Form Factors and Strong Couplings of Heavy Baryons from QCD Light-Cone Sum Rules

Yu-Ming Wang

Theoretische Physik I, Universität Siegen

A. Khodjamirian, Ch. Klein, Th. Mannel and Y.M.W. JHEP 09, (2011) 106.

Talk given at DESY Theory Workshop, 28 September, 2011

I. Motivation and introduction

- Weak decays of heavy-baryons are of high interest: determination of CKM matrix elements $|V_{ub}|$ and $|V_{cb}|$, allow the study of spin correlations (polarization asymmetries...), a multitude of new-physics sensitive observables (A_{FB} ...).
- Strong coupling constants of (charmed baryon)-(charmed meson)-nucleon are fundamental inputs in the calculations of charm production at PANDA.
- Available techniques to investigate heavy-to-light form factors:
 a)Nonperturbative approaches: Lattice QCD, QCD sum rules,
 b)Effective field theories: \chi PT, HQET, SCET,
- Applications of LCSR to the meson transition in mature state: $\pi\gamma^* \to \gamma, \, \pi\gamma^* \to \pi, \, B \to \pi\ell\nu_\ell, \, B \to K^*\gamma, \, B \to K^{(*)}\ell^+\ell^-, \, \dots$

Difficulties of heavy-baryon LCSR

• Background contribution of negative-parity baryon in the dispersion relation:

$$\langle 0|\eta_{\Lambda_c}^{(i)}|\Lambda_c(P-q)\rangle = m_{\Lambda_c}\lambda_{\Lambda_c}^{(i)} u_{\Lambda_c}(P-q), \langle 0|\eta_{\Lambda_c}^{(i)}|\Lambda_c^*(P-q)\rangle = m_{\Lambda_c^*}\lambda_{\Lambda_c^*}^{(i)} u_{\Lambda_c^*}(P-q).$$

Fermion is not an eigenstate of parity transformation!

- Longstanding issue of interpolating current for baryons: loffe current or tensor current for nucleon state (loffe 1981, Chung et al 1982)?
- Some attempts to avoid background pollution:

a) Parity projector matrix $(1 \pm p)/2$ for heavy-baryon sum rule (Bagan et al 1993, ...),

b)Choose "old-fashioned" correlation function and construct sum rules in the complex q_0 -space in the rest frame (Jido et al 1996,...).

Way out in the standard LCSR approach

• A natural scenario to eliminate background pollution using time-ordered correlation function in reference-frame independent way exists?

 How to construct a baryon sum rule with predictions independent on the interpolating current?

- Resolution to the two problems meanwhile:
 - a) Separating the negative-parity baryon contribution from continuum,
 - b) Constructing two independent LCSR from different kinematical structures,
 - c) Choosing a linear combination of two sum rules to remove background pollution.

II. Choices of baryonic currents

- General structure of heavy-baryon current (Shuryak, 1981): $\eta = \epsilon^{ijk} \left(q_i C \, \Gamma_b \, q'_j \right) \widetilde{\Gamma}_b \, Q_k \, .$
- Isospin symmetry of light diquark system:

$$\left(q C \Gamma_b q'\right)_{\alpha\beta} = (-1)^{I+1} \left(q C \Gamma_b q'\right)_{\beta\alpha}.$$

• Three interpolating currents of Λ_Q baryon:

$$\eta_{\Lambda_Q}^{(\mathcal{P})} = (u C \gamma_5 d) Q, \qquad \eta_{\Lambda_Q}^{(\mathcal{A})} = (u C \gamma_5 \gamma_\lambda d) \gamma^\lambda Q,$$

$$\eta_{\Lambda_c}^{(\mathcal{S})} = (u C d) \gamma_5 Q \text{ (Vanishes in the heavy – quark limit!).}$$

• Two interpolating currents of Σ_Q baryon:

$$\eta_{\Sigma_c}^{(\mathcal{I})} = (u C \gamma_\lambda d) \gamma^\lambda \gamma_5 Q, \qquad \eta_{\Sigma_c}^{(\mathcal{I})} = (u \sigma_{\mu\nu} d) \sigma^{\mu\nu} \gamma_5 Q.$$

