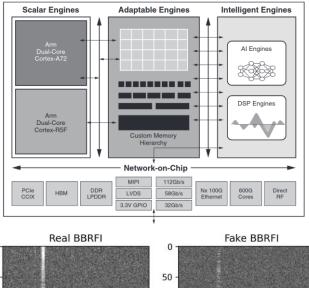
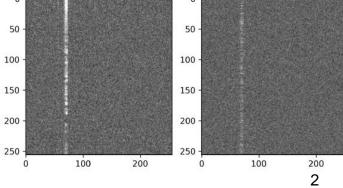


TA5 FPGA Working Group Activities


A. Straessner for the TA5 FPGA Working Group PUNCH4NFDI TA5 Meeting 21.09.2023



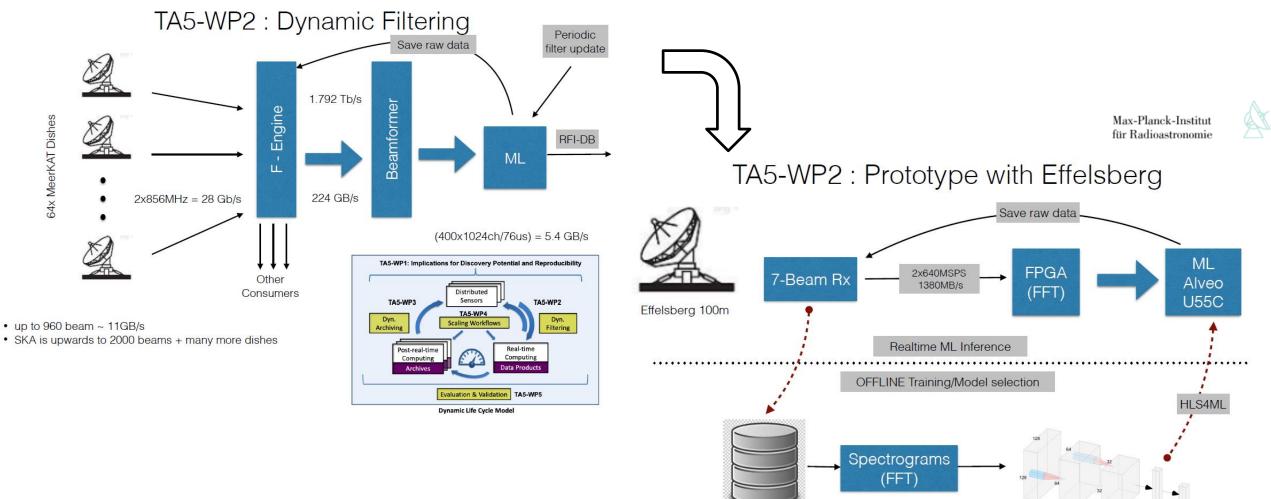
- TA5 XFEL Machine Learning on FPGA Workshop in June 2023: https://indico.desy.de/event/39436/timetable/?view=standard
 - Invited talks on hls4ml and anomaly detection
 - TA5 contributions:
 - real-time classification of astronomical signals, implementation in hls4ml, deployment on Alveo FPGA cards (MPIfR)
 - artificial signal generation
 - clustering algorithms, physics object detection, evaluation of new FPGA cards including AI engines (Mainz)
 - Al engines not always obvious to optimize to fulfill requirements: latency, ...
 - detector signal reconstruction, ANN implementation, deployment on INTEL FPGA cards (Dresden)
 - deep learning for heavy ion physics (FIAS)
 - Very interesting exchange of experience and solutions with XFEL community
 - Plans to intensify communication (Mattermost, ...) and collaboration:
 - exchange training data
 - exchange ANN models and tool generalization is a challenge
 - provide concrete tools: FPGA platform for evaluation and training
 - interaction with TA5-XFEL, TA3, Erum-Data, DAPHNE, ...
- Idea of having another workshop in spring 2024

• U. Mainz group:

