eKH/M2
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P = const. [16].

This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs ⌃⇧̄⌥ and the dynamical fields ⇧̄ are still present, since they have
couplings to the observable sector that are suppressed by M⇥ rather than MP. It is
only at the scale ⌃⇧̄⌥ < MP that they decouple. Again, this should not be a problem
as long as we do not aim to calculate the running of parameters between MP and
⌃⇧̄⌥.
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This is necessary in order to obtain the usual globally supersymmetric contribution⌦
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denotes the ij component of the matrix Y�⇥⇤ coupling the fields C� = f c,
C⇥ = F and C⇤ = Hf . Note that the rescaled Yukawa couplings Y ⇥ are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
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with C = (F, f c†, Hf ) and where K̃⇤⌅̄ denotes the elements of

the inverse matrix. Besides,  m ⇥  / hm,  �
m̄ ⇥  / h�

m̄, and e.g. ⌦F ⌃̄1↵  / ⇧̄1 ⇥
⌦F ⌃̄1i↵  / ⇧̄1i. We have expressed the formula for the trilinear couplings in terms of
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from Eqs. (9) that when going to the canonical basis there would be no o�-diagonal
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
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in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
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MP and M⇥.
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4. We take the flat limit, i.e. MP ⇥ ⇤ and m2
3/2 = ⌃eKH/M2

P |WH|2⌥ /M4
P = const. [16].

This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs ⌃⇧̄⌥ and the dynamical fields ⇧̄ are still present, since they have
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
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MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO

⌅�̄
, which

yields an important contribution to the trilinear scalar couplings. The minimisation
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This is necessary in order to obtain the usual globally supersymmetric contribution⌦
� | W ⇥

O/ C�|2 to the scalar potential. The rescaling is absorbed in the e�ective
Yukawa couplings,
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denotes the ij component of the matrix Y�⇥⇤ coupling the fields C� = f c,
C⇥ = F and C⇤ = Hf . Note that the rescaled Yukawa couplings Y ⇥ are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
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⌦F ⌃̄1i↵  / ⇧̄1i. We have expressed the formula for the trilinear couplings in terms of
Y ⇥ for convenience, where it is possible without ambiguity. Primes denote parameters
before canonical normalisation. There are di�erent F -term vevs associated to each
flavon, ⌦F ⌃̄n↵ = cnm3/2 ⌦⇧̄n↵ [2, 3], where cn ⇧= cm for n ⇧= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o�-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di�erent flavons and consequently di�erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di�erent O(1) coe⌅cients in each component,
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the coe⇥cients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to �̄n the coe⇥cients cn are expected to be O(1).
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO
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, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.
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only at the scale ⌃⇧̄⌥ < MP that they decouple. Again, this should not be a problem
as long as we do not aim to calculate the running of parameters between MP and
⌃⇧̄⌥.

5. We rescale the superpotential of the visible sector,

W ⇥
O = WO

⇤
W �

H

|WH|
e

1
2M2

P

�
m |hm|2

⌅
� N WO . (7)

4

f c

M�f
2

f c†⇤̄f
2

�2 �2

⇥̄2 ⇥̄†
2

Figure 2: Diagram relevant for the Kähler potential.

and the e�ective Kähler potential

K = F †
i Fi

⇧
1 + ⌅F +

⇤2
H (1 + ⌅⇥̄f

0
)

M2
⇥f
0

H†
fHf

⌃

+ f c
i f

c†
j

⇧
�ij + ⌅fc�ij +

⇤2
2 (1 + ⌅⇥f

2
)

M2
⇥f
2

⇧̄2i⇧̄
†
2j

⌃

+H†
fHf

�
1 + ⌅Hf

⇥
+ (ZH HuHd + h.c.) + . . . +KH (6)

� K̃F †
i Fj

F †
i Fj + K̃fc

i f
c†
j
f c
i f

c†
j + K̃H†

fHf
H†

fHf + (ZH HuHd + h.c.) + . . . +KH ,

where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO
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, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.
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P = const. [16].
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C⇥ = F and C⇤ = Hf . Note that the rescaled Yukawa couplings Y ⇥ are the ones
directly related to observable quantities (up to canonical normalisation) that are
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As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o�-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di�erent flavons and consequently di�erent F
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO
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, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.
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P = const. [16].

This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs ⌃⇧̄⌥ and the dynamical fields ⇧̄ are still present, since they have
couplings to the observable sector that are suppressed by M⇥ rather than MP. It is
only at the scale ⌃⇧̄⌥ < MP that they decouple. Again, this should not be a problem
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pressed by messenger masses. This can be visualised by diagrams like the one shown
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This is necessary in order to obtain the usual globally supersymmetric contribution⌦
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denotes the ij component of the matrix Y�⇥⇤ coupling the fields C� = f c,
C⇥ = F and C⇤ = Hf . Note that the rescaled Yukawa couplings Y ⇥ are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
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As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o�-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di�erent flavons and consequently di�erent F
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directly related to observable quantities (up to canonical normalisation) that are
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Y ⇥ for convenience, where it is possible without ambiguity. Primes denote parameters
before canonical normalisation. There are di�erent F -term vevs associated to each
flavon, ⌦F ⌃̄n↵ = cnm3/2 ⌦⇧̄n↵ [2, 3], where cn ⇧= cm for n ⇧= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o�-diagonal
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MP, not only at their own mass scales. This should not be a problem as long as we do
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, which
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of the potential yields vevs for all hidden sector fields and their F terms, breaking
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denotes the ij component of the matrix Y�⇥⇤ coupling the fields C� = f c,
C⇥ = F and C⇤ = Hf . Note that the rescaled Yukawa couplings Y ⇥ are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
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although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
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computed [4] that with at least two di�erent flavons and consequently di�erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di�erent O(1) coe⌅cients in each component,

m2
f̃c
i f̃

c†
j

⇤ O(1)m2
3/2 ⌦K̃fc

i f
c†
j
↵ , (10)

4 Here we use ⌦Fm↵ = ⌦eK/(2M2
P) |WH|

M2
P
↵ ⌦Kmn̄

H (Kn̄ + W�
n̄

W� )↵. For the flavons ⌦|F �̄n |2↵ behaves as

m2
3/2c

2
n

���⌦K�̄n
+

W�̄n
W ↵

���
2
, then it is assumed that the term containing |K�̄n

|2 is the dominant one. Formally

the coe⇥cients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to �̄n the coe⇥cients cn are expected to be O(1).

5

f c

M�f
2

f c†⇤̄f
2

�2 �2

⇥̄2 ⇥̄†
2

Figure 2: Diagram relevant for the Kähler potential.

and the e�ective Kähler potential

K = F †
i Fi

⇧
1 + ⌅F +

⇤2
H (1 + ⌅⇥̄f

0
)

M2
⇥f
0

H†
fHf

⌃

+ f c
i f

c†
j

⇧
�ij + ⌅fc�ij +

⇤2
2 (1 + ⌅⇥f

2
)

M2
⇥f
2

⇧̄2i⇧̄
†
2j

⌃

+H†
fHf

�
1 + ⌅Hf

⇥
+ (ZH HuHd + h.c.) + . . . +KH (6)

� K̃F †
i Fj

F †
i Fj + K̃fc

i f
c†
j
f c
i f

c†
j + K̃H†

fHf
H†

fHf + (ZH HuHd + h.c.) + . . . +KH ,

where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO

⌅�̄
, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.
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This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs ⌃⇧̄⌥ and the dynamical fields ⇧̄ are still present, since they have
couplings to the observable sector that are suppressed by M⇥ rather than MP. It is
only at the scale ⌃⇧̄⌥ < MP that they decouple. Again, this should not be a problem
as long as we do not aim to calculate the running of parameters between MP and
⌃⇧̄⌥.
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This is necessary in order to obtain the usual globally supersymmetric contribution⌦
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O/ C�|2 to the scalar potential. The rescaling is absorbed in the e�ective
Yukawa couplings,
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denotes the ij component of the matrix Y�⇥⇤ coupling the fields C� = f c,
C⇥ = F and C⇤ = Hf . Note that the rescaled Yukawa couplings Y ⇥ are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.
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As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o�-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di�erent flavons and consequently di�erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di�erent O(1) coe⌅cients in each component,
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO

⌅�̄
, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.

4. We take the flat limit, i.e. MP ⇥ ⇤ and m2
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P = const. [16].
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we know, the Kähler potential: 

Last change: Sep 13, 2010

1 Conventions

1.1 Superpotential and soft SUSY breaking

Let us explicitly write down our conventions for clarification. We adopt the following convention
for the superpotential:

W = Y ij
l εαβHα

d Ec
i L

β
j − Y ij
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where Hd ≡ H1 and Hu ≡ H2. Note that we are using the so called Left-Right notation for the
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The rest of the multiplets are as in Table 1.1 of the SUSY Primer [6], e.g. U c ⊃ (ũ∗
R, u†

R) and
Q ⊃ (q̃L, qL). The Yukawa interactions are derived from the superpotential via
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where SU(2) indices are not written explicitly. They are contracted by εαβ and δαβ, respectively, i.e.
AB := εαβAαBβ and A†A := A†

αAα for SU(2) doublet fields A, B. Note the − sign in Eqs. (1) and
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Figure 2: Diagram relevant for the Kähler potential.
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO

⌅�̄
, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.

4. We take the flat limit, i.e. MP ⇥ ⇤ and m2
3/2 = ⌃eKH/M2

P |WH|2⌥ /M4
P = const. [16].

This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs ⌃⇧̄⌥ and the dynamical fields ⇧̄ are still present, since they have
couplings to the observable sector that are suppressed by M⇥ rather than MP. It is
only at the scale ⌃⇧̄⌥ < MP that they decouple. Again, this should not be a problem
as long as we do not aim to calculate the running of parameters between MP and
⌃⇧̄⌥.

5. We rescale the superpotential of the visible sector,
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This is necessary in order to obtain the usual globally supersymmetric contribution⌦
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O/ C�|2 to the scalar potential. The rescaling is absorbed in the e�ective
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denotes the ij component of the matrix Y�⇥⇤ coupling the fields C� = f c,
C⇥ = F and C⇤ = Hf . Note that the rescaled Yukawa couplings Y ⇥ are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
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flavon, ⌦F ⌃̄n↵ = cnm3/2 ⌦⇧̄n↵ [2, 3], where cn ⇧= cm for n ⇧= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o�-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di�erent flavons and consequently di�erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di�erent O(1) coe⌅cients in each component,
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the coe⇥cients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to �̄n the coe⇥cients cn are expected to be O(1).
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO

⌅�̄
, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.

4. We take the flat limit, i.e. MP ⇥ ⇤ and m2
3/2 = ⌃eKH/M2

P |WH|2⌥ /M4
P = const. [16].

This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs ⌃⇧̄⌥ and the dynamical fields ⇧̄ are still present, since they have
couplings to the observable sector that are suppressed by M⇥ rather than MP. It is
only at the scale ⌃⇧̄⌥ < MP that they decouple. Again, this should not be a problem
as long as we do not aim to calculate the running of parameters between MP and
⌃⇧̄⌥.
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
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3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO

⌅�̄
, which
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
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In the effective supergravity limit of G2-MSSM models 
we know, the Kähler potential: 
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1 Conventions

1.1 Superpotential and soft SUSY breaking

Let us explicitly write down our conventions for clarification. We adopt the following convention
for the superpotential:
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where Hd ≡ H1 and Hu ≡ H2. Note that we are using the so called Left-Right notation for the
Yukawa couplings, which is the same of [5]. The scalar parts of the Higgs superfields are given by
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where SU(2) indices are not written explicitly. They are contracted by εαβ and δαβ, respectively, i.e.
AB := εαβAαBβ and A†A := A†

αAα for SU(2) doublet fields A, B. Note the − sign in Eqs. (1) and
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO
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, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.

4. We take the flat limit, i.e. MP ⇥ ⇤ and m2
3/2 = ⌃eKH/M2

P |WH|2⌥ /M4
P = const. [16].

This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs ⌃⇧̄⌥ and the dynamical fields ⇧̄ are still present, since they have
couplings to the observable sector that are suppressed by M⇥ rather than MP. It is
only at the scale ⌃⇧̄⌥ < MP that they decouple. Again, this should not be a problem
as long as we do not aim to calculate the running of parameters between MP and
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denotes the ij component of the matrix Y�⇥⇤ coupling the fields C� = f c,
C⇥ = F and C⇤ = Hf . Note that the rescaled Yukawa couplings Y ⇥ are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
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where K̃�̄⇥ ⇥  2K
 C†

�̄ C⇥
with C = (F, f c†, Hf ) and where K̃⇤⌅̄ denotes the elements of

the inverse matrix. Besides,  m ⇥  / hm,  �
m̄ ⇥  / h�

m̄, and e.g. ⌦F ⌃̄1↵  / ⇧̄1 ⇥
⌦F ⌃̄1i↵  / ⇧̄1i. We have expressed the formula for the trilinear couplings in terms of
Y ⇥ for convenience, where it is possible without ambiguity. Primes denote parameters
before canonical normalisation. There are di�erent F -term vevs associated to each
flavon, ⌦F ⌃̄n↵ = cnm3/2 ⌦⇧̄n↵ [2, 3], where cn ⇧= cm for n ⇧= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o�-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di�erent flavons and consequently di�erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di�erent O(1) coe⌅cients in each component,
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2
n

���⌦K�̄n
+

W�̄n
W ↵

���
2
, then it is assumed that the term containing |K�̄n

|2 is the dominant one. Formally

the coe⇥cients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to �̄n the coe⇥cients cn are expected to be O(1).
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where we have omitted MP-suppressed terms proportional to ⇥ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M⇥.

3. From the e�ective potentials we calculate the scalar potential. It contains ⌅WO

⌅�̄
, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.

4. We take the flat limit, i.e. MP ⇥ ⇤ and m2
3/2 = ⌃eKH/M2

P |WH|2⌥ /M4
P = const. [16].

This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs ⌃⇧̄⌥ and the dynamical fields ⇧̄ are still present, since they have
couplings to the observable sector that are suppressed by M⇥ rather than MP. It is
only at the scale ⌃⇧̄⌥ < MP that they decouple. Again, this should not be a problem
as long as we do not aim to calculate the running of parameters between MP and
⌃⇧̄⌥.

5. We rescale the superpotential of the visible sector,
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• In ST, the Yukawa couplings are given generically 
by
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1 Goals

We would like to put limits on the size of the off-diagonal trilinear and sof-squared masses.
Althought it is a compelling task with out a priori information about the form of them, we
can make some general statements and with some parameterization, obtain precise bounds.
Outline:

1. Assume some parameterization of af , m2 but when possible, make general state-
ments.

2. Check bounds coming from stability of the scalar potential

3. Check Kaon bounds and leptonic processes !i → !jγ

4. Check b decays

2 Basic features of the G2 models

2.1 Boundary Conditions

2.2 Typical mass spectra

m3/2 ∈ (10, 100) TeV

2.2.1 Heavy particles:

All the susy scalars: both the superpartners of the fermions and the Higgsinos, since

m2
ᾱβ = m2

3/2δαβ (1)

B, µ = O(m3/2) (2)

2.2.2 Light particles:

Light gauginos and SM particles

2.2.3 Yukawa couplings

The basic form of the Yukawa couplings is given by

Y f
ij = e−Vij (3)

However most of the flavour violating processes depend on the form of the diagonalizing
matrices. We analyze the following cases:

VCKM = Ud†
L , (4)

VCKM = Uu
L, (5)

to which we will refer in the following sections.
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where we have omitted MP-suppressed terms proportional to ⇣ and terms suppressed
by higher powers of messenger masses. Thus, we obtain non-minimal terms sup-
pressed by messenger masses. This can be visualised by diagrams like the one shown
in Fig. 2. Note that in this way the messengers are integrated out already around
MP, not only at their own mass scales. This should not be a problem as long as we do
not aspire high-precision calculations including the running of parameters between
MP and M�.

3. From the e↵ective potentials we calculate the scalar potential. It contains @WO

@�̄
, which

yields an important contribution to the trilinear scalar couplings. The minimisation
of the potential yields vevs for all hidden sector fields and their F terms, breaking
both SUSY and the family symmetry.

4. We take the flat limit, i.e. MP ! 1 and m2
3/2 = heKH/M2

P |WH|2i /M4
P = const. [16].

This removes the dynamical degree of freedom h from the theory. In contrast, both
the flavon vevs h�̄i and the dynamical fields �̄ are still present, since they have
couplings to the observable sector that are suppressed by M� rather than MP. It is
only at the scale h�̄i < MP that they decouple. Again, this should not be a problem
as long as we do not aim to calculate the running of parameters between MP and
h�̄i.