III. LCSR of heavy-baryon form factors

• Definitions of form factors:

$$\langle \Lambda_Q(P-q) | m_Q \bar{Q} \, i\gamma_5 \, u | N(P) \rangle = (m_{\Lambda_c} + m_N) G(q^2) \bar{u}_{\Lambda_Q}(P-q) i\gamma_5 \, u_N(P) , \langle \Lambda_Q(P-q) | \bar{Q} \, \gamma_\mu \, u | N(P) \rangle = \bar{u}_{\Lambda_Q}(P-q) \Big\{ f_1(q^2) \, \gamma_\mu + i \frac{f_2(q^2)}{m_{\Lambda_Q}} \, \sigma_{\mu\nu} q^\nu + \frac{f_3(q^2)}{m_{\Lambda_Q}} \, q_\mu \Big\} u_N(P) , \langle \Lambda_Q(P-q) | \bar{Q} \, \gamma_\mu \gamma_5 \, u | N(P) \rangle = \bar{u}_{\Lambda_Q}(P-q) \Big\{ g_1(q^2) \, \gamma_\mu + i \frac{g_2(q^2)}{m_{\Lambda_Q}} \, \sigma_{\mu\nu} q^\nu + \frac{g_3(q^2)}{m_{\Lambda_Q}} \, q_\mu \Big\} \gamma_5 u_N(P) .$$

• Introducing vacuum-to-nucleon correlation function:

$$\Pi_a(P,q) = i \int d^4 z \ e^{iq \cdot z} \langle 0|T\left\{\eta(0), j_a(z)\right\} |N(P)\rangle.$$

Weak transition current:

$$j_a = \bar{Q} \Gamma_a u$$
, with $\Gamma_a = m_Q i \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5$,

 Another corrector with on-shell \(\Lambda_Q\) state and interpolating current for nucleon is also possible!

Hadronic dispersion relation: pseudoscalar transition

- Lorenz decomposition of correlator with EOM: $\Pi_{5}^{(i)}(P,q) = \left[\Pi_{1}^{(i)}((P-q)^{2},q^{2}) + \not q \Pi_{2}^{(i)}((P-q)^{2},q^{2})\right] i\gamma_{5}u_{N}(P) \,.$
- Hadronic dispersion relations for invariant amplitudes:

$$\begin{aligned} \Pi_{1}^{(i)}((P-q)^{2},q^{2}) &= \frac{m_{\Lambda_{Q}}(m_{\Lambda_{Q}}^{2}-m_{N}^{2})\lambda_{\Lambda_{Q}}^{(i)}G(q^{2})}{m_{\Lambda_{Q}}^{2}-(P-q)^{2}} \\ &+ \frac{m_{\Lambda_{Q}^{*}}(m_{\Lambda_{Q}^{*}}^{2}-m_{N}^{2})\lambda_{\Lambda_{Q}^{*}}^{(i)}\tilde{G}(q^{2})}{m_{\Lambda_{Q}^{*}}^{2}-(P-q)^{2}} + \int_{s_{0}^{h}}^{\infty} ds \frac{\rho_{1}^{(i)}(s,q^{2})}{s-(P-q)^{2}}, \\ \Pi_{2}^{(i)}((P-q)^{2},q^{2}) &= -\frac{m_{\Lambda_{Q}}(m_{\Lambda_{Q}}+m_{N})\lambda_{\Lambda_{Q}}^{(i)}G(q^{2})}{m_{\Lambda_{Q}}^{2}-(P-q)^{2}} \\ &+ \frac{m_{\Lambda_{Q}^{*}}(m_{\Lambda_{Q}^{*}}-m_{N})\lambda_{\Lambda_{Q}^{*}}^{(i)}\tilde{G}(q^{2})}{m_{\Lambda_{Q}}^{2}-(P-q)^{2}} + \int_{s_{0}^{h}}^{\infty} ds \frac{\rho_{2}^{(i)}(s,q^{2})}{s-(P-q)^{2}}. \end{aligned}$$

Contributions of higher states with the quantum numbers of $\Lambda_Q^{(*)}$ absorbed into $\rho_{1,2}^{(i)}$.

Light-cone sum rules for the form factors

- Light-cone expansion of the correlation function works at space-like region $(P-q)^2, q^2 \ll m_Q^2$.
- Generic form of OPE results:

$$\Pi_j^{(i)}((P-q)^2,q^2) \sim \sum_k (T_j^{(i)})_k((P-q)^2,q^2,x) \otimes F_k(x) \, .$$

Short-distance coefficients T are calculable in perturbative theory. Nonperturbative distribution amplitudes of nucleon $F_k(x)$ are universal.