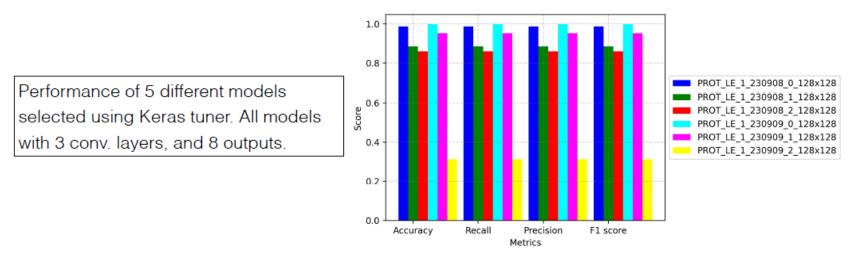
- working on alternative architecture for physics object detection in ATLAS forward region new approach based on CNN layers
- · data sample for CNN training need to be re-processed
- Bachelor and Master students are part of the team
- investigate which FPGA types are supported by hls4ml (Versal? Ultrascale?)
- TU Dresden group:
 - update on application of convolutional neural network CNN application to signal processing
 - improvements in FPGA implementation (VHDL), will also simplify generalization as a firmware tool for other projects

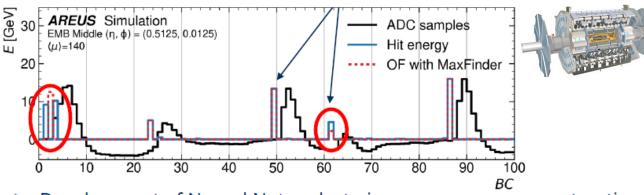
• MPIfR Bonn:

- tasks now organized in ANN training and FPGA implementation
- had temporary problems with Alveo FPGA cards which are now solved
- HLS4ML limits combination number of filters and filter size to 4096; this is to meet timing constraints on FPGA; if networks get larger need to be put on several FPGAs

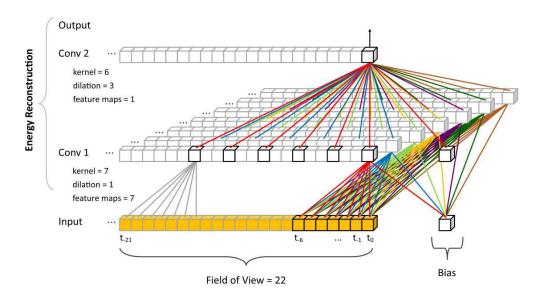


Recent FPGA Working Group Activities



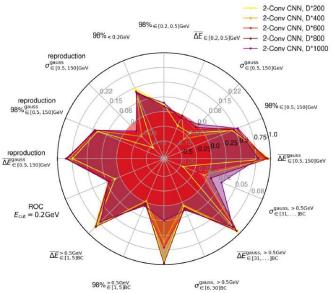

TA5-WP2 : Prototype with Effelsberg

- 20m of ADC output on disk 1.5625ns sampled, 8-bits
 - contains dispersed radio pulse and RFI
- Data transformed to spectrograms: 256x256, 1.5625MHz, 102.4us = 46150 spectrograms
- Expert-inspected, labelled spectrograms Training data set with real data
- Training data set augmented with simulated data to cover larger parameter space (DM and S/N)
- TensorFlow based CNN (3 convolutional layers, 4 to 8 5x5 filters, 8 outputs).
- Keras tuner to explore hyperparameters
- Horovod for distributed training cuts down training by 10x
- Model being targeted to Alveo U55C
 - 1st Version to use high bandwidth memory on U55C to hold spectrograms
 - 2nd Version to have 100GbE interface to stream data from telescope
 - nfilt*filter_w*filer_h*nfilt_last_layer < 4096 : HLS4ML loop unroll limitation.

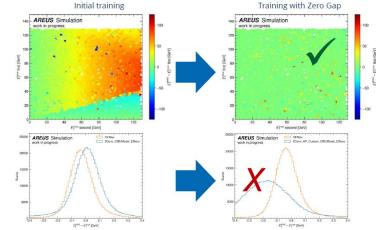


Recent FPGA Working Group Activities

Development of Neural Networks to improve energy reconstruction \geq



Zero gap not resolvable by


 \rightarrow Add another dataset to training dataset which holds 0 gaps

Zero gap behavior improved but energy resolution drops

Varying Size of Training Dataset N

TA5 FPGA Working Group Activities

CNNs