5. We rescale the superpotential of the visible sector,

W 0
O = WO

⌧
W ⇤

H

|WH| e
1

2M2
P

P
m |hm|2

�
⌘ N WO . (7)
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This is necessary in order to obtain the usual globally supersymmetric contributionP
↵ |@W 0

O/@C↵|2 to the scalar potential. The rescaling is absorbed in the e↵ective
Yukawa couplings,

Y 0
fc

i FjHf
⌘ N Yfc

i FjHf
⌘ N �H�1�2

h�̄2ii h�̄1ij
M�f

0
M�f

2

. (8)

Yfc
i FjHf

denotes the ij component of the matrix Y↵�� coupling the fields C↵ = f c,
C� = F and C� = Hf . Note that the rescaled Yukawa couplings Y 0 are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
mine the latter using Eqs. (11, 12) of [17], which in our notation become

m02
↵̄� = m2

3/2 hK̃↵̄�i �
D
F⇤m̄

⇣
@⇤

m̄@nK̃↵̄� � (@⇤
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, (9a)

a0
↵�� = hFmi

⌧
@mKH

M2
P

�
Y 0

↵�� +
N@Y↵��

@hhmi
�

� hFmi
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E
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��� + (↵ $ �) + (↵ $ �)

i
, (9b)

where K̃↵̄� ⌘ @2K

@C†
↵̄@C�

with C = (F, f c†, Hf ) and where K̃��̄ denotes the elements of

the inverse matrix. Besides, @m ⌘ @/@hm, @⇤
m̄ ⌘ @/@h⇤

m̄, and e.g. hF �̄1i @/@�̄1 ⌘
hF �̄1ii @/@�̄1i. We have expressed the formula for the trilinear couplings in terms of
Y 0 for convenience, where it is possible without ambiguity. Primes denote parameters
before canonical normalisation. There are di↵erent F -term vevs associated to each
flavon, hF �̄ni = cnm3/2 h�̄ni [2, 3], where cn 6= cm for n 6= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o↵-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di↵erent flavons and consequently di↵erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di↵erent O(1) coe�cients in each component,

m2
f̃c

i f̃c†
j

⇠ O(1) m2
3/2 hK̃fc

i fc†
j
i , (10)

4 Here we use hFmi = heK/(2M2
P) |WH|
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P
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H (Kn̄ +
W⇤

n̄
W⇤ )i. For the flavons h|F �̄n |2i behaves as

m2
3/2c

2
n

���hK�̄n
+

W�̄n
W i

���
2

, then it is assumed that the term containing |K�̄n
|2 is the dominant one. Formally

the coe�cients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to �̄n the coe�cients cn are expected to be O(1).
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by
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F̃ †F̃

⇥ m̂2
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F m⇥2
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VF , (13a)
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fc m⇥2

f̃cf̃c† Vfc , (13b)
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fcFHf

⇥ ŶfcFHf
� K̃

� 1
2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f
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†
âf̃cF̃Hf

U f
L , (15a)
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L , (15b)

�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,
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In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.
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, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
[(

α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]

ij
+

[
Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑

f ′ !=f

(
α1f ′(M2

f̃ ′Y
†
f ′Yf ′)ij + α2f ′(Y †

f ′Yf ′M2
f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
L |Ŷ u|2 + Uu

L(m2
Q + 2m2

Hd
)Uu†

L VCKM|Ŷ d|2V †
CKM

+ (|Ŷ u|2 + V |Ŷ d|V †)Uu
Lm2

QUu†
L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u

+ 2VCKMŶ d(Ud
Rm2

dU
d†
R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1

β(1)
(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
L

+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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R )Ŷ u

+ 2VCKMŶ d(Ud
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Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]

ij
, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:

∣∣∣a(u)
ij

∣∣∣
2

≤
1

4
y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)

∣∣∣a(d)
ij

∣∣∣
2

≤
1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)

∣∣∣a(l)
ij

∣∣∣
2

≤
1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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the Kähler potential and the F terms.
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the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,
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†
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where the (non-unitary) matrices V diagonalise the Kähler metric,5
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Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by
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8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,
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f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:
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The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:
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]
(15)

with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-
portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.

5

at 1-loop at a given scale in the SCKM basis are

β(1)
au = Ŷ uTr
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(4)

where Gf
i are the diagonal functions of the running of the gauginos and gauge couplings.

Recall that β(1)
af can be decomposed as

β(1)
af =

[
Y fF1(a

f , Y f) + afF2(a
f , Y f)

]
, (5)

the first lines in Eq. (4), in β(1)
af for f = u, d correspond to the first term in Eq. (5), while

the second lines in β(1)
af for f = u, d to the second term in Eq. (5).

Eqs. (4) were obtained assuming that also at the scale µ we could write

af (µ) = Y f(µ)Af , (6)

with universality of the Af terms ∀f this is possible to achieve (this is because the ap-

pearence of af ′

terms for f ′ "= f in β(1)

af
ij

). This is difficult to achieve because Af should

not be too large in comparison to other soft parameters, such that its own running does
ont affect Eq. (6). Thus in general we will have a small contibution in β(1)

af :
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)
(7)

where

bf = af (µ) − Y f(µ)Af . (8)

Here the matrices Uf
R,L are the matrices diagonalizing the Yukawa couplings, for this and

in general all notation we refer to the set of notes: Notation. It is pretty safe to ignore the
contributions of Eq. (7) when truly Af is the same for all families and types of fermions.
Notice that in general the flavour violating contributions to the trilinears have the structure
(plus the terms included in the traces of Eq. (4) when bf "= 0) of Eq. (7) and could be the
leading ones, depending on the structure of Eq. (8).
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The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:
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Q
2 )ij

]
,

(̂M2
f̃
)i"=j ≈

1

16π2
log

[
µ

MG

] [
(∆f
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ksU
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where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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This is necessary in order to obtain the usual globally supersymmetric contributionP
↵ |@W 0

O/@C↵|2 to the scalar potential. The rescaling is absorbed in the e↵ective
Yukawa couplings,

Y 0
fc

i FjHf
⌘ N Yfc

i FjHf
⌘ N �H�1�2

h�̄2ii h�̄1ij
M�f

0
M�f

2

. (8)

Yfc
i FjHf

denotes the ij component of the matrix Y↵�� coupling the fields C↵ = f c,
C� = F and C� = Hf . Note that the rescaled Yukawa couplings Y 0 are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
mine the latter using Eqs. (11, 12) of [17], which in our notation become

m02
↵̄� = m2

3/2 hK̃↵̄�i �
D
F⇤m̄

⇣
@⇤

m̄@nK̃↵̄� � (@⇤
m̄K̃↵̄�) K̃��̄ @nK̃�̄�

⌘
Fn

E
, (9a)

a0
↵�� = hFmi

⌧
@mKH

M2
P

�
Y 0

↵�� +
N@Y↵��

@hhmi
�

� hFmi
hD

K̃�⇢̄ (@mK̃⇢̄↵)
E

Y 0
��� + (↵ $ �) + (↵ $ �)

i
, (9b)

where K̃↵̄� ⌘ @2K

@C†
↵̄@C�

with C = (F, f c†, Hf ) and where K̃��̄ denotes the elements of

the inverse matrix. Besides, @m ⌘ @/@hm, @⇤
m̄ ⌘ @/@h⇤

m̄, and e.g. hF �̄1i @/@�̄1 ⌘
hF �̄1ii @/@�̄1i. We have expressed the formula for the trilinear couplings in terms of
Y 0 for convenience, where it is possible without ambiguity. Primes denote parameters
before canonical normalisation. There are di↵erent F -term vevs associated to each
flavon, hF �̄ni = cnm3/2 h�̄ni [2, 3], where cn 6= cm for n 6= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o↵-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di↵erent flavons and consequently di↵erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di↵erent O(1) coe�cients in each component,

m2
f̃c

i f̃c†
j

⇠ O(1) m2
3/2 hK̃fc

i fc†
j
i , (10)

4 Here we use hFmi = heK/(2M2
P) |WH|
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P
i hKmn̄
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W⇤
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W⇤ )i. For the flavons h|F �̄n |2i behaves as

m2
3/2c

2
n

���hK�̄n
+

W�̄n
W i

���
2

, then it is assumed that the term containing |K�̄n
|2 is the dominant one. Formally

the coe�cients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to �̄n the coe�cients cn are expected to be O(1).
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This is necessary in order to obtain the usual globally supersymmetric contributionP
↵ |@W 0

O/@C↵|2 to the scalar potential. The rescaling is absorbed in the e↵ective
Yukawa couplings,

Y 0
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. (8)

Yfc
i FjHf

denotes the ij component of the matrix Y↵�� coupling the fields C↵ = f c,
C� = F and C� = Hf . Note that the rescaled Yukawa couplings Y 0 are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
mine the latter using Eqs. (11, 12) of [17], which in our notation become
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@C†
↵̄@C�

with C = (F, f c†, Hf ) and where K̃��̄ denotes the elements of
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m̄, and e.g. hF �̄1i @/@�̄1 ⌘
hF �̄1ii @/@�̄1i. We have expressed the formula for the trilinear couplings in terms of
Y 0 for convenience, where it is possible without ambiguity. Primes denote parameters
before canonical normalisation. There are di↵erent F -term vevs associated to each
flavon, hF �̄ni = cnm3/2 h�̄ni [2, 3], where cn 6= cm for n 6= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o↵-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di↵erent flavons and consequently di↵erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di↵erent O(1) coe�cients in each component,
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P) |WH|

M2
P
i hKmn̄

H (Kn̄ +
W⇤

n̄
W⇤ )i. For the flavons h|F �̄n |2i behaves as
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, then it is assumed that the term containing |K�̄n
|2 is the dominant one. Formally

the coe�cients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to �̄n the coe�cients cn are expected to be O(1).
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Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:
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The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:
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with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-
portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
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ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by
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F̃ †F̃
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8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,
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In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
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is K̃F †
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, and analogously for other quantities.
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
[(

α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]

ij
+

[
Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑

f ′ !=f

(
α1f ′(M2

f̃ ′Y
†
f ′Yf ′)ij + α2f ′(Y †

f ′Yf ′M2
f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
L |Ŷ u|2 + Uu

L(m2
Q + 2m2

Hd
)Uu†

L VCKM|Ŷ d|2V †
CKM

+ (|Ŷ u|2 + V |Ŷ d|V †)Uu
Lm2

QUu†
L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u

+ 2VCKMŶ d(Ud
Rm2

dU
d†
R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1
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(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
L

+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u
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Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]

ij
, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:

∣∣∣a(u)
ij

∣∣∣
2

≤
1

4
y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)

∣∣∣a(d)
ij

∣∣∣
2

≤
1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)

∣∣∣a(l)
ij

∣∣∣
2

≤
1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1
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, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
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VF , (13a)
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V †
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8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
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L , (15a)

�m2
f̃ ,LL
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L , (15b)

�m2
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= U f
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†
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f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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This is necessary in order to obtain the usual globally supersymmetric contributionP
↵ |@W 0

O/@C↵|2 to the scalar potential. The rescaling is absorbed in the e↵ective
Yukawa couplings,

Y 0
fc

i FjHf
⌘ N Yfc

i FjHf
⌘ N �H�1�2

h�̄2ii h�̄1ij
M�f

0
M�f

2

. (8)

Yfc
i FjHf

denotes the ij component of the matrix Y↵�� coupling the fields C↵ = f c,
C� = F and C� = Hf . Note that the rescaled Yukawa couplings Y 0 are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
mine the latter using Eqs. (11, 12) of [17], which in our notation become

m02
↵̄� = m2

3/2 hK̃↵̄�i �
D
F⇤m̄

⇣
@⇤

m̄@nK̃↵̄� � (@⇤
m̄K̃↵̄�) K̃��̄ @nK̃�̄�

⌘
Fn

E
, (9a)

a0
↵�� = hFmi

⌧
@mKH

M2
P

�
Y 0

↵�� +
N@Y↵��

@hhmi
�

� hFmi
hD

K̃�⇢̄ (@mK̃⇢̄↵)
E

Y 0
��� + (↵ $ �) + (↵ $ �)

i
, (9b)

where K̃↵̄� ⌘ @2K

@C†
↵̄@C�

with C = (F, f c†, Hf ) and where K̃��̄ denotes the elements of

the inverse matrix. Besides, @m ⌘ @/@hm, @⇤
m̄ ⌘ @/@h⇤

m̄, and e.g. hF �̄1i @/@�̄1 ⌘
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Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:
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The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:
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2)ij

+ 2|Ŷ f |i(∆f
3)ij

]
(15)

with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-
portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf

⇥ âf̃cF̃Hf
� K̃

� 1
2

H†
fHf

V †
fc a⇥f̃cF̃Hf

VF , (13c)

Y ⇥
fcFHf

⇥ ŶfcFHf
� K̃

� 1
2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

�m2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃
U f
L , (15b)

�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
[(

α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]

ij
+

[
Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑

f ′ !=f

(
α1f ′(M2

f̃ ′Y
†
f ′Yf ′)ij + α2f ′(Y †

f ′Yf ′M2
f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
L |Ŷ u|2 + Uu

L(m2
Q + 2m2

Hd
)Uu†

L VCKM|Ŷ d|2V †
CKM

+ (|Ŷ u|2 + V |Ŷ d|V †)Uu
Lm2

QUu†
L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u

+ 2VCKMŶ d(Ud
Rm2

dU
d†
R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1

β(1)
(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
L

+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).

4

Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]

ij
, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:

∣∣∣a(u)
ij

∣∣∣
2

≤
1

4
y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)

∣∣∣a(d)
ij

∣∣∣
2

≤
1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)

∣∣∣a(l)
ij
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2

≤
1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)
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⇥ âf̃cF̃Hf
� K̃

� 1
2
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� 1
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fHf
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VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,
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U f
L , (15a)
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L , (15b)

�m2
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m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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This is necessary in order to obtain the usual globally supersymmetric contributionP
↵ |@W 0

O/@C↵|2 to the scalar potential. The rescaling is absorbed in the e↵ective
Yukawa couplings,

Y 0
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h�̄2ii h�̄1ij
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0
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2

. (8)

Yfc
i FjHf

denotes the ij component of the matrix Y↵�� coupling the fields C↵ = f c,
C� = F and C� = Hf . Note that the rescaled Yukawa couplings Y 0 are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
mine the latter using Eqs. (11, 12) of [17], which in our notation become

m02
↵̄� = m2

3/2 hK̃↵̄�i �
D
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where K̃↵̄� ⌘ @2K

@C†
↵̄@C�

with C = (F, f c†, Hf ) and where K̃��̄ denotes the elements of

the inverse matrix. Besides, @m ⌘ @/@hm, @⇤
m̄ ⌘ @/@h⇤

m̄, and e.g. hF �̄1i @/@�̄1 ⌘
hF �̄1ii @/@�̄1i. We have expressed the formula for the trilinear couplings in terms of
Y 0 for convenience, where it is possible without ambiguity. Primes denote parameters
before canonical normalisation. There are di↵erent F -term vevs associated to each
flavon, hF �̄ni = cnm3/2 h�̄ni [2, 3], where cn 6= cm for n 6= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o↵-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di↵erent flavons and consequently di↵erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di↵erent O(1) coe�cients in each component,
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, then it is assumed that the term containing |K�̄n
|2 is the dominant one. Formally

the coe�cients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to �̄n the coe�cients cn are expected to be O(1).
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Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:
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The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:
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with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-
portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
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α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]

ij
+
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Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑

f ′ !=f

(
α1f ′(M2

f̃ ′Y
†
f ′Yf ′)ij + α2f ′(Y †

f ′Yf ′M2
f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
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Hd
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Lm2

QUu†
L + 2Ŷ u(Uu
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uU

u†
R )Ŷ u
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d†
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u †L +2Uu
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L + GM2
Q
1
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)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
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+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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Lm2

QUu†
L + 2Ŷ u(Uu
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Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]

ij
, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:

∣∣∣a(u)
ij

∣∣∣
2

≤
1

4
y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)

∣∣∣a(d)
ij

∣∣∣
2

≤
1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)

∣∣∣a(l)
ij

∣∣∣
2

≤
1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf

⇥ âf̃cF̃Hf
� K̃

� 1
2

H†
fHf

V †
fc a⇥f̃cF̃Hf

VF , (13c)

Y ⇥
fcFHf

⇥ ŶfcFHf
� K̃

� 1
2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

�m2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃
U f
L , (15b)

�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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In g2-mssm models?

This is necessary in order to obtain the usual globally supersymmetric contributionP
↵ |@W 0

O/@C↵|2 to the scalar potential. The rescaling is absorbed in the e↵ective
Yukawa couplings,

Y 0
fc

i FjHf
⌘ N Yfc

i FjHf
⌘ N �H�1�2

h�̄2ii h�̄1ij
M�f

0
M�f

2

. (8)

Yfc
i FjHf

denotes the ij component of the matrix Y↵�� coupling the fields C↵ = f c,
C� = F and C� = Hf . Note that the rescaled Yukawa couplings Y 0 are the ones
directly related to observable quantities (up to canonical normalisation) that are
determined by the fit to the fermion masses.