• Light-cone expansion of nonlocal vacuum-to-nucleon matrix element (Braun et al 2001, 2002, ...):

$$\langle 0|\epsilon^{ijk}u^i_{\alpha}(a_1z)u^j_{\beta}(a_2z)d^k_{\gamma}(a_3z)|N(P)\rangle$$

= $\sum_k \mathcal{F}_k(a_1,a_2,a_3,P\cdot z) (\Gamma_k C)_{\alpha\beta} (\Gamma'_k u_N)_{\gamma}.$

27 calligraphic coefficients \mathcal{F}_k emerge up to twist-6 accuracy and can be transformed into LCDAs of the nucleon.

Eliminating negative-parity baryon contribution

- Each form factor enters more than one dispersion relation.
- Making a linear combination of dispersion relations:

$$\frac{m_{\Lambda_Q}(m_{\Lambda_Q} + m_N)(m_{\Lambda_Q} + m_{\Lambda_Q^*})\lambda_{\Lambda_Q}^{(i)}G(q^2)}{m_{\Lambda_Q}^2 - (P - q)^2} + \int_{s_0^h}^{\infty} ds \frac{\rho_1^{(i)}(s, q^2) - (m_{\Lambda_Q^*} + m_N)\rho_2^{(i)}(s, q^2)}{s - (P - q)^2} = \left[\Pi_1^{(i)}((P - q)^2, q^2) - (m_{\Lambda_Q^*} + m_N)\Pi_2^{(i)}((P - q)^2, q^2)\right].$$

containing only the hadronic matrix elements for the ground-state Λ_Q -baryon!

• Quark-hadron duality:

$$\int_{s_0^h}^{\infty} \frac{ds}{s - (P - q)^2} [\rho_1^{(i)}(s, q^2) - (m_{\Lambda_Q^*} + m_N)\rho_2^{(i)}(s, q^2)]$$
$$= \frac{1}{\pi} \int_{s_0}^{\infty} \frac{ds}{s - (P - q)^2} [\operatorname{Im}_s \Pi_1^{(i)}(s, q^2) - (m_{\Lambda_Q^*} + m_N) \operatorname{Im}_s \Pi_2^{(i)}(s, q^2)].$$

• Borelized sum rules for the form factor:

$$G(q^{2}) = \frac{e^{m_{\Lambda_{Q}}^{2}/M^{2}}}{m_{\Lambda_{Q}}(m_{\Lambda_{Q}} + m_{N})(m_{\Lambda_{Q}} + m_{\Lambda_{Q}^{*}})\lambda_{\Lambda_{Q}}^{(i)}} \frac{1}{\pi} \int_{m_{Q}^{2}}^{s_{0}} ds e^{-s/M^{2}} \times [\mathrm{Im}_{s}\Pi_{1}^{(i)}(s,q^{2}) - (m_{\Lambda_{Q}^{*}} + m_{N})\mathrm{Im}_{s}\Pi_{2}^{(i)}(s,q^{2})].$$

• Work out the decay constants $\lambda_{\Lambda_Q^{(i)}}$ with two-point QCD sum rule following the same strategy!

Numerics

• Heavy-baryon decay constants:

$$\begin{split} \lambda_{\Lambda_c}^{(\mathcal{A})} &= 1.51^{+0.37}_{-0.39} \times 10^{-2} \text{ GeV}^2, \qquad \lambda_{\Lambda_c}^{(\mathcal{P})} = 1.19^{+0.19}_{-0.28} \times 10^{-2} \text{ GeV}^2, \\ \lambda_{\Lambda_b}^{(\mathcal{A})} &= 1.27^{+0.35}_{-0.34} \times 10^{-2} \text{ GeV}^2, \qquad \lambda_{\Lambda_b}^{(\mathcal{P})} = 1.09^{+0.31}_{-0.30} \times 10^{-2} \text{ GeV}^2, \\ \lambda_{\Sigma_c}^{(\mathcal{I})} &= 3.08^{+0.49}_{-0.74} \times 10^{-2} \text{ GeV}^2, \qquad \lambda_{\Sigma_c}^{(\mathcal{I})} = 6.08^{+0.90}_{-1.48} \times 10^{-2} \text{ GeV}^2. \end{split}$$

• Charm-baryon form factors:

Current Form factor	$\eta^{(\mathcal{A})}_{\Lambda_c}$ Λ_c	$ \begin{array}{c} \eta_{\Lambda_c}^{(\mathcal{P})} \\ \rightarrow p \end{array} $	$\eta_{\Sigma_c}^{(\mathcal{I})}$ Σ_c	$ \eta_{\boldsymbol{\Sigma}_c}^{(\mathcal{T})} \rightarrow p $
<i>G</i> (0)	$0.39^{+0.11}_{-0.09}$	$0.48^{+0.13}_{-0.13}$	$0.066^{+0.035}_{-0.032}$	$0.061\substack{+0.011\\-0.011}$
$f_1(0)$	$0.46\substack{+0.15 \\ -0.11}$	$0.59\substack{+0.15\-0.16}$	$-0.22^{+0.07}_{-0.07}$	$-0.23^{+0.04}_{-0.05}$
$f_2(0)$	$-0.32^{+0.08}_{-0.07}$	$-0.43^{+0.13}_{-0.12}$	$-0.24^{+0.05}_{-0.05}$	$-0.25\substack{+0.06\\-0.06}$
<i>g</i> ₁ (0)	$0.49^{+0.14}_{-0.11}$	$0.55\substack{+0.14\-0.15}$	$0.11\substack{+0.05 \\ -0.05}$	$0.060^{+0.007}_{-0.008}$
<i>g</i> ₂ (0)	$-0.20^{+0.09}_{-0.06}$	$-0.16\substack{+0.08\\-0.05}$	$-0.002^{+0.054}_{-0.044}$	$-0.030^{+0.039}_{-0.039}$

• Λ_b -baryon form factors:

form factors	$\eta^{(\mathcal{A})}_{igwedge_b}$	$\eta^{(\mathcal{P})}_{igwedge_b}$
$f_1(0)$	$0.14\substack{+0.03\\-0.03}$	$0.12\substack{+0.03 \\ -0.04}$
$f_2(0)$	$-0.054^{+0.016}_{-0.013}$	$-0.047^{+0.015}_{-0.013}$
<i>g</i> ₁ (0)	$0.14_{-0.03}^{+0.03}$	$0.12^{+0.03}_{-0.03}$
<i>g</i> ₂ (0)	$-0.028^{+0.012}_{-0.009}$	$-0.016\substack{+0.007\\-0.005}$

- LCSR predictions of heavy baryon form factors are insensitive to the heavybaryon current.
- Symmetry relations in the heavy-quark limit and large-energy limit:

$$f_1(q^2) = g_1(q^2), \qquad f_2(q^2) = g_2(q^2) = f_3(q^2) = g_3(q^2) = 0.$$

IV. LCSR for the strong couplings

• Definitions of strong coupling constants:

$$\langle \Lambda_c(P-q) | D(-q) N(P) \rangle = g_{\Lambda_c ND} \, \bar{u}_{\Lambda_c}(P-q) \, i\gamma_5 \, u_N(P), \\ \langle \Lambda_c(P-q) | D^*(-q) N(P) \rangle = \bar{u}_{\Lambda_c}(P-q) \left(g^V_{\Lambda_c ND^*} \not e + i \frac{g^T_{\Lambda_c ND^*}}{m_{\Lambda_c} + m_N} \sigma_{\mu\nu} e^{\mu} q^{\nu} \right) u_N(P).$$

• Heavy-mass relations:

$$g_{\Lambda_c ND} = -g_{\Lambda_c ND^*}^V, \qquad g_{\Lambda_c ND^*}^T = 0,$$

$$g_{\Sigma_c ND} + 3g_{\Sigma_c ND^*}^V = \frac{3m_{\Sigma_c} + m_N - 2P \cdot v}{m_{\Sigma_c} + m_N} g_{\Sigma_c ND^*}^T.$$

• Effective Lagrangian for $\Lambda_c - N - D^{(*)}$ couplings:

$$\mathcal{L}_{\Lambda_c D^{(*)}N} = \bar{\Lambda}_c \left[i a_{\Lambda_c N D} \gamma_5 D + \left(a_{\Lambda_c N D^*}^V \gamma^\mu + \frac{a_{\Lambda_c N D^*}^T}{m_{\Lambda_c} + m_N} \sigma^{\mu\nu} \partial_\nu \right) D^*_\mu \right] N + h.c.$$

New couplings a_i are generally different from g_i !