6. The scalar potential now consists of the globally supersymmetric part and soft SUSY
breaking terms. Assuming that no D terms contribute to SUSY breaking, we deter-
mine the latter using Eqs. (11, 12) of [17], which in our notation become

m02
↵̄� = m2

3/2 hK̃↵̄�i �
D
F⇤m̄

⇣
@⇤

m̄@nK̃↵̄� � (@⇤
m̄K̃↵̄�) K̃��̄ @nK̃�̄�

⌘
Fn

E
, (9a)

a0
↵�� = hFmi

⌧
@mKH

M2
P

�
Y 0

↵�� +
N@Y↵��

@hhmi
�

� hFmi
hD

K̃�⇢̄ (@mK̃⇢̄↵)
E

Y 0
��� + (↵ $ �) + (↵ $ �)

i
, (9b)

where K̃↵̄� ⌘ @2K

@C†
↵̄@C�

with C = (F, f c†, Hf ) and where K̃��̄ denotes the elements of

the inverse matrix. Besides, @m ⌘ @/@hm, @⇤
m̄ ⌘ @/@h⇤

m̄, and e.g. hF �̄1i @/@�̄1 ⌘
hF �̄1ii @/@�̄1i. We have expressed the formula for the trilinear couplings in terms of
Y 0 for convenience, where it is possible without ambiguity. Primes denote parameters
before canonical normalisation. There are di↵erent F -term vevs associated to each
flavon, hF �̄ni = cnm3/2 h�̄ni [2, 3], where cn 6= cm for n 6= m.4

As mentioned, we are treating the flavons as part of the hidden sector associated to
the breaking of SUSY and therefore there are also non-zero vevs for their F terms,
although they are not the main contribution to SUSY breaking, the leading source
of course being the family-blind field h. It is also important to note that if there was
only one flavon in the theory and thus only one F term, then we can immediately see
from Eqs. (9) that when going to the canonical basis there would be no o↵-diagonal
terms, even with a non-trivial Kähler metric. On the other hand it can be quickly
computed [4] that with at least two di↵erent flavons and consequently di↵erent F
terms, the soft mass matrices have the same structure as the Kähler metric but with
di↵erent O(1) coe�cients in each component,

m2
f̃c

i f̃c†
j

⇠ O(1) m2
3/2 hK̃fc

i fc†
j
i , (10)

4 Here we use hFmi = heK/(2M2
P) |WH|

M2
P
i hKmn̄

H (Kn̄ +
W⇤

n̄
W⇤ )i. For the flavons h|F �̄n |2i behaves as

m2
3/2c

2
n

���hK�̄n
+

W�̄n
W i

���
2

, then it is assumed that the term containing |K�̄n
|2 is the dominant one. Formally

the coe�cients cn should be determined from the process that sets completely the minimum of the scalar
potential and so depends on details of how SUSY is broken. However, since the F terms in general are
proportional to �̄n the coe�cients cn are expected to be O(1).
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Fixed (Moduli stabilization) 
The rest of the terms, regard matter K and while 
compatible with msugra, there may be deviations that are 
worth exploring 
Important Constraints: No new CP phases appearing

Strategy: Start probing with Yukawa textures that 
are well known and deviations from minimality at 

MPlanck

Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:

âu(µ)ij ≈ âu(MG)ijδij −
1

16π2
log

[
µ

MG

] [
Ŷ u

ii Tr
[
6(Uu

RauUu†
L )Ŷ u†

]
+ Ŷ u

ii G
u
1δij

+ 4Ŷ u 2
ii Uu

Rira
u
rrU

u∗
Ljr + 2Ŷ u

ii VCKMisŶ
d
ssU

d
Rsra

d
rrU

u∗
Ljr

]
(13)

âd(µ)ij ≈ âd(MG)ijδij −
1

16π2
log

[
µ

MG

] [
Ŷ d

ii Tr
[
6(Ud

RadUu†
L )Ŷ d† + 2aeY e†

]
+ Ŷ d

ii G
d
1δij

+ 4Ŷ d 2
ii Ud

Rira
d
rrU

d∗
Ljr + 2Ŷ d

iiV
†
CKMisŶ

u
ssU

u
Rsra

u
rrU

d∗
Ljr

]
. (14)

The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:
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ij
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3)ij

]
(15)

with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-
portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf

⇥ âf̃cF̃Hf
� K̃

� 1
2

H†
fHf

V †
fc a⇥f̃cF̃Hf

VF , (13c)

Y ⇥
fcFHf

⇥ ŶfcFHf
� K̃

� 1
2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

�m2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃
U f
L , (15b)

�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
[(

α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]

ij
+

[
Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑

f ′ !=f

(
α1f ′(M2

f̃ ′Y
†
f ′Yf ′)ij + α2f ′(Y †

f ′Yf ′M2
f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
L |Ŷ u|2 + Uu

L(m2
Q + 2m2

Hd
)Uu†

L VCKM|Ŷ d|2V †
CKM

+ (|Ŷ u|2 + V |Ŷ d|V †)Uu
Lm2

QUu†
L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u

+ 2VCKMŶ d(Ud
Rm2

dU
d†
R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1

β(1)
(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
L

+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]

ij
, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:

∣∣∣a(u)
ij

∣∣∣
2

≤
1

4
y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)

∣∣∣a(d)
ij

∣∣∣
2

≤
1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)

∣∣∣a(l)
ij

∣∣∣
2

≤
1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf

⇥ âf̃cF̃Hf
� K̃

� 1
2

H†
fHf

V †
fc a⇥f̃cF̃Hf

VF , (13c)

Y ⇥
fcFHf

⇥ ŶfcFHf
� K̃

� 1
2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

�m2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃
U f
L , (15b)

�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.

6

REAL

kane, kumar & shao, prd 82, 0905.2986
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CONSTRAINTS FROM 
VACUUM STABILITY  

Last change: Sep 13, 2010

1 Conventions

1.1 Superpotential and soft SUSY breaking

Let us explicitly write down our conventions for clarification. We adopt the following convention
for the superpotential:

W = Y ij
l εαβHα

d Ec
i L

β
j − Y ij

ν εαβHα
u N c

i L
β
j

+ Y ij
d εαβHα

d Dc
iQ

β
j − Y ij

u εαβHα
u U c

i Q
β
j

+ µεαβHα
u Hβ

d +
1

2
M ij

ν N c
i N

c
j , (1)

where Hd ≡ H1 and Hu ≡ H2. Note that we are using the so called Left-Right notation for the
Yukawa couplings, which is the same of [5]. The scalar parts of the Higgs superfields are given by

hd =

(
h0

d

h−
d

)
, hu =

(
h+

u

h0
u

)
, (2)

while the fermionic parts are

h̃d =

(
h̃0

d

h̃−
d

)
, h̃u =

(
h̃+

u

h̃0
u

)
. (3)

The rest of the multiplets are as in Table 1.1 of the SUSY Primer [6], e.g. U c ⊃ (ũ∗
R, u†

R) and
Q ⊃ (q̃L, qL). The Yukawa interactions are derived from the superpotential via

L = −
1

2

∑

i,j

∂2W

∂φi∂φj
ψiψj + h.c. (4)

The general soft SUSY breaking terms are given by

−Lsoft = q̃†Li(m
2
Q̃
)ij q̃Lj + ũRj(m

2
ũ)

jiũ∗
Ri + d̃Rj(m

2
d̃
)jid̃∗

Ri

+ l̃†Li(m
2
L̃
)ij l̃Lj + ẽRj(m

2
ẽ)

jiẽ∗Ri + ν̃Rj(m
2
ν̃)

jiν̃∗
Ri

+ m2
hd

h†
dhd + m2

hu
h†

uhu + (Bµ hdhu +
1

2
Bij

ν M ij
ν ν̃∗

Riν̃
∗
Rj + h.c.)

+
(
−aij

d hdd̃
∗
Riq̃Lj + aij

u huũ
∗
Riq̃Lj − aij

l hdẽ
∗
Ri l̃Lj + aij

ν huν̃
∗
Ri l̃Lj

+
1

2
M1B̃B̃ +

1

2
M2W̃

aW̃ a +
1

2
M3G̃

aG̃a + h.c.

)
, (5)

where SU(2) indices are not written explicitly. They are contracted by εαβ and δαβ, respectively, i.e.
AB := εαβAαBβ and A†A := A†

αAα for SU(2) doublet fields A, B. Note the − sign in Eqs. (1) and

1

 When K    trivial there is no problem (like msugra → 
just worry about Higgs scalar sector) ✔

Vacuum stability of the effective MSSM scalar potential

Acharya & bobkov, 0810.3285

When trilinears and mass squared terms not trivial, 
there are some extra-constaints

M
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•An undesiderable deep CCB minimum appears, 
unless

•UFB require

terms by requiring the absence of charge or color breaking (CCB) minima and directions
unbounded from below (UFB) in the scalar potential [39]. CCB and UFB constraints can
become particularly important or even more stringent than those from FCNCs for large
soft SUSY breaking terms, because the former are related to the ratio of scalar masses
and trilinear couplings while the latter tend to decrease as the scale of SUSY breaking
increases.

An undesirable deep CCB minimum appears unless the trilinear scalar couplings satisfy

|âeij|2 ≤ ((Ŷ e
ii)

2 + (Ŷ e
jj)

2)(m2
ẽLi

+m2
ẽRj

+m2
Hd

+ |µ|2), (12)

|âdij|2 ≤ ((Ŷ d
ii )

2 + (Ŷ d
jj)

2)(m2
d̃Li

+m2
d̃Rj

+m2
Hd

+ |µ|2), (13)

|âuij|2 ≤ ((Ŷ u
ii )

2 + (Ŷ u
jj)

2)(m2
ũLi

+m2
ũRj

+m2
Hu

+ |µ|2) (14)

in the SCKM basis. Analogously to the CCB bound, the UFB bounds for off-diagonal
trilinear scalar couplings read4

|âeij |2 ≤ ((Ŷ e
ii)

2 + (Ŷ e
jj)

2)(m2
ẽLi

+m2
ẽRj

+m2
ν̃m), (15)

|âdij |2 ≤ ((Ŷ d
ii )

2 + (Ŷ d
jj)

2)(m2
d̃Li

+m2
d̃Rj

+m2
ν̃m), (16)

|âuij |2 ≤ ((Ŷ u
ii )

2 + (Ŷ u
jj)

2)(m2
ũLi

+m2
ũRj

+m2
ẽLp

+m2
ẽRq

), (17)

where m "= i, j and p "= q. While one cannot give general predictions for the values of
trilinear parameters without specifying the dependence of the Kähler potential and Yukawa
couplings on the hidden-sector fields as pointed out in Eq. (1), we shall restrict the range
of the off-diagonal terms âfij by these CCB/UFB bounds when we perform the numerical
studies in §5.

5 Concrete examples: G2-MSSM models

5.1 General characteristics of the G2-MSSM

We are now in a position to illustrate our aforementioned analysis using examples with
a concrete UV-completion. We consider for this purpose the G2-MSSM spectra shown
in Table 1, which are characterized by heavy scalar masses of order the gravitino mass
(m3/2 ! O(10) TeV) and a light gluino (mg̃ ∼ 500 GeV). Let us briefly overview the basic
properties of the G2-MSSM and their origin before discussing the flavour issues.

The moduli Kähler potentials of G2-MSSM models are partially determined [40] G2-
holonomy Kähler potentials but the matter Kähler potentials are not [13]. What is known
about these models is the supergravity limit and hence the necessary ingredients to analyze
their phenomenology. This is characterized by a suppression of gaugino masses relative to
the gravitino and the moduli masses.

4The simplified expression (15) is derived considering the D-flat direction α2 = |H0
d |2+ |ν̃m|2 = |ẽLi |2 =

|ẽRj |2 (m "= i, j) in the limit α $ (m2
Hd

+ |µ|2 −m2
ν̃m

)/((Ŷ e
ii)

2 + (Ŷ e
jj)

2) with α2 > |Hd|2 [39].
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8

CCB & UFB problems do not go away with 
heavy scalars
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CONSTRAINTS FROM 
FLAVOUR & CP VIOLATION  
• FLAVOUR & CP PROBLEMS: Arbitrary values of 

masses and trilinear terms in  supersymmetric 
breaking terms give arbitrary FCNC and can easily 
exceed CP bounds!

•With heavy scalars, is there a problem? 

• Strong constraints from Kaon mixing 

• Tachyonic particles?

Arkani-hamed & Murayama, PRD d56, ph/9703259 

Giudice, nardecchia & romanino, npb 813, ph/0812.3610 
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I.   FCNC: need to check signals in all these processes:

where mfk
stands for the fermion fk mass.

Note that a quick estimate, when all the soft masses are of the same order is to consider
(
δf
LR

)

ij
≤

√
3

mfk

m (u)

av[f̃ ]

k = max (i, j). (28)

3.1 Constraints on §2.5.1

First we analyze the FV (flavour violating) parameters relevant to Kaon physics:
(
δd
LR

)
1j

, j = 2, 3 (29)

From Eq. (20) it is easy to see that these bounds are easily satisfied, because the only
potentially large contribution would be the term 2Ŷ d

ii V
†
CKMisŶ

u
ssU

u
Rsra

u
rrU

d∗
Ljr, for

(
δd
LR

)
12

we
have

(
δd
LR

)
12

≈ xµ2
ydV

†
CKM13ytUu

R3ra
u
rrU

d∗
L2rvd

m2 (u)

av[f̃ ]

, (30)

where xµ = − log
[

µ
µb

]
/16π2. So even if UuR3rau

rrU
d∗
L2r = au

rr = Au this would be always

below the bounds of Eq. (26) and Eq. (27), since it is only proportional to md/m
(u)

av[f̃ ]
and it

is suppressed by a non diagonal VCKM element. Analogously
(
δd
LR

)
13

∝ ms/m
(u)

av[f̃ ]
. Other

mass insertions are analogously satisfied and bounds to af
ij from this scenario can only be

accounted for in leptonic of b decays.

3.2 Constraints on §2.5.2

4 FCNC observables from which bounds can be ob-

tained

1. ∆F = 1 processes

(a) li → ljγ

(b) b → sγ

(c) b → sl+l−, in particular l = µ and l = ν

(d) s → dγ

(e) top decays

2. ∆F = 2 processes

(a) Bq − B̄q, in particular q = s

(b) K0 − K̄0 mixing (εk)

(c) D0 − D̄0 mixing

8
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3. g − 2

4. B− → τ−ν̄τ

5. Precision observables

(a) MW

(b) sin2 θeff

(c) Mz

(d) mh

4.1 ∆F = 1 processes

4.1.1 b → sγ

The standard way in which a theoretical prediction to B(b → sγ) is compared to experi-
mental measurements is to obtain Γ(b → sγ) and then get B(b → sγ) = Γ(b → sγ)/Γ(b →
ceν̄)B(b → ceν̄)exp. With

Γ(b → sγ) =
m5

b

16π
|Aγ(µb)|2 , (31)

Aγ(µb) is the effective QCD corrected amplitude at the decay scale µb. For our purposes
it is just enough to compare the supersymmetric contributions to Aγ(MW ), leaded by the
contributions to the operator Oγ

LR = imb εµs̄ [i/2[γµ, γν ]qν ] b, with q the outgoing photon
momentum. Following the notation of [3] we have for the SM contribution

Aγ
SM(MW ) =

αW

4

√
αs

π
V ∗

tsVtb3xtW

[
2

3
F1(xtW ) + F2(xtW )

]
, (32)

with the loop functions Fi as given in the Appendix of [3] and

xp1p2
≡

M2
p1

M2
p2

. (33)

Then we can just measure the deviations from the SM by taking the ratio to the SM
amplitude. From the comparison to the SM and experimental values, B(b → sγ) =
(3.15 ± 0.23) × 10−4 and B(b → sγ) = (3.55 ± 0.24+0.09

−0.10) × 10−4 respectively, we can
estimate that ratio to the amplitude including just the supersymmetric contributions to
that of the SM can vary up to %3 percent. In what it follows we comment the constraints
from the possible contributing diagrams from figure 1.

1a. The Charged Higgs contribution has the same flavour violating couplings as
those of the SM, thus the ratio to the SM contribution is simply given in terms of loop
functions and related to the C7 Wilson Coefficients as follows

Aγ
H−(MW )

Aγ
SM(MW )

=
CH−

7 (MW )

CSM
7 (MW )

∈ (−0.03, 0.03)

=
xtH [cot2 β (2/3F1(tH) + F2(tH)) + (2/3F3(tH) + F4(tH))]

3xtW (2/3F1(tW ) + F2(tW ))
, (34)

9

Other observables:
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Other observables:

Sensitive to the scale
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I.   FCNC: need to check signals in all these processes:
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accounted for in leptonic of b decays.

3.2 Constraints on §2.5.2

4 FCNC observables from which bounds can be ob-

tained

1. ∆F = 1 processes

(a) li → ljγ

(b) b → sγ

(c) b → sl+l−, in particular l = µ and l = ν

(d) s → dγ

(e) top decays

2. ∆F = 2 processes

(a) Bq − B̄q, in particular q = s

(b) K0 − K̄0 mixing (εk)

(c) D0 − D̄0 mixing

8

3. g − 2

4. B− → τ−ν̄τ

5. Precision observables

(a) MW

(b) sin2 θeff

(c) Mz

(d) mh

4.1 ∆F = 1 processes

4.1.1 b → sγ

The standard way in which a theoretical prediction to B(b → sγ) is compared to experi-
mental measurements is to obtain Γ(b → sγ) and then get B(b → sγ) = Γ(b → sγ)/Γ(b →
ceν̄)B(b → ceν̄)exp. With

Γ(b → sγ) =
m5

b

16π
|Aγ(µb)|2 , (31)

Aγ(µb) is the effective QCD corrected amplitude at the decay scale µb. For our purposes
it is just enough to compare the supersymmetric contributions to Aγ(MW ), leaded by the
contributions to the operator Oγ

LR = imb εµs̄ [i/2[γµ, γν ]qν ] b, with q the outgoing photon
momentum. Following the notation of [3] we have for the SM contribution

Aγ
SM(MW ) =

αW

4

√
αs

π
V ∗

tsVtb3xtW

[
2

3
F1(xtW ) + F2(xtW )

]
, (32)

with the loop functions Fi as given in the Appendix of [3] and

xp1p2
≡

M2
p1

M2
p2

. (33)

Then we can just measure the deviations from the SM by taking the ratio to the SM
amplitude. From the comparison to the SM and experimental values, B(b → sγ) =
(3.15 ± 0.23) × 10−4 and B(b → sγ) = (3.55 ± 0.24+0.09

−0.10) × 10−4 respectively, we can
estimate that ratio to the amplitude including just the supersymmetric contributions to
that of the SM can vary up to %3 percent. In what it follows we comment the constraints
from the possible contributing diagrams from figure 1.

1a. The Charged Higgs contribution has the same flavour violating couplings as
those of the SM, thus the ratio to the SM contribution is simply given in terms of loop
functions and related to the C7 Wilson Coefficients as follows

Aγ
H−(MW )

Aγ
SM(MW )

=
CH−

7 (MW )

CSM
7 (MW )

∈ (−0.03, 0.03)

=
xtH [cot2 β (2/3F1(tH) + F2(tH)) + (2/3F3(tH) + F4(tH))]

3xtW (2/3F1(tW ) + F2(tW ))
, (34)

9

Other observables:

Not an issue because the contributions 
from the G2-MSSM models are tiny 
(ensured by the EWSB conditions)

Sensitive to the scale
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I.   FCNC: need to check signals in all these processes:

where mfk
stands for the fermion fk mass.

Note that a quick estimate, when all the soft masses are of the same order is to consider
(
δf
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)

ij
≤

√
3

mfk

m (u)

av[f̃ ]

k = max (i, j). (28)

3.1 Constraints on §2.5.1

First we analyze the FV (flavour violating) parameters relevant to Kaon physics:
(
δd
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)
1j

, j = 2, 3 (29)

From Eq. (20) it is easy to see that these bounds are easily satisfied, because the only
potentially large contribution would be the term 2Ŷ d
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, (30)

where xµ = − log
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µ
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/16π2. So even if UuR3rau

rrU
d∗
L2r = au

rr = Au this would be always

below the bounds of Eq. (26) and Eq. (27), since it is only proportional to md/m
(u)

av[f̃ ]
and it

is suppressed by a non diagonal VCKM element. Analogously
(
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LR

)
13

∝ ms/m
(u)

av[f̃ ]
. Other

mass insertions are analogously satisfied and bounds to af
ij from this scenario can only be

accounted for in leptonic of b decays.
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4 FCNC observables from which bounds can be ob-

tained

1. ∆F = 1 processes

(a) li → ljγ

(b) b → sγ

(c) b → sl+l−, in particular l = µ and l = ν

(d) s → dγ

(e) top decays

2. ∆F = 2 processes

(a) Bq − B̄q, in particular q = s

(b) K0 − K̄0 mixing (εk)

(c) D0 − D̄0 mixing

8

3. g − 2

4. B− → τ−ν̄τ

5. Precision observables

(a) MW

(b) sin2 θeff

(c) Mz

(d) mh

4.1 ∆F = 1 processes

4.1.1 b → sγ

The standard way in which a theoretical prediction to B(b → sγ) is compared to experi-
mental measurements is to obtain Γ(b → sγ) and then get B(b → sγ) = Γ(b → sγ)/Γ(b →
ceν̄)B(b → ceν̄)exp. With

Γ(b → sγ) =
m5

b

16π
|Aγ(µb)|2 , (31)

Aγ(µb) is the effective QCD corrected amplitude at the decay scale µb. For our purposes
it is just enough to compare the supersymmetric contributions to Aγ(MW ), leaded by the
contributions to the operator Oγ

LR = imb εµs̄ [i/2[γµ, γν ]qν ] b, with q the outgoing photon
momentum. Following the notation of [3] we have for the SM contribution

Aγ
SM(MW ) =

αW

4

√
αs

π
V ∗

tsVtb3xtW

[
2

3
F1(xtW ) + F2(xtW )

]
, (32)

with the loop functions Fi as given in the Appendix of [3] and

xp1p2
≡

M2
p1

M2
p2

. (33)

Then we can just measure the deviations from the SM by taking the ratio to the SM
amplitude. From the comparison to the SM and experimental values, B(b → sγ) =
(3.15 ± 0.23) × 10−4 and B(b → sγ) = (3.55 ± 0.24+0.09

−0.10) × 10−4 respectively, we can
estimate that ratio to the amplitude including just the supersymmetric contributions to
that of the SM can vary up to %3 percent. In what it follows we comment the constraints
from the possible contributing diagrams from figure 1.

1a. The Charged Higgs contribution has the same flavour violating couplings as
those of the SM, thus the ratio to the SM contribution is simply given in terms of loop
functions and related to the C7 Wilson Coefficients as follows

Aγ
H−(MW )

Aγ
SM(MW )

=
CH−

7 (MW )

CSM
7 (MW )

∈ (−0.03, 0.03)

=
xtH [cot2 β (2/3F1(tH) + F2(tH)) + (2/3F3(tH) + F4(tH))]

3xtW (2/3F1(tW ) + F2(tW ))
, (34)

9

Other observables:

Not an issue because the contributions 
from the G2-MSSM models are tiny 
(ensured by the EWSB conditions)
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I.   FCNC: need to check signals in all these processes:

where mfk
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4 FCNC observables from which bounds can be ob-

tained

1. ∆F = 1 processes

(a) li → ljγ

(b) b → sγ

(c) b → sl+l−, in particular l = µ and l = ν

(d) s → dγ

(e) top decays

2. ∆F = 2 processes

(a) Bq − B̄q, in particular q = s

(b) K0 − K̄0 mixing (εk)

(c) D0 − D̄0 mixing
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3. g − 2

4. B− → τ−ν̄τ

5. Precision observables

(a) MW

(b) sin2 θeff

(c) Mz

(d) mh

4.1 ∆F = 1 processes

4.1.1 b → sγ

The standard way in which a theoretical prediction to B(b → sγ) is compared to experi-
mental measurements is to obtain Γ(b → sγ) and then get B(b → sγ) = Γ(b → sγ)/Γ(b →
ceν̄)B(b → ceν̄)exp. With

Γ(b → sγ) =
m5

b

16π
|Aγ(µb)|2 , (31)

Aγ(µb) is the effective QCD corrected amplitude at the decay scale µb. For our purposes
it is just enough to compare the supersymmetric contributions to Aγ(MW ), leaded by the
contributions to the operator Oγ

LR = imb εµs̄ [i/2[γµ, γν ]qν ] b, with q the outgoing photon
momentum. Following the notation of [3] we have for the SM contribution

Aγ
SM(MW ) =

αW

4

√
αs

π
V ∗

tsVtb3xtW

[
2

3
F1(xtW ) + F2(xtW )

]
, (32)

with the loop functions Fi as given in the Appendix of [3] and

xp1p2
≡

M2
p1

M2
p2

. (33)

Then we can just measure the deviations from the SM by taking the ratio to the SM
amplitude. From the comparison to the SM and experimental values, B(b → sγ) =
(3.15 ± 0.23) × 10−4 and B(b → sγ) = (3.55 ± 0.24+0.09

−0.10) × 10−4 respectively, we can
estimate that ratio to the amplitude including just the supersymmetric contributions to
that of the SM can vary up to %3 percent. In what it follows we comment the constraints
from the possible contributing diagrams from figure 1.

1a. The Charged Higgs contribution has the same flavour violating couplings as
those of the SM, thus the ratio to the SM contribution is simply given in terms of loop
functions and related to the C7 Wilson Coefficients as follows

Aγ
H−(MW )

Aγ
SM(MW )

=
CH−

7 (MW )

CSM
7 (MW )

∈ (−0.03, 0.03)

=
xtH [cot2 β (2/3F1(tH) + F2(tH)) + (2/3F3(tH) + F4(tH))]

3xtW (2/3F1(tW ) + F2(tW ))
, (34)

9

Other observables:
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I.   FCNC: need to check signals in all these processes:

where mfk
stands for the fermion fk mass.

Note that a quick estimate, when all the soft masses are of the same order is to consider
(
δf
LR

)

ij
≤

√
3

mfk

m (u)

av[f̃ ]
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below the bounds of Eq. (26) and Eq. (27), since it is only proportional to md/m
(u)

av[f̃ ]
and it

is suppressed by a non diagonal VCKM element. Analogously
(
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LR

)
13
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(u)

av[f̃ ]
. Other

mass insertions are analogously satisfied and bounds to af
ij from this scenario can only be

accounted for in leptonic of b decays.

3.2 Constraints on §2.5.2

4 FCNC observables from which bounds can be ob-

tained

1. ∆F = 1 processes

(a) li → ljγ

(b) b → sγ

(c) b → sl+l−, in particular l = µ and l = ν

(d) s → dγ

(e) top decays

2. ∆F = 2 processes

(a) Bq − B̄q, in particular q = s

(b) K0 − K̄0 mixing (εk)

(c) D0 − D̄0 mixing

8

3. g − 2

4. B− → τ−ν̄τ

5. Precision observables

(a) MW

(b) sin2 θeff

(c) Mz

(d) mh

4.1 ∆F = 1 processes

4.1.1 b → sγ

The standard way in which a theoretical prediction to B(b → sγ) is compared to experi-
mental measurements is to obtain Γ(b → sγ) and then get B(b → sγ) = Γ(b → sγ)/Γ(b →
ceν̄)B(b → ceν̄)exp. With

Γ(b → sγ) =
m5

b

16π
|Aγ(µb)|2 , (31)

Aγ(µb) is the effective QCD corrected amplitude at the decay scale µb. For our purposes
it is just enough to compare the supersymmetric contributions to Aγ(MW ), leaded by the
contributions to the operator Oγ

LR = imb εµs̄ [i/2[γµ, γν ]qν ] b, with q the outgoing photon
momentum. Following the notation of [3] we have for the SM contribution

Aγ
SM(MW ) =

αW

4

√
αs

π
V ∗

tsVtb3xtW

[
2

3
F1(xtW ) + F2(xtW )

]
, (32)

with the loop functions Fi as given in the Appendix of [3] and

xp1p2
≡

M2
p1

M2
p2

. (33)

Then we can just measure the deviations from the SM by taking the ratio to the SM
amplitude. From the comparison to the SM and experimental values, B(b → sγ) =
(3.15 ± 0.23) × 10−4 and B(b → sγ) = (3.55 ± 0.24+0.09

−0.10) × 10−4 respectively, we can
estimate that ratio to the amplitude including just the supersymmetric contributions to
that of the SM can vary up to %3 percent. In what it follows we comment the constraints
from the possible contributing diagrams from figure 1.

1a. The Charged Higgs contribution has the same flavour violating couplings as
those of the SM, thus the ratio to the SM contribution is simply given in terms of loop
functions and related to the C7 Wilson Coefficients as follows

Aγ
H−(MW )

Aγ
SM(MW )

=
CH−

7 (MW )

CSM
7 (MW )

∈ (−0.03, 0.03)

=
xtH [cot2 β (2/3F1(tH) + F2(tH)) + (2/3F3(tH) + F4(tH))]

3xtW (2/3F1(tW ) + F2(tW ))
, (34)

9

Other observables:

Really Important!
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Kaon Mixing in the SM

We have that

|Kd
53| ≤



ArcTan




(M̂2

f̃
)23

(M̂2
f̃
)22







 (38)

How relevant this is, we exemplify it for P1 and P4 of table 1 in 0801.0478. First at all,
if we had equal couplings in both terms of Eq. (35) the dominant contribution would come
from the second. For P1 and P4 we have respectively that θd

23 is O(10−4) and O(10−3),
compared to the order of magnitude of |V ∗

tsVtb| = 0.035, we see that this can be relevant
to limited cases

4.2 ∆F = 2 processes

d

s W−

{t, c, u}

W−

{t, c, u}

s

d

The box diagrams associate to ∆F = 2 processes are given in figure

4.2.1 K0 − K̄0 mixing

In the SM that CP-violating parameter εK is

|εK |SM = κεCεB̂K |Vcb|2|Vus|2
(

1

2
|Vcb|2R2

t sin 2βηttS0(xt) + Rt sin β(ηctS0(xc, xt) − ηccxc)

)
,

12

V js

Vjd

V id
*

V is
*

Due to the unitarity of  V O(1) contributions cancel (GIM mechanism), 

even with large Af̃ , this does not imply that FCNCs cannot be under control. In fact,
even in models with a light supersymmetric spectrum, family symmetries are a nice way to
control dangerous FCNCs [15, 17, 18, 19, 20, 21, 22, 23, 24, 25]. For heavy scalar masses,
one may expect that supersymmetric effects will mostly decouple, hence ameliorating the
SUSY flavour problem. For the concrete examples to be discussed in §5.4.1, for instance,
FCNCs and CP violation will be suppressed because of the hierarchy between the gaugino
and the scalar masses. However, given the precision of observations especially in the kaon
sector, even suppressed SUSY contributions can be relevant.

3 FCNC observables leading to bounds

The most important indirect tests that most scenarios for physics beyond the Standard
Model (SM) have to face are the electroweak precision observables, the anomalous magnetic
moment of the muon, FCNCs, and CP violation. For the G2-MSSM examples we shall
discuss in §5.4.1, for instance, the electroweak parameters are worked out in such a way that
contributions due to the large values of Higgs masses involved in the theory are avoided.
The Higgs sector behaves as an effective single doublet, with one light scalar and the other
mass eigenstates heavy.

In the FCNC sector the K0 − K̄0 observables ε and ε′ can indeed give us a hint of
ways to restrict boundary conditions of soft terms at MG. In this section we discuss the
computation of these parameters. Recall that QCD corrections are important for these
observables and therefore the different scales involved in the determination of ε and ε′ play
an important role. In §5, where we consider specific examples, we mention other processes
as well, for example, li → ljγ, b → sγ, and D0 − D̄0 mixing, which are not constraining.

3.1 ε

The CP-violating parameter in neutral kaon mixing is defined as

ε =
exp(iπ/4)√

2

Im〈K0|H∆S=2
eff |K̄0〉

∆mK
(3)

with ∆mK = 2Re〈K0|H∆S=2
eff |K̄0〉, where H∆S=2

eff is the effective Hamiltonian describing
∆S = 2 transitions in the K0−K̄0 system. The SM prediction and the experimental value
of ε are [26]

εSM = (1.91± 0.30)× 10−3,

|ε|exp = (2.228± 0.011)× 10−3, (4)

respectively. It is well-known that gluino interactions typically give the most relevant
SUSY contributions to ε for general soft parameters. How important these are when the
scalars are heavy while the gluino remains light is an interesting question on its own.
We know that the SM and gluino/sdown contributions to 〈K0|H∆S=2

eff |K̄0〉 are given by
α2
W

4M2
W

[(V ∗
tdVts)2S(xt)+(V ∗

cdVcs)2S(xc)+(V ∗
cdVcs)(V ∗

tdVts)S(xt, xc)]+
α2
s

4m2
g̃
kg̃d̃Gg̃(xg̃), where xt =

m2
t/M

2
W, xc = m2

c/M
2
W and xg̃ = m2

g̃/m
2
d̃
.2

2The values used here are those from [27].
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Figure 4: The same as in Figure 2, except that in this case trilinear terms are not proportional to Yukawa
couplings and new phases appear, i.e., we have used Eq. (2) with complex coefficients cfij . Instead of just
a point as in Figure 2, we have now a range delimited by the two blue dots. It is to this range that we
have added the 2σ SM error, represented by the vertical dashed blue line. For each G2-MSSM point we
can obtain values in agreement with the experimental value εexp in a part of the parameter space.

Re(ε′/ε) All kinds of mass insertions contribute to ε′ [30], however those potentially
large are the ones multiplied by the factor mg̃/ms, which are δdLR and δdRL, contained in
the sum of the terms C8O8 + C̃8Õ8 ⊃ H∆S=1

SUSY . Due to the hierarchy of mass insertions
we have found in this example, (δdRR)12 > (δdLL)12 " (δdLR)12 ∼ (δdRL)12, we have checked
if contributions from (δdLL)12 and (δdRR)12 could play an important role. In fact, these
contributions are suppressed by just one order of magnitude in comparison to those from
δdLR and δdRL.

The current experimental average of ε′/ε from KTeV and NA48 is [27]

Re

(

ε′

ε

)

exp

= (1.65± 0.26)× 10−3. (25)

With a conservative theoretical uncertainty, the SM contribution is 0 < Re(ε′/ε)SM <
3.3× 10−3 [43].

For the case of trilinear terms proportional to Yukawa couplings, Eq. (20), the SUSY
contribution to Re(ε′/ε) is of the order 10−9 for all G2-MSSM points, as expected because
the off-diagonal trilinear terms generated after the running are too small. For trilinear
terms not proportional to Yukawa couplings, Figure 5 shows the the values of Re(ε′/ε) in
the case where no phases are involved, Eq. (21), while the results with new phases, Eq. (22),
are plotted in Figure 6. In all cases the SUSY contribution is significantly smaller than
10−6 and thus negligible.

5.4.2 Not constraining observables

Electric Dipole Moments. We have discussed the effects of the off-diagonal trilinear
couplings, but there are constraints on the diagonal terms as well. For instance, the
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El Modelo Estándar de las partículas elementales (ME) 1 no hace ninguna referencia a por

qué las masas de los fermiones son tan diversas entre sí. El fermion más pesado, el top cuark,

tiene una masa de aproximademente 173 GeV, en tanto que el más ligero, el electrón, tiene

una masa de aproximademente 0.00511 GeV. Aun más drástica es la escala de masas de los

neutrinos, de la cual conocemos una cota cosmológica confiable:
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im⌫i < 1⇥ 10�9 GeV. Por

otra parte, la corriente cargada que involucra a los cuarks nos dice que los estados de cuarks
1 El ME es el conjunto de tres teorías cuánticas de norma: el electromagnetismo y las fuerzas fuerte y débil.
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Figure 2: Flavour changing ∆F = 2 box diagrams, q′ represents a different kind of quark than q, e.g.
q = b then q′ = t.

(39)

where

Cε =
G2

FM2
W F 2

KmK0

6
√

2π2∆MK

" 3.655 × 104 (40)

εSM
K = (0.00178 ± 0.00025)

εexp
K = (0.00229 ± 0.00010) (41)

The gluino contribution plays a crucial role, and in this case of heavy scalars, the
leading one, so we can test:

εK = εSM
K + εSUSY

K

εSUSY
K ∝ Im

{
< K̄|H g̃|K >

}
(42)

The first observation is to recall what Nir et al. say about the particles beyond the SM
behaviour [7], that in the case of the K0 mixing:

M(K0 − K̄0) ∼ cSM
(ytVtdVts)2

16π2
+ cBSM

1

Λ2
BSM

, (43)
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Strategy: Start probing with Yukawa textures that are well 
known and also deviations from minimality at MPlanck
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Textures:

5.4 Example with hierarchical Yukawa couplings

We combine the G2-MSSM spectra with the Yukawa couplings as given by the case of Fit 4
of [11] where we have updated the values of the Yukawa coefficients at the GUT scale MG,

Y d =

√
2mb

v cosβ
0.27





0.0014 + 0.0007i 0.0009 + 0.0111i 0.13 + 0.13i
0.0055 0.046 + 0.118i 0.35 + 0.19i

0.0018 − 0.0009i 0.069 + 0.058i −0.90 + 0.08i





Y u =

√
2mt

v sin β
0.53





−1.58× 10−6 − 0.000017i −0.000076 + 0.000032i 0.0020 + 0.0020i
−0.00034 + 0.00024i 0.0020 + 0.0002i 0.011 + 0.011i
−0.0057 − 0.0024i 0.0044 + 0.0115i 0.70 + 0.71i





Y e =

√
2mτ

v cos β





0.0014 − 0.0007i 0.0005 − 0.0056i 0.13− 0.13i
0.0082 0.023 − 0.059i 0.18 − 0.1i

0.0018 + 0.0009i 0.035 − 0.029i −0.99 − 0.09i



 . (19)

We have chosen this example because it has both large and small mixing angles in the d
sector and therefore can give us a definitive answer on whether or not large SCKM rotation
matrices could be a problem for flavour violation in this scenario.