LCSR for the strong couplings

- Strong couplings enter double dispersion relations for the same correlation function to construct the sum rule of form factors.
- Hadronic double dispersion relation:

$$\Pi_{5}^{(i)}(P,q) = \frac{\lambda_{\Lambda_{c}}^{(i)}m_{D}^{2}f_{D}m_{\Lambda_{c}}g_{\Lambda_{c}ND}}{(m_{\Lambda_{c}}^{2}-(P-q)^{2})(m_{D}^{2}-q^{2})}\left[(m_{\Lambda_{c}}-m_{N})-\not{q}\right]i\gamma_{5}u_{N}(P) \\ + \frac{\lambda_{\Lambda_{c}^{*}}^{(i)}m_{D}^{2}f_{D}m_{\Lambda_{c}^{*}}g_{\Lambda_{c}^{*}ND}}{(m_{\Lambda_{c}^{*}}^{2}-(P-q)^{2})(m_{D}^{2}-q^{2})}\left[(m_{\Lambda_{c}^{*}}+m_{N})+\not{q}\right]i\gamma_{5}u_{N}(P) \\ + \dots,$$

• Borelized sum rules for the strong couplings:

$$g_{\Lambda_{c}ND} = \frac{e^{m_{\Lambda_{c}}^{2}/M^{2}}e^{m_{D}^{2}/\widetilde{M}^{2}}}{m_{\Lambda_{c}}(m_{\Lambda_{c}}+m_{\Lambda_{c}^{*}})m_{D}^{2}f_{D}\lambda_{\Lambda_{c}}^{(i)}}\frac{1}{\pi^{2}}\int_{m_{c}^{2}}^{s_{0}}ds \, e^{-s/M^{2}}} \\ \times \int_{t_{1}(s)}^{t_{2}(s)}ds' \, e^{-s'/\widetilde{M}^{2}}\mathrm{Im}_{s}\mathrm{Im}_{s'}[\Pi_{1}^{(i)}(s,s') - (m_{\Lambda_{c}^{*}}+m_{N})\Pi_{2}^{(i)}(s,s')]$$

Numerics

- LCSR predictions of strong coupling constants are insensitive to the heavybaryon current.
- The heavy-mass relations for the three strong couplings of Λ_c baryon are only qualitatively supported by the LCSR predictions.
- The results for $\Sigma_c ND^{(*)}$ couplings are in good agreement with the heavy mass relation.

Yu-Ming Wang Talk given at DESY Theory Workshop, 28 September, 2011 15

V. Applications to exclusive Λ_b decays

- Apply the conformal mapping $q^2 \rightarrow z$ and z-series parametrization to extrapolate the form factors to the whole semileptonic $\Lambda_b \rightarrow p l \nu$ region.
- Normalized differential width of $\Lambda_b \rightarrow p \ell \nu_\ell$:

The enhancement in the region of large q^2 due to the growth of the form factors and the *S*-wave phase-space factor $\lambda^{1/2}$.

• Total branching fraction:

$$BR(\Lambda_b \to p l \nu_l) = \begin{cases} \left(3.3^{+1.5}_{-1.2}|_{th.} \pm 0.1|_{exp.}\right) \\ \left(4.0^{+2.3}_{-2.0}|_{th.} \pm 0.1|_{exp.}\right) \end{cases} \left\{ \left(\frac{|V_{ub}|}{3.5 \cdot 10^{-3}}\right)^2 \times 10^{-4} , \end{cases}$$

form factors from LCSR with axial-vector (pseudoscalar) Λ_b current.

About three times of $BR(B^0 \rightarrow \pi^- l^+ \nu_l) = (1.41 \pm 0.05 \pm 0.07) \times 10^{-4}!$

• Branching ratio in factorization limit:

$$\mathsf{BR}(\Lambda_b \to p\pi) = 3.8^{+1.3}_{-1.0} \left(2.8^{+1.1}_{-0.9} \right) \times 10^{-6} \,,$$

obtained with the axial-vector (pseudoscalar) Λ_b interpolating current.

Agree with experimental measurement (CDF, 2009): BR $(\Lambda_b \rightarrow p\pi) = (3.5 \pm 0.6 \pm 0.9) \times 10^{-6}!$

Summary

- Heavy baryon form factors and strong couplings are calculated in QCD lightcone sum rule avoiding background pollution.
- Our predictions are less sensitive to the particular choice of baryon currents.
- Heavy-mass relations of form factors and strong couplings are respected by explicit LCSR calculations.
- Differential (integrated) decay width of semileptonic ∧_b → plν predicted.
 Potential way to determine |V_{ub}|.
- Nonleptonic $\Lambda_b \rightarrow p\pi$ decay computed in the factorization limit is consistent with CDF measurement.
- More applications to charm production will appear soon!