In order to find out how large trilinear and Yukawa couplings should be to produce
the values of δεSUSY that saturate the experimental limits, we use the relation (2) among
trilinear and Yukawa couplings described in §2, and

(a) cfij = 1, (20)

(b) cfij = xf
ij , xf

ij ∈ (0,
√
2) a random number and (21)

(c) cfij = xf
ije

iϕf
ij , xf

ij ∈ (0,
√
2), ϕf

ij ∈ (−π, π) both random numbers, (22)

all relations set at MG. The maximum absolute value of |cf | =
√
2 is chosen to ensure that

the running does not create off-diagonal elements in the soft-squared mass matrices that
are larger than the diagonal elements, as explained in Appendix B.

In Table 3 we show the values of the coefficients cd that have produced the maxi-
mum values of the flavour-violating parameters (δdXY )12, which are listed in Table 2. For
completeness we also show the values of cu. We have chosen the matrix of coefficients
ce = (cd)T . For all SM parameters we use the values of [27].

5.4.1 CP violation in the kaon sector and vacuum stability constraints

ε In the G2-MSSM cases the SUSY contribution to Re{〈K0|H∆S=2
eff |K̄0〉} is really small,

therefore we can express εSUSY = εSM + δεSUSY with δεSUSY ∝ Im{〈K0|H∆S=2
SUSY |K̄0〉}.

For these examples the important contributions come from (δdLL)12 and (δdRR)12 because
they are orders of magnitude bigger than (δdLR)12 and (δdRL)12, as shown in Table 2 for the
case (22). Note that if all (δdXY )12 are of the same order of magnitude, (δdLR)12 and (δdRL)12
are the most constraining. However, here (δdLL)12 and (δdRR)12 are big due to off-diagonal
elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
flip and is therefore suppressed for very heavy scalars. In fact the values of (δdRR)12 in
Table 2 are close to the upper limit set by ε. They yield a contribution δεSUSY ∼ 10−4, so
if (δdRR)12 were an order of magnitude bigger, δεSUSY would indeed be dangerously large.
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elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
flip and is therefore suppressed for very heavy scalars. In fact the values of (δdRR)12 in
Table 2 are close to the upper limit set by ε. They yield a contribution δεSUSY ∼ 10−4, so
if (δdRR)12 were an order of magnitude bigger, δεSUSY would indeed be dangerously large.
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5.4 Example with hierarchical Yukawa couplings

We combine the G2-MSSM spectra with the Yukawa couplings as given by the case of Fit 4
of [11] where we have updated the values of the Yukawa coefficients at the GUT scale MG,
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0.0082 0.023 − 0.059i 0.18 − 0.1i

0.0018 + 0.0009i 0.035 − 0.029i −0.99 − 0.09i
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We have chosen this example because it has both large and small mixing angles in the d
sector and therefore can give us a definitive answer on whether or not large SCKM rotation
matrices could be a problem for flavour violation in this scenario.

In order to find out how large trilinear and Yukawa couplings should be to produce
the values of δεSUSY that saturate the experimental limits, we use the relation (2) among
trilinear and Yukawa couplings described in §2, and

(a) cfij = 1, (20)

(b) cfij = xf
ij , xf

ij ∈ (0,
√
2) a random number and (21)

(c) cfij = xf
ije

iϕf
ij , xf

ij ∈ (0,
√
2), ϕf

ij ∈ (−π, π) both random numbers, (22)

all relations set at MG. The maximum absolute value of |cf | =
√
2 is chosen to ensure that

the running does not create off-diagonal elements in the soft-squared mass matrices that
are larger than the diagonal elements, as explained in Appendix B.

In Table 3 we show the values of the coefficients cd that have produced the maxi-
mum values of the flavour-violating parameters (δdXY )12, which are listed in Table 2. For
completeness we also show the values of cu. We have chosen the matrix of coefficients
ce = (cd)T . For all SM parameters we use the values of [27].

5.4.1 CP violation in the kaon sector and vacuum stability constraints

ε In the G2-MSSM cases the SUSY contribution to Re{〈K0|H∆S=2
eff |K̄0〉} is really small,

therefore we can express εSUSY = εSM + δεSUSY with δεSUSY ∝ Im{〈K0|H∆S=2
SUSY |K̄0〉}.

For these examples the important contributions come from (δdLL)12 and (δdRR)12 because
they are orders of magnitude bigger than (δdLR)12 and (δdRL)12, as shown in Table 2 for the
case (22). Note that if all (δdXY )12 are of the same order of magnitude, (δdLR)12 and (δdRL)12
are the most constraining. However, here (δdLL)12 and (δdRR)12 are big due to off-diagonal
elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
flip and is therefore suppressed for very heavy scalars. In fact the values of (δdRR)12 in
Table 2 are close to the upper limit set by ε. They yield a contribution δεSUSY ∼ 10−4, so
if (δdRR)12 were an order of magnitude bigger, δεSUSY would indeed be dangerously large.
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We have chosen this example because it has both large and small mixing angles in the d
sector and therefore can give us a definitive answer on whether or not large SCKM rotation
matrices could be a problem for flavour violation in this scenario.

In order to find out how large trilinear and Yukawa couplings should be to produce
the values of δεSUSY that saturate the experimental limits, we use the relation (2) among
trilinear and Yukawa couplings described in §2, and

(a) cfij = 1, (20)

(b) cfij = xf
ij , xf

ij ∈ (0,
√
2) a random number and (21)

(c) cfij = xf
ije

iϕf
ij , xf

ij ∈ (0,
√
2), ϕf

ij ∈ (−π, π) both random numbers, (22)

all relations set at MG. The maximum absolute value of |cf | =
√
2 is chosen to ensure that

the running does not create off-diagonal elements in the soft-squared mass matrices that
are larger than the diagonal elements, as explained in Appendix B.

In Table 3 we show the values of the coefficients cd that have produced the maxi-
mum values of the flavour-violating parameters (δdXY )12, which are listed in Table 2. For
completeness we also show the values of cu. We have chosen the matrix of coefficients
ce = (cd)T . For all SM parameters we use the values of [27].

5.4.1 CP violation in the kaon sector and vacuum stability constraints

ε In the G2-MSSM cases the SUSY contribution to Re{〈K0|H∆S=2
eff |K̄0〉} is really small,

therefore we can express εSUSY = εSM + δεSUSY with δεSUSY ∝ Im{〈K0|H∆S=2
SUSY |K̄0〉}.

For these examples the important contributions come from (δdLL)12 and (δdRR)12 because
they are orders of magnitude bigger than (δdLR)12 and (δdRL)12, as shown in Table 2 for the
case (22). Note that if all (δdXY )12 are of the same order of magnitude, (δdLR)12 and (δdRL)12
are the most constraining. However, here (δdLL)12 and (δdRR)12 are big due to off-diagonal
elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
flip and is therefore suppressed for very heavy scalars. In fact the values of (δdRR)12 in
Table 2 are close to the upper limit set by ε. They yield a contribution δεSUSY ∼ 10−4, so
if (δdRR)12 were an order of magnitude bigger, δεSUSY would indeed be dangerously large.
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5.4 Example with hierarchical Yukawa couplings

We combine the G2-MSSM spectra with the Yukawa couplings as given by the case of Fit 4
of [11] where we have updated the values of the Yukawa coefficients at the GUT scale MG,
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We have chosen this example because it has both large and small mixing angles in the d
sector and therefore can give us a definitive answer on whether or not large SCKM rotation
matrices could be a problem for flavour violation in this scenario.

In order to find out how large trilinear and Yukawa couplings should be to produce
the values of δεSUSY that saturate the experimental limits, we use the relation (2) among
trilinear and Yukawa couplings described in §2, and

(a) cfij = 1, (20)

(b) cfij = xf
ij , xf

ij ∈ (0,
√
2) a random number and (21)

(c) cfij = xf
ije

iϕf
ij , xf

ij ∈ (0,
√
2), ϕf

ij ∈ (−π, π) both random numbers, (22)

all relations set at MG. The maximum absolute value of |cf | =
√
2 is chosen to ensure that

the running does not create off-diagonal elements in the soft-squared mass matrices that
are larger than the diagonal elements, as explained in Appendix B.

In Table 3 we show the values of the coefficients cd that have produced the maxi-
mum values of the flavour-violating parameters (δdXY )12, which are listed in Table 2. For
completeness we also show the values of cu. We have chosen the matrix of coefficients
ce = (cd)T . For all SM parameters we use the values of [27].

5.4.1 CP violation in the kaon sector and vacuum stability constraints

ε In the G2-MSSM cases the SUSY contribution to Re{〈K0|H∆S=2
eff |K̄0〉} is really small,

therefore we can express εSUSY = εSM + δεSUSY with δεSUSY ∝ Im{〈K0|H∆S=2
SUSY |K̄0〉}.

For these examples the important contributions come from (δdLL)12 and (δdRR)12 because
they are orders of magnitude bigger than (δdLR)12 and (δdRL)12, as shown in Table 2 for the
case (22). Note that if all (δdXY )12 are of the same order of magnitude, (δdLR)12 and (δdRL)12
are the most constraining. However, here (δdLL)12 and (δdRR)12 are big due to off-diagonal
elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
flip and is therefore suppressed for very heavy scalars. In fact the values of (δdRR)12 in
Table 2 are close to the upper limit set by ε. They yield a contribution δεSUSY ∼ 10−4, so
if (δdRR)12 were an order of magnitude bigger, δεSUSY would indeed be dangerously large.
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We have chosen this example because it has both large and small mixing angles in the d
sector and therefore can give us a definitive answer on whether or not large SCKM rotation
matrices could be a problem for flavour violation in this scenario.

In order to find out how large trilinear and Yukawa couplings should be to produce
the values of δεSUSY that saturate the experimental limits, we use the relation (2) among
trilinear and Yukawa couplings described in §2, and

(a) cfij = 1, (20)

(b) cfij = xf
ij , xf

ij ∈ (0,
√
2) a random number and (21)

(c) cfij = xf
ije

iϕf
ij , xf

ij ∈ (0,
√
2), ϕf

ij ∈ (−π, π) both random numbers, (22)

all relations set at MG. The maximum absolute value of |cf | =
√
2 is chosen to ensure that

the running does not create off-diagonal elements in the soft-squared mass matrices that
are larger than the diagonal elements, as explained in Appendix B.

In Table 3 we show the values of the coefficients cd that have produced the maxi-
mum values of the flavour-violating parameters (δdXY )12, which are listed in Table 2. For
completeness we also show the values of cu. We have chosen the matrix of coefficients
ce = (cd)T . For all SM parameters we use the values of [27].

5.4.1 CP violation in the kaon sector and vacuum stability constraints

ε In the G2-MSSM cases the SUSY contribution to Re{〈K0|H∆S=2
eff |K̄0〉} is really small,

therefore we can express εSUSY = εSM + δεSUSY with δεSUSY ∝ Im{〈K0|H∆S=2
SUSY |K̄0〉}.

For these examples the important contributions come from (δdLL)12 and (δdRR)12 because
they are orders of magnitude bigger than (δdLR)12 and (δdRL)12, as shown in Table 2 for the
case (22). Note that if all (δdXY )12 are of the same order of magnitude, (δdLR)12 and (δdRL)12
are the most constraining. However, here (δdLL)12 and (δdRR)12 are big due to off-diagonal
elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
flip and is therefore suppressed for very heavy scalars. In fact the values of (δdRR)12 in
Table 2 are close to the upper limit set by ε. They yield a contribution δεSUSY ∼ 10−4, so
if (δdRR)12 were an order of magnitude bigger, δεSUSY would indeed be dangerously large.
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We have chosen this example because it has both large and small mixing angles in the d
sector and therefore can give us a definitive answer on whether or not large SCKM rotation
matrices could be a problem for flavour violation in this scenario.

In order to find out how large trilinear and Yukawa couplings should be to produce
the values of δεSUSY that saturate the experimental limits, we use the relation (2) among
trilinear and Yukawa couplings described in §2, and

(a) cfij = 1, (20)
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ij , xf

ij ∈ (0,
√
2) a random number and (21)

(c) cfij = xf
ije

iϕf
ij , xf

ij ∈ (0,
√
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ij ∈ (−π, π) both random numbers, (22)

all relations set at MG. The maximum absolute value of |cf | =
√
2 is chosen to ensure that

the running does not create off-diagonal elements in the soft-squared mass matrices that
are larger than the diagonal elements, as explained in Appendix B.

In Table 3 we show the values of the coefficients cd that have produced the maxi-
mum values of the flavour-violating parameters (δdXY )12, which are listed in Table 2. For
completeness we also show the values of cu. We have chosen the matrix of coefficients
ce = (cd)T . For all SM parameters we use the values of [27].

5.4.1 CP violation in the kaon sector and vacuum stability constraints

ε In the G2-MSSM cases the SUSY contribution to Re{〈K0|H∆S=2
eff |K̄0〉} is really small,

therefore we can express εSUSY = εSM + δεSUSY with δεSUSY ∝ Im{〈K0|H∆S=2
SUSY |K̄0〉}.

For these examples the important contributions come from (δdLL)12 and (δdRR)12 because
they are orders of magnitude bigger than (δdLR)12 and (δdRL)12, as shown in Table 2 for the
case (22). Note that if all (δdXY )12 are of the same order of magnitude, (δdLR)12 and (δdRL)12
are the most constraining. However, here (δdLL)12 and (δdRR)12 are big due to off-diagonal
elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
flip and is therefore suppressed for very heavy scalars. In fact the values of (δdRR)12 in
Table 2 are close to the upper limit set by ε. They yield a contribution δεSUSY ∼ 10−4, so
if (δdRR)12 were an order of magnitude bigger, δεSUSY would indeed be dangerously large.
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Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:

âu(µ)ij ≈ âu(MG)ijδij −
1

16π2
log

[
µ

MG

] [
Ŷ u

ii Tr
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RauUu†
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]
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u
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+ 4Ŷ u 2
ii Uu

Rira
u
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d
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]
(13)

âd(µ)ij ≈ âd(MG)ijδij −
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]
. (14)

The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:
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2 )ij

]
,
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)i"=j ≈
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16π2
log

[
µ

MG

] [
(∆f

1)ij |Ŷ u|2jj + 4|Ŷ f |i(∆f
2)ij

+ 2|Ŷ f |i(∆f
3)ij

]
(15)

with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-
portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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parameter Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

m3/2 20000 20000 20000 20000 30000 50000 30000

δ -15 -12 0 -15 15 -15 -15

c 0 0 0 0.1 0.5 0 0

tanβ 3 2.65 2.65 3 3 2.5 3

µ -11943 -13377 -13537 -10969 -10490 -34019 +17486

LSP type Wino Wino Bino Bino Bino Wino Bino

M1 165 173 203 181 484 434 252

M2 158 173 225 189 662 421 242

M3 262 297 423 328 1328 673 395

mg̃ 401 449 622 492 1784 1001 596.8

mχ̃0
1

145.1 155.6 189 170 473 373.4 271

mχ̃0
2

153 159 214.3 181.5 702.4 397 334.2

mχ̃0
3

11905 13321 13479 10938 10486 33886 17441

mχ̃0
4

11906 13322 13479 10939 10487 33886 17442

mχ̃±
1

145.2 155.8 214.5 181.7 702.6 373.6 334.2

mχ̃±
2

11970 13383 13540 11001 10560 34044 17540

md̃L
,ms̃L 19799 19803 19809 18785 21052 49524 29727

mũL
,mc̃L 19801 19812 19818 18784 21034 49600 29725

mb̃1
15342 15250 15224 14635 16783 38473 23236

mt̃1 9130 8779 8662 8928 11151 22887 14264

mẽL ,mµ̃L
19948 19948 19951 18926 21164 49889 29930

mν̃eL
,mν̃µL

19950 19954 19952 18927 21168 49903 29934

mτ̃1 19934 19941 19940 18914 21156 49874 29909

mν̃τL
19936 19944 19942 18916 21158 49876 29913

md̃R
19848 19851 19845 18832 21096 49694 29794

mũR
,mc̃R 19850 19853 19858 18832 21094 49700 29792

ms̃R 19849 19851 19856 18832 21096 49695 29767

mb̃2
19829 19833 19838 18810 21075 49669 29758

mt̃2 15342 15251 15224 14635 16783 38470 23235

mẽR ,mµ̃R
19978 19977 19977 18953 21196 49948 29966

mτ̃2 19948 19957 19955 18930 21174 49904 29928

mh0
116.4 114.3 114.6 116.0 115.9 115.1 114.6

mH0
,mA0

,mH± 24614 25846 25943 23158 25029 65690 36623

Ãt 12159 11539 11445 10898 9626 30139 18812

Ãb 27381 27321 27427 24744 21850 68441 41148

Ãτ 30068 30092 30124 27109 23022 75221 45099

TABLE II. Low scale spectra for seven benchmark G2-MSSM models generated by SOFTSUSY package. All masses
are in GeV. The top mass was taken to be mt = 171.3GeV. Here we only give absolute values of the gaugino
masses and suppress the relative phases. The spectra are largely determined by four parameters m3/2, δ, c and
tanβ. The Kaluza-Klein threshold corrections to the gaugino masses have been neglected. For the above spectra,
the gauge couplings unify at the value of α−1

GUT ≈ 26 at the scale MGUT ≈ 2× 1016 GeV.

the relic density to acceptable levels by increasing the annihilation crossection of the LSPs. It turns out

G2-MSSM benchmark points:
Acharya & bobkov, 0810.3285
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mχ̃0
2

153 159 214.3 181.5 702.4 397 334.2

mχ̃0
3

11905 13321 13479 10938 10486 33886 17441

mχ̃0
4

11906 13322 13479 10939 10487 33886 17442

mχ̃±
1

145.2 155.8 214.5 181.7 702.6 373.6 334.2

mχ̃±
2

11970 13383 13540 11001 10560 34044 17540

md̃L
,ms̃L 19799 19803 19809 18785 21052 49524 29727

mũL
,mc̃L 19801 19812 19818 18784 21034 49600 29725

mb̃1
15342 15250 15224 14635 16783 38473 23236

mt̃1 9130 8779 8662 8928 11151 22887 14264

mẽL ,mµ̃L
19948 19948 19951 18926 21164 49889 29930

mν̃eL
,mν̃µL

19950 19954 19952 18927 21168 49903 29934

mτ̃1 19934 19941 19940 18914 21156 49874 29909

mν̃τL
19936 19944 19942 18916 21158 49876 29913

md̃R
19848 19851 19845 18832 21096 49694 29794

mũR
,mc̃R 19850 19853 19858 18832 21094 49700 29792

ms̃R 19849 19851 19856 18832 21096 49695 29767

mb̃2
19829 19833 19838 18810 21075 49669 29758

mt̃2 15342 15251 15224 14635 16783 38470 23235

mẽR ,mµ̃R
19978 19977 19977 18953 21196 49948 29966

mτ̃2 19948 19957 19955 18930 21174 49904 29928

mh0
116.4 114.3 114.6 116.0 115.9 115.1 114.6

mH0
,mA0

,mH± 24614 25846 25943 23158 25029 65690 36623

Ãt 12159 11539 11445 10898 9626 30139 18812

Ãb 27381 27321 27427 24744 21850 68441 41148

Ãτ 30068 30092 30124 27109 23022 75221 45099

TABLE II. Low scale spectra for seven benchmark G2-MSSM models generated by SOFTSUSY package. All masses
are in GeV. The top mass was taken to be mt = 171.3GeV. Here we only give absolute values of the gaugino
masses and suppress the relative phases. The spectra are largely determined by four parameters m3/2, δ, c and
tanβ. The Kaluza-Klein threshold corrections to the gaugino masses have been neglected. For the above spectra,
the gauge couplings unify at the value of α−1

GUT ≈ 26 at the scale MGUT ≈ 2× 1016 GeV.

the relic density to acceptable levels by increasing the annihilation crossection of the LSPs. It turns out
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Ãτ 30068 30092 30124 27109 23022 75221 45099

TABLE II. Low scale spectra for seven benchmark G2-MSSM models generated by SOFTSUSY package. All masses
are in GeV. The top mass was taken to be mt = 171.3GeV. Here we only give absolute values of the gaugino
masses and suppress the relative phases. The spectra are largely determined by four parameters m3/2, δ, c and
tanβ. The Kaluza-Klein threshold corrections to the gaugino masses have been neglected. For the above spectra,
the gauge couplings unify at the value of α−1

GUT ≈ 26 at the scale MGUT ≈ 2× 1016 GeV.

the relic density to acceptable levels by increasing the annihilation crossection of the LSPs. It turns out
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TABLE II. Low scale spectra for seven benchmark G2-MSSM models generated by SOFTSUSY package. All masses
are in GeV. The top mass was taken to be mt = 171.3GeV. Here we only give absolute values of the gaugino
masses and suppress the relative phases. The spectra are largely determined by four parameters m3/2, δ, c and
tanβ. The Kaluza-Klein threshold corrections to the gaugino masses have been neglected. For the above spectra,
the gauge couplings unify at the value of α−1

GUT ≈ 26 at the scale MGUT ≈ 2× 1016 GeV.

the relic density to acceptable levels by increasing the annihilation crossection of the LSPs. It turns out
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Figure 2: Predicted values of εSUSY , represented by blue (medium dark) dots around 1.5 × 10−3, for
the G2-MSSM benchmark points of Table 1 in the case where trilinear terms are proportional to Yukawa
couplings. The error bars (blue/medium dark dashed lines) correspond to the 2σ uncertainty of the SM
contribution. The orange (gray) horizontal line is the central value of the SM contribution, εSM . The blue
(light gray) band corresponds to the experimentally allowed region at the 2σ CL. The benchmark points
1–4 lead to a value of εSUSY that would rule them out for the considered choice of Yukawa couplings,
while points 5–7 agree with the observed value within the uncertainties. A choice of Yukawa couplings
with small mixing also in the right-handed down sector will avoid this problem.

We have checked the validity of the mass-insertion approximation (MIA) via the vertex
mixing method, analogously to the discussion for the case of b → sγ in section IV of [41].

In Figure 2 we plot the predictions for εSUSY obtained when the trilinear terms are
proportional to the Yukawa couplings,5 the SM expectation εSM and the experimental
value for ε. Considering the uncertainty of εSM , it is possible to be in agreement with the
experimental value εexp for the benchmark points 5–7, while the benchmark points 1–4 are
ruled out at the 2σ confidence level. It is important to mention that in the down sector
only Ud

L ∼ VCKM, while Ud
R contains large mixings. Together with the relatively large

difference between the masses of b̃1 and the squarks of the first and second generation, this
is responsible for the sizable off-diagonal elements in δdRR in this case. They arise after the
rotation to the SCKM basis,

m̂2
d̃RR

= Ud
Rm

2
d̃
Ud†
R . (23)

We can estimate the 12-element in this basis as

(m̂2
d̃RR

)12 ≈ (Ud
R)13(U

d
R)

∗
23 (m

2
b̃1
−m2

d̃R
) ∼ 106 GeV2 (24)

for benchmark point 1 (m2
b̃1
−m2

d̃R
≈ (m2

d̃
)33 − (m2

d̃
)11), leading to (δdRR)12 ∼ 10−2. If also

Ud
R was similar to VCKM, then (Ud

R)13(U
d
R)

∗
23 ∼ λ5, and (δdRR)12 would be about two orders

of magnitude smaller, reducing the size of δεSUSY accordingly and making all G2-MSSM

5For the uncertainties in the hadronic matrix element calculations, we have used the bag parameters
of [42].
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Figure 3: The same as in Figure 2, except that in this case trilinear terms are not proportional to Yukawa
couplings but there are no new phases involved. Instead of just a point as in Figure 2, we have now a
range delimited by the two blue (medium dark) dots. It is to this range that we have added the 2σ SM
error, represented by the vertical dashed blue (medium dark) line. This graph shows that for all of our
G2-MSSM benchmark points we can obtain values in agreement with the experimental value εexp in a part
of the parameter space.

points consistent with εexp. As the theory improves, the constraints coming from ε could
be used to determine the values or signs of the trilinear couplings of the models at hand.

In Figure 3 we plot the results of the setup (21), where trilinear terms are not pro-
portional to Yukawa couplings but no new phases are involved. Instead of just a point as
in the case of Figure 2, we have now a range delimited by the two blue (medium dark)
dots. It is to this range that we have added the 2σ uncertainty of εSM , represented by
the vertical dashed blue (medium dark) line. We see that in this case all of our G2-MSSM
benchmark points can yield values in agreement with the experimental value εexp in a part
of the parameter space. No points violate the CCB/UFB bounds in this case and in the
previous one.

In Figure 4 we plot the maximum ranges of values of δεSUSY ≈ δεg̃+δεH
± 6 for the case

where trilinear terms are not proportional to Yukawa couplings and where we have used
Eq. (2) with the complex random coefficients cfij as defined in Eq. (22). We have considered
only such values for the coefficients that are allowed by the CCB/UFB constraints. This
excludes about 10% of the points in the random scan. Figure 4 shows that for each G2

point we can obtain values in agreement with the experimental value εexp in a part of
the parameter space. However, parts of the parameter space, which lead to a negative
contribution δεSUSY , are ruled out at the 2σ level for points 1–4.

6We express ε as ε = εSM + δεSUSY , δεSUSY = δεH
±

+ δεχ̃
±

+ δεχ̃
0

+ δεχ̃
0g̃+ δεg̃, where δεSUSY is the

total SUSY contribution and the individual terms refer to the charged Higgs, the chargino, the neutralino,
the neutralino-gluino, and the gluino contribution, respectively.
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a)

b)

even with large Af̃ , this does not imply that FCNCs cannot be under control. In fact,
even in models with a light supersymmetric spectrum, family symmetries are a nice way to
control dangerous FCNCs [15, 17, 18, 19, 20, 21, 22, 23, 24, 25]. For heavy scalar masses,
one may expect that supersymmetric effects will mostly decouple, hence ameliorating the
SUSY flavour problem. For the concrete examples to be discussed in §5.4.1, for instance,
FCNCs and CP violation will be suppressed because of the hierarchy between the gaugino
and the scalar masses. However, given the precision of observations especially in the kaon
sector, even suppressed SUSY contributions can be relevant.

3 FCNC observables leading to bounds

The most important indirect tests that most scenarios for physics beyond the Standard
Model (SM) have to face are the electroweak precision observables, the anomalous magnetic
moment of the muon, FCNCs, and CP violation. For the G2-MSSM examples we shall
discuss in §5.4.1, for instance, the electroweak parameters are worked out in such a way that
contributions due to the large values of Higgs masses involved in the theory are avoided.
The Higgs sector behaves as an effective single doublet, with one light scalar and the other
mass eigenstates heavy.

In the FCNC sector the K0 − K̄0 observables ε and ε′ can indeed give us a hint of
ways to restrict boundary conditions of soft terms at MG. In this section we discuss the
computation of these parameters. Recall that QCD corrections are important for these
observables and therefore the different scales involved in the determination of ε and ε′ play
an important role. In §5, where we consider specific examples, we mention other processes
as well, for example, li → ljγ, b → sγ, and D0 − D̄0 mixing, which are not constraining.

3.1 ε

The CP-violating parameter in neutral kaon mixing is defined as

ε =
exp(iπ/4)√

2

Im〈K0|H∆S=2
eff |K̄0〉

∆mK
(3)

with ∆mK = 2Re〈K0|H∆S=2
eff |K̄0〉, where H∆S=2

eff is the effective Hamiltonian describing
∆S = 2 transitions in the K0−K̄0 system. The SM prediction and the experimental value
of ε are [26]

εSM = (1.91± 0.30)× 10−3,

|ε|exp = (2.228± 0.011)× 10−3, (4)

respectively. It is well-known that gluino interactions typically give the most relevant
SUSY contributions to ε for general soft parameters. How important these are when the
scalars are heavy while the gluino remains light is an interesting question on its own.
We know that the SM and gluino/sdown contributions to 〈K0|H∆S=2

eff |K̄0〉 are given by
α2
W

4M2
W

[(V ∗
tdVts)2S(xt)+(V ∗

cdVcs)2S(xc)+(V ∗
cdVcs)(V ∗

tdVts)S(xt, xc)]+
α2
s

4m2
g̃
kg̃d̃Gg̃(xg̃), where xt =

m2
t/M

2
W, xc = m2

c/M
2
W and xg̃ = m2

g̃/m
2
d̃
.2

2The values used here are those from [27].
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Figure 2: Predicted values of εSUSY , represented by blue (medium dark) dots around 1.5 × 10−3, for
the G2-MSSM benchmark points of Table 1 in the case where trilinear terms are proportional to Yukawa
couplings. The error bars (blue/medium dark dashed lines) correspond to the 2σ uncertainty of the SM
contribution. The orange (gray) horizontal line is the central value of the SM contribution, εSM . The blue
(light gray) band corresponds to the experimentally allowed region at the 2σ CL. The benchmark points
1–4 lead to a value of εSUSY that would rule them out for the considered choice of Yukawa couplings,
while points 5–7 agree with the observed value within the uncertainties. A choice of Yukawa couplings
with small mixing also in the right-handed down sector will avoid this problem.

We have checked the validity of the mass-insertion approximation (MIA) via the vertex
mixing method, analogously to the discussion for the case of b → sγ in section IV of [41].

In Figure 2 we plot the predictions for εSUSY obtained when the trilinear terms are
proportional to the Yukawa couplings,5 the SM expectation εSM and the experimental
value for ε. Considering the uncertainty of εSM , it is possible to be in agreement with the
experimental value εexp for the benchmark points 5–7, while the benchmark points 1–4 are
ruled out at the 2σ confidence level. It is important to mention that in the down sector
only Ud

L ∼ VCKM, while Ud
R contains large mixings. Together with the relatively large

difference between the masses of b̃1 and the squarks of the first and second generation, this
is responsible for the sizable off-diagonal elements in δdRR in this case. They arise after the
rotation to the SCKM basis,

m̂2
d̃RR

= Ud
Rm

2
d̃
Ud†
R . (23)

We can estimate the 12-element in this basis as

(m̂2
d̃RR

)12 ≈ (Ud
R)13(U

d
R)

∗
23 (m

2
b̃1
−m2

d̃R
) ∼ 106 GeV2 (24)

for benchmark point 1 (m2
b̃1
−m2

d̃R
≈ (m2

d̃
)33 − (m2

d̃
)11), leading to (δdRR)12 ∼ 10−2. If also

Ud
R was similar to VCKM, then (Ud

R)13(U
d
R)

∗
23 ∼ λ5, and (δdRR)12 would be about two orders

of magnitude smaller, reducing the size of δεSUSY accordingly and making all G2-MSSM

5For the uncertainties in the hadronic matrix element calculations, we have used the bag parameters
of [42].
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Figure 2: Predicted values of εSUSY , represented by blue (medium dark) dots around 1.5 × 10−3, for
the G2-MSSM benchmark points of Table 1 in the case where trilinear terms are proportional to Yukawa
couplings. The error bars (blue/medium dark dashed lines) correspond to the 2σ uncertainty of the SM
contribution. The orange (gray) horizontal line is the central value of the SM contribution, εSM . The blue
(light gray) band corresponds to the experimentally allowed region at the 2σ CL. The benchmark points
1–4 lead to a value of εSUSY that would rule them out for the considered choice of Yukawa couplings,
while points 5–7 agree with the observed value within the uncertainties. A choice of Yukawa couplings
with small mixing also in the right-handed down sector will avoid this problem.

We have checked the validity of the mass-insertion approximation (MIA) via the vertex
mixing method, analogously to the discussion for the case of b → sγ in section IV of [41].

In Figure 2 we plot the predictions for εSUSY obtained when the trilinear terms are
proportional to the Yukawa couplings,5 the SM expectation εSM and the experimental
value for ε. Considering the uncertainty of εSM , it is possible to be in agreement with the
experimental value εexp for the benchmark points 5–7, while the benchmark points 1–4 are
ruled out at the 2σ confidence level. It is important to mention that in the down sector
only Ud

L ∼ VCKM, while Ud
R contains large mixings. Together with the relatively large

difference between the masses of b̃1 and the squarks of the first and second generation, this
is responsible for the sizable off-diagonal elements in δdRR in this case. They arise after the
rotation to the SCKM basis,

m̂2
d̃RR

= Ud
Rm

2
d̃
Ud†
R . (23)

We can estimate the 12-element in this basis as

(m̂2
d̃RR

)12 ≈ (Ud
R)13(U

d
R)

∗
23 (m

2
b̃1
−m2

d̃R
) ∼ 106 GeV2 (24)

for benchmark point 1 (m2
b̃1
−m2

d̃R
≈ (m2

d̃
)33 − (m2

d̃
)11), leading to (δdRR)12 ∼ 10−2. If also

Ud
R was similar to VCKM, then (Ud

R)13(U
d
R)

∗
23 ∼ λ5, and (δdRR)12 would be about two orders

of magnitude smaller, reducing the size of δεSUSY accordingly and making all G2-MSSM

5For the uncertainties in the hadronic matrix element calculations, we have used the bag parameters
of [42].
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Figure 2: Predicted values of εSUSY , represented by blue (medium dark) dots around 1.5 × 10−3, for
the G2-MSSM benchmark points of Table 1 in the case where trilinear terms are proportional to Yukawa
couplings. The error bars (blue/medium dark dashed lines) correspond to the 2σ uncertainty of the SM
contribution. The orange (gray) horizontal line is the central value of the SM contribution, εSM . The blue
(light gray) band corresponds to the experimentally allowed region at the 2σ CL. The benchmark points
1–4 lead to a value of εSUSY that would rule them out for the considered choice of Yukawa couplings,
while points 5–7 agree with the observed value within the uncertainties. A choice of Yukawa couplings
with small mixing also in the right-handed down sector will avoid this problem.

We have checked the validity of the mass-insertion approximation (MIA) via the vertex
mixing method, analogously to the discussion for the case of b → sγ in section IV of [41].

In Figure 2 we plot the predictions for εSUSY obtained when the trilinear terms are
proportional to the Yukawa couplings,5 the SM expectation εSM and the experimental
value for ε. Considering the uncertainty of εSM , it is possible to be in agreement with the
experimental value εexp for the benchmark points 5–7, while the benchmark points 1–4 are
ruled out at the 2σ confidence level. It is important to mention that in the down sector
only Ud

L ∼ VCKM, while Ud
R contains large mixings. Together with the relatively large

difference between the masses of b̃1 and the squarks of the first and second generation, this
is responsible for the sizable off-diagonal elements in δdRR in this case. They arise after the
rotation to the SCKM basis,

m̂2
d̃RR

= Ud
Rm

2
d̃
Ud†
R . (23)

We can estimate the 12-element in this basis as

(m̂2
d̃RR

)12 ≈ (Ud
R)13(U

d
R)

∗
23 (m

2
b̃1
−m2

d̃R
) ∼ 106 GeV2 (24)

for benchmark point 1 (m2
b̃1
−m2

d̃R
≈ (m2

d̃
)33 − (m2

d̃
)11), leading to (δdRR)12 ∼ 10−2. If also

Ud
R was similar to VCKM, then (Ud

R)13(U
d
R)

∗
23 ∼ λ5, and (δdRR)12 would be about two orders

of magnitude smaller, reducing the size of δεSUSY accordingly and making all G2-MSSM

5For the uncertainties in the hadronic matrix element calculations, we have used the bag parameters
of [42].
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3. We focus our studies on supersymmetric mass spectra featuring heavy scalars (mq̃ !
20 TeV) and light gauginos. In particular, the light gluino (mg̃ " 1 TeV), due to its
strong interactions, can potentially play a significant role for low-energy observables
even if the scalars are heavy. For the specification of such SUSY mass spectra, we use
the G2-MSSM [8, 12, 13] as a concrete UV-complete model, which helps us to clarify
the potential effects of the high-energy physics on the flavour physics phenomena
at the electroweak scale. The model is based on the effective field theories arising
from a class of N = 1 fluxless compactifications of M-theory on a G2 manifold.
For concreteness, we choose a set of benchmark G2-MSSM spectra that has been
analyzed in [13].

4. In addition to bounds coming mainly from the kaon sector, we also consider con-
straints from the stability of the scalar potential, which are relevant for heavy spectra
since they are independent of the mass scale of the supersymmetric particles.
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ᾱ∂Cβ
with C ∈ {Q, uc†, dc†, L, ec†, Hu, Hd} and where K̃γδ̄ denotes the

elements of the inverse matrix. Besides, hm are hidden-sector fields whose F -term vacuum
expectation values break SUSY, KH is the part of the Kähler potential that depends only
on these fields, ∂m = ∂/∂hm and ∂∗

m̄ = ∂/∂h∗
m̄. After taking the flat limit, the visible-

sector superpotential has to be rescaled as W ′
O = WO

〈

W ∗
H

|WH| e
1

2M2
P

∑
m |hm|2

〉

= N WO,

where WH is the superpotential of the hidden sector and MP is the reduced Planck mass.
The primed quantities enter into W ′

O and the unprimed ones into WO. For simplicity, we
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5.4 Example with hierarchical Yukawa couplings

We combine the G2-MSSM spectra with the Yukawa couplings as given by the case of Fit 4
of [11] where we have updated the values of the Yukawa coefficients at the GUT scale MG,

Y d =

√
2mb

v cosβ
0.27





0.0014 + 0.0007i 0.0009 + 0.0111i 0.13 + 0.13i
0.0055 0.046 + 0.118i 0.35 + 0.19i

0.0018 − 0.0009i 0.069 + 0.058i −0.90 + 0.08i





Y u =

√
2mt

v sin β
0.53





−1.58× 10−6 − 0.000017i −0.000076 + 0.000032i 0.0020 + 0.0020i
−0.00034 + 0.00024i 0.0020 + 0.0002i 0.011 + 0.011i
−0.0057 − 0.0024i 0.0044 + 0.0115i 0.70 + 0.71i





Y e =

√
2mτ

v cos β





0.0014 − 0.0007i 0.0005 − 0.0056i 0.13− 0.13i
0.0082 0.023 − 0.059i 0.18 − 0.1i

0.0018 + 0.0009i 0.035 − 0.029i −0.99 − 0.09i



 . (19)

We have chosen this example because it has both large and small mixing angles in the d
sector and therefore can give us a definitive answer on whether or not large SCKM rotation
matrices could be a problem for flavour violation in this scenario.

In order to find out how large trilinear and Yukawa couplings should be to produce
the values of δεSUSY that saturate the experimental limits, we use the relation (2) among
trilinear and Yukawa couplings described in §2, and

(a) cfij = 1, (20)

(b) cfij = xf
ij , xf

ij ∈ (0,
√
2) a random number and (21)

(c) cfij = xf
ije

iϕf
ij , xf

ij ∈ (0,
√
2), ϕf

ij ∈ (−π, π) both random numbers, (22)

all relations set at MG. The maximum absolute value of |cf | =
√
2 is chosen to ensure that

the running does not create off-diagonal elements in the soft-squared mass matrices that
are larger than the diagonal elements, as explained in Appendix B.

In Table 3 we show the values of the coefficients cd that have produced the maxi-
mum values of the flavour-violating parameters (δdXY )12, which are listed in Table 2. For
completeness we also show the values of cu. We have chosen the matrix of coefficients
ce = (cd)T . For all SM parameters we use the values of [27].

5.4.1 CP violation in the kaon sector and vacuum stability constraints

ε In the G2-MSSM cases the SUSY contribution to Re{〈K0|H∆S=2
eff |K̄0〉} is really small,

therefore we can express εSUSY = εSM + δεSUSY with δεSUSY ∝ Im{〈K0|H∆S=2
SUSY |K̄0〉}.

For these examples the important contributions come from (δdLL)12 and (δdRR)12 because
they are orders of magnitude bigger than (δdLR)12 and (δdRL)12, as shown in Table 2 for the
case (22). Note that if all (δdXY )12 are of the same order of magnitude, (δdLR)12 and (δdRL)12
are the most constraining. However, here (δdLL)12 and (δdRR)12 are big due to off-diagonal
elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
flip and is therefore suppressed for very heavy scalars. In fact the values of (δdRR)12 in
Table 2 are close to the upper limit set by ε. They yield a contribution δεSUSY ∼ 10−4, so
if (δdRR)12 were an order of magnitude bigger, δεSUSY would indeed be dangerously large.
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The direct CP violation from these operators can be estimated as [31, 30, 32, 33]

Re

(

ε′

ε

)

=
11
√
3

64π

w

|ε|Re(A0)

m2
πm

2
K

Fπ(ms +md)

αs(mg̃)

mg̃
ηBG Im



x

[

αsπ

m2
d̃

]−1
(

C8(x)− C̃8(x)
)



 ,

(8)
where w = ReA2/ReA0 = 0.045 (Ai represents the amplitude for K → (ππ)I=i), Fπ =
131MeV is the pion decay constant, BG represents the uncertainty in the hadronic matrix
element calculation for the magnetic operator between K0 and the 2 pion state, η represents
the running effect from mg̃ to mc,

η =

(

αs(mg̃)

αs(mt)

)2/21(αs(mt)

αs(mb)

)2/23 (αs(mb)

αs(mc)

)2/25

. (9)

The contributions from C8 and C̃8 coefficients can be decomposed into the chirality chang-

ing and conserving contributions as x
[

αsπ
m2

d̃

]−1 (

C8(x)− C̃8(x)
)

= ΛLLRR(x) + Λg(x) with

Λg(x) =
[

(δdLR)12 − (δdRL)12
]

x

[

−1

3
M1(x)− 3M2(x)

]

,

ΛLLRR(x) =
[

(δdLL)12 − (δdRR)12
] ms

mg̃
x

[

−1

3
M3(x)− 3M4(x)

]

. (10)

where the functions Mi are defined in [34, 30] and x = m2
g̃/m

2
d̃
.

The chirality-changing terms, for the models under consideration in this letter, show
up in the down sector and we shall here consider the significant gluino contributions due
to the off-diagonal a-terms which can arise from the non-proportionality between Yukawa
and trilinear couplings after diagonalizing Yukawa couplings

(δd12)LR =
ad12〈Hd〉
m̂2

d̃LR

, (δd12)RL =
ad21〈Hd〉
m̂2

d̃RL

, (11)

m̂2
d̃XY

being the average of the two diagonal elements as in Eq. (6) which on the other hand
can keep electric dipole moments (EDMs) sufficiently small [35, 36, 37].

The contributions from (δd12)LL and (δd12)RR can also be relevant if they are much bigger
than (δd12)LR and could even overcome the enhancement factor mg̃/ms that multiplies this
last contribution [30]. Those chirality-conserving mass insertion parameters however turn
out to be more stringently constrained from ∆mK and ε [34, 38], and they cannot make
significant contributions to ε′ under those constraints from those indirect CP violations.
We hence, in the following, discuss the effects of (δd12)LR,RL on ε′/ε, which can constrain
the potential new physics effects on the flavour-changing interactions that may stem from
the non-proportionality of trilinear and Yukawa couplings.

4 Constraints from stability of the scalar potential

Before performing the numerical analysis for the flavour violation observables, let us briefly
discuss the vacuum stability bounds which constrain the flavour-violating trilinear soft

7

∼10
-8 Really safe (mainly due to 

boundary conditions   )

where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf

⇥ âf̃cF̃Hf
� K̃

� 1
2

H†
fHf

V †
fc a⇥f̃cF̃Hf

VF , (13c)

Y ⇥
fcFHf

⇥ ŶfcFHf � K̃
� 1

2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf = U f
R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

�m2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃
U f
L , (15b)

�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,
the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
[(

α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]

ij
+

[
Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑

f ′ !=f

(
α1f ′(M2

f̃ ′Y
†

f ′Yf ′)ij + α2f ′(Y †
f ′Yf ′M2

f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
L |Ŷ u|2 + Uu

L(m2
Q + 2m2

Hd
)Uu†

L VCKM|Ŷ d|2V †
CKM

+ (|Ŷ u|2 + V |Ŷ d|V †)Uu
Lm2

QUu†
L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u

+ 2VCKMŶ d(Ud
Rm2

dU
d†
R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1

β(1)
(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
L

+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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insensitive to the running of gauginos, at one-loop this is clear.
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Rm2

dU
d†
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for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
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af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:
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where the αij can be different for different generations. In the SCKM basis we have:
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3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:
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∣∣∣
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≤
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ek

(
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ẽLi
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+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,
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F F , f c ⇥ f̂ c � f c V �1
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†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by
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� 1
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⇥ ŶfcFHf
� K̃

� 1
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H†
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V †
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8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f

R

†
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�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
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R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.

6

Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]

ij
, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:

∣∣∣a(u)
ij

∣∣∣
2

≤
1

4
y2

uk

(
m2
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with both a sector breaking SUSY and a sector breaking the family symmetry, is the
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the Yukawa couplings and those responsible for the soft parameters are sensitive to many
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Tachyonic particles here are not an issue

How important are the absence of new phases?

All other bounds really safe!

21Thursday, September 29, 11



• In general of G2-MSSM:  Sure!  special signatures of low gluinos 
with heavy scalars

• In particular regarding Yukawa & other flavour couplings: difficult 
but not impossible due to the involved couplings in the typical 
decay chains

 kane, kuflik, lu & wang, 1101.1963

COULD THERE BE SIGNALS 
AT THE LHC?  

g

t, b

Parameter Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

m3/2 20000 20000 20000 20000 30000 50000 30000

tan � 3 2.65 2.65 3 3 2.5 3
µ -11943 -13377 -13537 -10969 -10490 -34019 +17486

LSP type Wino Wino Bino Bino Bino Wino Bino
mg̃ 401 449 622 492 1784 1001 596.8
me�0

1
145.1 155.6 189 170 473 373.4 271

me�0
2

153 159 214.3 181.5 702.4 397 334.2
me�±

1
145.2 155.8 214.5 181.7 702.6 373.6 334.2

md̃L
,ms̃L 19799 19803 19809 18785 21052 49524 29727

mb̃1
15342 15250 15224 14635 16783 38473 23236

mt̃1 9130 8779 8662 8928 11151 22887 14264
md̃R

19848 19851 19845 18832 21096 49694 29794
ms̃R 19849 19851 19856 18832 21096 49695 29767
mt̃2 15342 15251 15224 14635 16783 38470 23235

mH0 ,mA0 ,mH± 24614 25846 25943 23158 25029 65690 36623

Table 1: Low-scale spectra for seven benchmark G
2

-MSSM points taken from [13]. The other SUSY
particle masses besides those shown in this table are of order the gravitino mass.

in Table 1, which are characterized by heavy scalar masses of order the gravitino mass
(m3/2 & O(10) TeV) and a light gluino (mg̃ ⇠ 500 GeV). Let us briefly overview the basic
properties of the G2-MSSM and their origin before discussing the flavour issues.

The moduli Kähler potentials of G2-MSSM models are partially determined [40] G2-
holonomy Kähler potentials but the matter Kähler potentials are not [13]. What is known
about these models is the supergravity limit and hence the necessary ingredients to analyze
their phenomenology. This is characterized by a suppression of gaugino masses relative to
the gravitino and the moduli masses.

In M-theory the moduli are stabilized generically because all moduli occur on an equal
footing in the gauge kinetic function, and it occurs in the superpotential, so the moduli have
some interactions and therefore a potential with a minimum. Their vacuum expectation
values and masses can be calculated. In the G2-MSSM the Kähler function is assumed to be
diagonal since the families arise at singularities on the manifold that are unlikely to overlap.
Studying e↵ects of non-diagonal and non-universal diagonal terms phenomenologically is
done in the present paper.

That scalars (squarks, sleptons, etc.) should be heavier than about 30 TeV is more
general than the G2-MSSM, depending only on the generic derivation that the moduli
masses are connected to the gravitino mass, the moduli masses have a lower bound of
order 30 TeV from robust cosmological arguments, and supergravity implies the scalar
masses are closely equal to the gravitino mass.

9

~ t, b
- -

~
t, b

~
Gluino coupling: flavour blind, 

involved couplings just
~

f,  f 

feldman, kane, lu & nelson, 1002.2430
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SUMMARY
• Typical flavour structure in G2-models:

• Couplings: 

•  Squared mass matrices 

• Vij can be constrained

•  FCNC under control with specific forms of  Yukawa couplings,  
Yu small mixings, while Yd can allow certain large mixings

Contents

1 Goals

We would like to put limits on the size of the off-diagonal trilinear and sof-squared masses.
Althought it is a compelling task with out a priori information about the form of them, we
can make some general statements and with some parameterization, obtain precise bounds.
Outline:

1. Assume some parameterization of af , m2 but when possible, make general state-
ments.

2. Check bounds coming from stability of the scalar potential

3. Check Kaon bounds and leptonic processes !i → !jγ

4. Check b decays

2 Basic features of the G2 models

2.1 Boundary Conditions

2.2 Typical mass spectra

m3/2 ∈ (10, 100) TeV

2.2.1 Heavy particles:

All the susy scalars: both the superpartners of the fermions and the Higgsinos, since

m2
ᾱβ = m2

3/2δαβ (1)

B, µ = O(m3/2) (2)

2.2.2 Light particles:

Light gauginos and SM particles

2.2.3 Yukawa couplings

The basic form of the Yukawa couplings is given by

Y f
ij = e−Vij (3)

However most of the flavour violating processes depend on the form of the diagonalizing
matrices. We analyze the following cases:

VCKM = Ud†
L , (4)

VCKM = Uu
L, (5)

to which we will refer in the following sections.

1

Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:

âu(µ)ij ≈ âu(MG)ijδij −
1

16π2
log

[
µ

MG

] [
Ŷ u

ii Tr
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Rira
u
rrU

u∗
Ljr + 2Ŷ u
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d
ssU

d
Rsra

d
rrU

u∗
Ljr

]
(13)

âd(µ)ij ≈ âd(MG)ijδij −
1

16π2
log

[
µ

MG

] [
Ŷ d

ii Tr
[
6(Ud

RadUu†
L )Ŷ d† + 2aeY e†

]
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d
1δij

+ 4Ŷ d 2
ii Ud

Rira
d
rrU

d∗
Ljr + 2Ŷ d

iiV
†
CKMisŶ

u
ssU

u
Rsra

u
rrU

d∗
Ljr

]
. (14)

The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:

(̂M2
Q̃
)i"=j ≈ −

1

16π2
log

[
µ

MG

] [
(m2

Qi
+ 2m2

Hd
)
(
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CKM|Ad|2

+ (∆Q
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Q
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]
,

(̂M2
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1

16π2
log

[
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MG

] [
(∆f

1)ij |Ŷ u|2jj + 4|Ŷ f |i(∆f
2)ij

+ 2|Ŷ f |i(∆f
3)ij

]
(15)

with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-
portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.
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⇥ ŶfcFHf
� K̃

� 1
2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
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with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
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the Yukawa couplings and those responsible for the soft parameters are sensitive to many
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is K̃F †

i Fj
, and analogously for other quantities.
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In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
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the Yukawa couplings and those responsible for the soft parameters are sensitive to many
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
[(

α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]

ij
+

[
Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑

f ′ !=f

(
α1f ′(M2

f̃ ′Y
†
f ′Yf ′)ij + α2f ′(Y †

f ′Yf ′M2
f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
L |Ŷ u|2 + Uu

L(m2
Q + 2m2

Hd
)Uu†

L VCKM|Ŷ d|2V †
CKM

+ (|Ŷ u|2 + V |Ŷ d|V †)Uu
Lm2

QUu†
L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u

+ 2VCKMŶ d(Ud
Rm2

dU
d†
R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1

β(1)
(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
L

+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]

ij
, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:

∣∣∣a(u)
ij

∣∣∣
2

≤
1

4
y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)

∣∣∣a(d)
ij

∣∣∣
2

≤
1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)

∣∣∣a(l)
ij

∣∣∣
2

≤
1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf

⇥ âf̃cF̃Hf
� K̃

� 1
2

H†
fHf

V †
fc a⇥f̃cF̃Hf

VF , (13c)

Y ⇥
fcFHf

⇥ ŶfcFHf
� K̃

� 1
2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

�m2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃
U f
L , (15b)

�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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REAL

5.4 Example with hierarchical Yukawa couplings

We combine the G2-MSSM spectra with the Yukawa couplings as given by the case of Fit 4
of [11] where we have updated the values of the Yukawa coefficients at the GUT scale MG,

Y d =

√
2mb

v cosβ
0.27





0.0014 + 0.0007i 0.0009 + 0.0111i 0.13 + 0.13i
0.0055 0.046 + 0.118i 0.35 + 0.19i

0.0018 − 0.0009i 0.069 + 0.058i −0.90 + 0.08i





Y u =

√
2mt

v sin β
0.53





−1.58× 10−6 − 0.000017i −0.000076 + 0.000032i 0.0020 + 0.0020i
−0.00034 + 0.00024i 0.0020 + 0.0002i 0.011 + 0.011i
−0.0057 − 0.0024i 0.0044 + 0.0115i 0.70 + 0.71i





Y e =

√
2mτ

v cos β





0.0014 − 0.0007i 0.0005 − 0.0056i 0.13− 0.13i
0.0082 0.023 − 0.059i 0.18 − 0.1i

0.0018 + 0.0009i 0.035 − 0.029i −0.99 − 0.09i



 . (19)

We have chosen this example because it has both large and small mixing angles in the d
sector and therefore can give us a definitive answer on whether or not large SCKM rotation
matrices could be a problem for flavour violation in this scenario.

In order to find out how large trilinear and Yukawa couplings should be to produce
the values of δεSUSY that saturate the experimental limits, we use the relation (2) among
trilinear and Yukawa couplings described in §2, and

(a) cfij = 1, (20)

(b) cfij = xf
ij , xf

ij ∈ (0,
√
2) a random number and (21)

(c) cfij = xf
ije

iϕf
ij , xf

ij ∈ (0,
√
2), ϕf

ij ∈ (−π, π) both random numbers, (22)

all relations set at MG. The maximum absolute value of |cf | =
√
2 is chosen to ensure that

the running does not create off-diagonal elements in the soft-squared mass matrices that
are larger than the diagonal elements, as explained in Appendix B.

In Table 3 we show the values of the coefficients cd that have produced the maxi-
mum values of the flavour-violating parameters (δdXY )12, which are listed in Table 2. For
completeness we also show the values of cu. We have chosen the matrix of coefficients
ce = (cd)T . For all SM parameters we use the values of [27].

5.4.1 CP violation in the kaon sector and vacuum stability constraints

ε In the G2-MSSM cases the SUSY contribution to Re{〈K0|H∆S=2
eff |K̄0〉} is really small,

therefore we can express εSUSY = εSM + δεSUSY with δεSUSY ∝ Im{〈K0|H∆S=2
SUSY |K̄0〉}.

For these examples the important contributions come from (δdLL)12 and (δdRR)12 because
they are orders of magnitude bigger than (δdLR)12 and (δdRL)12, as shown in Table 2 for the
case (22). Note that if all (δdXY )12 are of the same order of magnitude, (δdLR)12 and (δdRL)12
are the most constraining. However, here (δdLL)12 and (δdRR)12 are big due to off-diagonal
elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
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SUMMARY
• Typical flavour structure in G2-models:

• Couplings: 

•  Squared mass matrices 

• Vij can be constrained

•  FCNC under control with specific forms of  Yukawa couplings,  
Yu small mixings, while Yd can allow certain large mixings

Contents

1 Goals

We would like to put limits on the size of the off-diagonal trilinear and sof-squared masses.
Althought it is a compelling task with out a priori information about the form of them, we
can make some general statements and with some parameterization, obtain precise bounds.
Outline:

1. Assume some parameterization of af , m2 but when possible, make general state-
ments.

2. Check bounds coming from stability of the scalar potential

3. Check Kaon bounds and leptonic processes !i → !jγ

4. Check b decays

2 Basic features of the G2 models

2.1 Boundary Conditions

2.2 Typical mass spectra

m3/2 ∈ (10, 100) TeV

2.2.1 Heavy particles:

All the susy scalars: both the superpartners of the fermions and the Higgsinos, since

m2
ᾱβ = m2

3/2δαβ (1)

B, µ = O(m3/2) (2)

2.2.2 Light particles:

Light gauginos and SM particles

2.2.3 Yukawa couplings

The basic form of the Yukawa couplings is given by

Y f
ij = e−Vij (3)

However most of the flavour violating processes depend on the form of the diagonalizing
matrices. We analyze the following cases:

VCKM = Ud†
L , (4)

VCKM = Uu
L, (5)

to which we will refer in the following sections.

1

Therefore at scales µ < 105 TeV, according to what it was discussed with respect to
Eq. (7) in the SCKM basis we have:

âu(µ)ij ≈ âu(MG)ijδij −
1

16π2
log

[
µ

MG

] [
Ŷ u

ii Tr
[
6(Uu

RauUu†
L )Ŷ u†

]
+ Ŷ u

ii G
u
1δij

+ 4Ŷ u 2
ii Uu

Rira
u
rrU

u∗
Ljr + 2Ŷ u

ii VCKMisŶ
d
ssU

d
Rsra

d
rrU

u∗
Ljr

]
(13)

âd(µ)ij ≈ âd(MG)ijδij −
1

16π2
log

[
µ

MG

] [
Ŷ d

ii Tr
[
6(Ud

RadUu†
L )Ŷ d† + 2aeY e†

]
+ Ŷ d

ii G
d
1δij

+ 4Ŷ d 2
ii Ud

Rira
d
rrU

d∗
Ljr + 2Ŷ d

iiV
†
CKMisŶ

u
ssU

u
Rsra

u
rrU

d∗
Ljr

]
. (14)

The functions Gaf depend on the running of the gauge couplings and gaugino masses
and therefore just relevant to the diagonal elements. In the G2-MSSM models due to the
hierarchy of the gauginos with respect to the soft masses, the diagonal terms are practically
insensitive to them and provided they are not zero, their main contribution it is its value
at MG. Therefore we expect af

rr to be the same at any scale µ.

Soft squared masses In this case, we can parameterize the size of the soft squared
masses coming from the leading terms of the running as follows:

(̂M2
Q̃
)i"=j ≈ −

1

16π2
log

[
µ

MG

] [
(m2

Qi
+ 2m2

Hd
)
(
VCKM|Ŷ d|2V †

CKM

)

ij

+ (VCKM|Ŷ d|2V †
CKM)ijm

2
Qj

+ 2(m2
d)i(VCKM|Ŷ d|2V †

CKM)ij + 2VCKM|Ŷ d|2ijV
†
CKM|Ad|2

+ (∆Q
1 )ij|Ŷ f |2jj + |Ŷ u|2ii(∆

Q
2 )ij

]
,

(̂M2
f̃
)i"=j ≈

1

16π2
log

[
µ

MG

] [
(∆f

1)ij |Ŷ u|2jj + 4|Ŷ f |i(∆f
2)ij

+ 2|Ŷ f |i(∆f
3)ij

]
(15)

with (∆f
α) ∼ O(m2

f).

2.4.3 Soft parameters related to Yukawa matrices, but not necessarily pro-
portional to them

Trilinears

(af )ij = cf
ijAf̃Y

f
ij → âf

ij = Uf
Rikc

f
ksY

f
ksU

f†
Lsj (16)

where it is not assumed that the coefficients cf
ij are the same for all i, j and therefore af is

not a priori proportional to the matrix Y f . Here we do not assume a particular form for
the Yukawa matrices. In this case, provided cf

ij %= 0 their value at MG would provide their
main contribution at an arbitrary scale µ.
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf

⇥ âf̃cF̃Hf
� K̃

� 1
2

H†
fHf

V †
fc a⇥f̃cF̃Hf

VF , (13c)

Y ⇥
fcFHf

⇥ ŶfcFHf
� K̃

� 1
2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

�m2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃
U f
L , (15b)

�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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Soft-squared masses The running of (M̂2
f̃
)ij are carachterized by the following contri-

butions to their beta functions

β(1)
(M2

f̃
)ij

=
[(

α1(M
2
f̃
)ij + α2m

2
Hf

1
)

Y †
f Yf

]

ij
+

[
Y †

f Yf

(
α3(M

2
f̃
)ij + α4m

2
Hf ′

1
)]

ij

+
∑

f ′ !=f

(
α1f ′(M2

f̃ ′Y
†
f ′Yf ′)ij + α2f ′(Y †

f ′Yf ′M2
f̃ ′)ij

)
+ Gfδij (9)

where αi are coefficients and the G functions are the contribution to the running from
the gauge couplings and the masses of the gauginos. Off diagonal elements are pretty
insensitive to the running of gauginos, at one-loop this is clear.

In the SCKM basis we have

β(1)
(M2

Q̃
)

= Uu
L(m2

Q + 2m2
Hu

)Uu†
L |Ŷ u|2 + Uu

L(m2
Q + 2m2

Hd
)Uu†

L VCKM|Ŷ d|2V †
CKM

+ (|Ŷ u|2 + V |Ŷ d|V †)Uu
Lm2

QUu†
L + 2Ŷ u(Uu

Rm2
uU

u†
R )Ŷ u

+ 2VCKMŶ d(Ud
Rm2

dU
d†
R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1

β(1)
(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
R (Ŷ f )2 + 4Ŷ fULm2

QUf†
L

+ 2(Ŷ f )2(Uf
Rm2

fU
f†
R ) + 4Uf

R(afa
f†)Uf†

R + GM2
f
1, (10)

for f = u, d. Note that at an arbirtrary scale µ != MG, the terms which go like

Uu
L(m2

Q)Uu†
L , Uf

R(2m2
f + 4m2

Hf
)Uf†

R (11)

are not diagonal, because the different running of the diagonal elements in m2
Q and m2

f .
Therefore necessarily there will be induced off-diaognal terms, once Yukawa couplings are
allowed to be arbitary.

2.4.2 Only Yukawa couplings are non diagonal at the MG scale

Trilinear terms This case is some one ad-hoc because presumabily the structure of the
Yukawa couplings will be inherited in some way to the trilinear terms and soft-squared
masses, however let us analyze the consequences of it, to check, where there could be hint
for a possible structure of this type.

In this case off-diagonal trilinear terms are generated via the running of the off-diagonal
Yukawa couplings. At a scale µb just below the MG scale we will have af(µb)i!=j != 0, then
from µb down to the scale µ where the flavour violating effects take place we have

af (µ)i!=j ≈ af(µb)i!=j −
1

16π2
log

[
µ

µb

] [
Y fF1(a

f , Y f ) + afF2(a
f , Y f )

]
i!=j

, (12)

at µ = 10 TeV it is safe to neglect the second term, i.e. the one that goes like af . This is
because at that scale the trilinear terms generated by the running from µb down to µ of
the second term can just account up to the 10 % of the running of the first term in β(1)

af
ij

(we can get a quick estimate just comparing the log functions).
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R )Ŷ dV †

CKM + 2Uu
La†

uauU
u †L +2Uu

La†
dadU

u†
L

+ 2Uu
L(au†au)Uu†

L + 2Uu
L(ad†ad)Uu†

L + GM2
Q
1

β(1)
(M2

f̃R
)

= Uf
R(2m2

f + 4m2
Hf

)Uf†
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Soft-squared matrices As we have seen in the previous section, the running of (M2
f̃
)ij

is determined by the running of Y †
f Yf , therefore we could parameterize a possible non zero

value for i != j at MG as follows:

(M2
f̃
)ij(µ) = αMf

ij m2
0

[
Y †

f Yf

]

ij
, (17)

where the αij can be different for different generations. In the SCKM basis we have:

(M̂2
f̃
)Lij(µG2) = m2

0 Uf
L ikα

Mf

L k!

(
Y f†Y f

)
k!

Uf†
L!j

(M̂2
f̃
)R ik(µG2) = m2

0 Uf
R ikα

Mf

R k!

(
Y f†Y f

)
k!

Uf†
R !j

(18)

3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:

∣∣∣a(u)
ij

∣∣∣
2

≤
1

4
y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)

∣∣∣a(d)
ij

∣∣∣
2

≤
1

4
y2

dk

(
m2

d̃Li

+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)

∣∣∣a(l)
ij

∣∣∣
2

≤
1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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3 Constraints from the stability of the scalar poten-

tial

In general the bounds coming from the stability of the scalar potential against charge and
color breaking (CCB) and run-away behaviour (UFB: unbounded from below) on flavour
violating trilinear soft terms are stronger than those imposed from the absence of neutral
flavour changing currents (FCNC) [1]. The exceptions to this statement are the FCNC
bounds coming from the lepton decays "i → ljγ and the bounds coming from the b decays
b → sγ and b → "+"−γ. In some cases also the bounds coming from the Bs mixings.

It is a good starting point to check these bounds when considering the
arbitrary cases of §2.4.2 and §2.4.3.

The CCB and UFB most important caractheristics are that:

1. the UFB bounds are genuine effects of nondiagonal trilinear couplings

2. contrary to the FCNC bounds, the strength of the CCB and UFB bounds does not
decrease as the scale of supersymmetry breaking increases.

Therefore these bounds are relevant for the G2-MSSM models.
For the trilinear terms af

ij we have:
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ij

∣∣∣
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y2

uk

(
m2

ũLi
+ m2

ũRj
+ m2

2

)
, k = max (i, j)
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ij

∣∣∣
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dk

(
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+ m2
d̃Rj

+ m2
1

)
, k = max (i, j)
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ij

∣∣∣
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≤
1

4
y2

ek

(
m2

ẽLi
+ m2

ẽRj
+ m2

1

)
, k = max (i, j) (19)

where yfk
is the Yukawa coupling of the fk fermion: |14yfk

H̃0
f f̃Rk|2 ∈ V , V being the scalar

potential of the MSSM and k the family index. [Check the notation of [1] with that of [2],
in particular Eq. 3.50 of this last reference. We are following as much as possible the
notation in [2]]
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where of course the precise values of the O(1) coe⇤cients depend on the details of
the Kähler potential and the F terms.

7. We normalise the visible-sector fields to obtain canonical kinetic terms,

F ⇥ F̂ � V �1
F F , f c ⇥ f̂ c � f c V �1

fc

†
, Hf ⇥ Ĥf � K̃

1
2

H†
fHf

Hf , (11)

where the (non-unitary) matrices V diagonalise the Kähler metric,5

V †
F K̃F †FVF = , V †

fcK̃fcfc†Vfc = . (12)

Consequently, the transformations of the soft parameters and the Yukawa couplings
are given by

m⇥2
F̃ †F̃

⇥ m̂2
F̃ †F̃

� V †
F m⇥2

F̃ †F̃
VF , (13a)

m⇥2
f̃cf̃c† ⇥ m̂2

f̃cf̃c† � V †
fc m⇥2

f̃cf̃c† Vfc , (13b)

a⇥
f̃cF̃Hf

⇥ âf̃cF̃Hf
� K̃

� 1
2

H†
fHf

V †
fc a⇥f̃cF̃Hf

VF , (13c)

Y ⇥
fcFHf

⇥ ŶfcFHf
� K̃

� 1
2

H†
fHf

V †
fc Y ⇥

fcFHf
VF . (13d)

8. Flavour-violating parameters are computed in the super-CKM (SCKM) basis where
the Yukawa couplings are diagonal,

�YfcFHf
= U f

R

†
ŶfcFHf

U f
L = diag , (14)

and we have the corresponding transformations for the soft terms,

�af̃cF̃Hf
= U f

R

†
âf̃cF̃Hf

U f
L , (15a)

�m2
f̃ ,LL

= U f
L

†
m̂2

F̃ †F̃
U f
L , (15b)

�m2
f̃ ,RR

= U f
R

†
m̂2

f̃cf̃c†U
f
R . (15c)

In summary, we would like to emphasise two crucial points for the predictivity of these
scenarios. A first consequence of the supergravity formalism, including a UV completion
with both a sector breaking SUSY and a sector breaking the family symmetry, is the
explicit form (8) of the Yukawa couplings, containing information on both sectors. In the
supergravity literature the dependence on the family-blind sector is a well-known fact.
However, so far this has not been considered in works studying family symmetries in the
e�ective theory approach. Second, the relations (9) between the parameters describing
the Yukawa couplings and those responsible for the soft parameters are sensitive to many
details of the UV completion, as we shall illustrate in the following sections.

5At the order we are considering the Kähler potential does not mix di�erent fields F or f c. Hence,
every block K̃F †F and K̃fcfc† in the Kähler metric can be diagonalised with a di�erent matrix. Likewise,

the block associated to the Higgs fields is diagonal. We use K̃F †F to denote the matrix whose ij element
is K̃F †

i Fj
, and analogously for other quantities.
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5.4 Example with hierarchical Yukawa couplings

We combine the G2-MSSM spectra with the Yukawa couplings as given by the case of Fit 4
of [11] where we have updated the values of the Yukawa coefficients at the GUT scale MG,

Y d =

√
2mb

v cosβ
0.27





0.0014 + 0.0007i 0.0009 + 0.0111i 0.13 + 0.13i
0.0055 0.046 + 0.118i 0.35 + 0.19i

0.0018 − 0.0009i 0.069 + 0.058i −0.90 + 0.08i





Y u =

√
2mt

v sin β
0.53





−1.58× 10−6 − 0.000017i −0.000076 + 0.000032i 0.0020 + 0.0020i
−0.00034 + 0.00024i 0.0020 + 0.0002i 0.011 + 0.011i
−0.0057 − 0.0024i 0.0044 + 0.0115i 0.70 + 0.71i





Y e =

√
2mτ

v cos β





0.0014 − 0.0007i 0.0005 − 0.0056i 0.13− 0.13i
0.0082 0.023 − 0.059i 0.18 − 0.1i

0.0018 + 0.0009i 0.035 − 0.029i −0.99 − 0.09i



 . (19)

We have chosen this example because it has both large and small mixing angles in the d
sector and therefore can give us a definitive answer on whether or not large SCKM rotation
matrices could be a problem for flavour violation in this scenario.

In order to find out how large trilinear and Yukawa couplings should be to produce
the values of δεSUSY that saturate the experimental limits, we use the relation (2) among
trilinear and Yukawa couplings described in §2, and

(a) cfij = 1, (20)

(b) cfij = xf
ij , xf

ij ∈ (0,
√
2) a random number and (21)

(c) cfij = xf
ije

iϕf
ij , xf

ij ∈ (0,
√
2), ϕf

ij ∈ (−π, π) both random numbers, (22)

all relations set at MG. The maximum absolute value of |cf | =
√
2 is chosen to ensure that

the running does not create off-diagonal elements in the soft-squared mass matrices that
are larger than the diagonal elements, as explained in Appendix B.

In Table 3 we show the values of the coefficients cd that have produced the maxi-
mum values of the flavour-violating parameters (δdXY )12, which are listed in Table 2. For
completeness we also show the values of cu. We have chosen the matrix of coefficients
ce = (cd)T . For all SM parameters we use the values of [27].

5.4.1 CP violation in the kaon sector and vacuum stability constraints

ε In the G2-MSSM cases the SUSY contribution to Re{〈K0|H∆S=2
eff |K̄0〉} is really small,

therefore we can express εSUSY = εSM + δεSUSY with δεSUSY ∝ Im{〈K0|H∆S=2
SUSY |K̄0〉}.

For these examples the important contributions come from (δdLL)12 and (δdRR)12 because
they are orders of magnitude bigger than (δdLR)12 and (δdRL)12, as shown in Table 2 for the
case (22). Note that if all (δdXY )12 are of the same order of magnitude, (δdLR)12 and (δdRL)12
are the most constraining. However, here (δdLL)12 and (δdRR)12 are big due to off-diagonal
elements in the soft-squared masses created by the running and by the transformation to
the SCKM basis. In comparison, (δdLR)12 involves a Yukawa coupling due to the chirality
flip and is therefore suppressed for very heavy scalars. In fact the values of (δdRR)12 in
Table 2 are close to the upper limit set by ε. They yield a contribution δεSUSY ∼ 10−4, so
if (δdRR)12 were an order of magnitude bigger, δεSUSY would indeed be dangerously large.
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