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The ATLAS Detector at the LHC
Large Hadron Collider (LHC):

• Proton bunches collide with 25 ns spacing (40 MHz)

• 2029: Start of High Luminosity LHC (HL-LHC) with
up to ~7 x nominal luminosity

ATLAS Detector → Phase-II upgrade (2026-2028)

• From ~20 collisions to up to ~200 collisions per 
bunch crossing (BC) → pileup & trigger rate increases

• Readout electronics of Liquid-Argon (LAr) 
calorimeter needs to be improved

[1,2,3]

25 ns

~182 000 
LAr cells

[4]
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Optimal Filtering Algorithm (OF) 

• calculates deposited energy per cell

• Trigger system applies additional maximum finder

• Good in energy resolution but

• Weak in reconstruction of overlapping signals

➢ Development of Neural Networks to improve energy reconstruction

LAr Calorimeter Readout

Trigger

Event

Readout

FPGA – Field Programmable
Gate Array

• Real-time signal processing

• Installation of 556 high-
performance FPGAs

[7]
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Convolutional Neural Networks (CNNs)

• Convolutional operation with certain kernel size

• Activation function gives opportunity to classify, weight, cut

Rectified
Linear Unit 
(ReLU)

Sigmoid

similar
to OF
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Convolutional Neural Networks (CNNs)

• Convolutional operation with certain kernel size

• Activation function gives opportunity to classify, weight, cut

• Feature maps focus on different properties

• Training minimizes difference between output and target

Rectified
Linear Unit 
(ReLU)

Sigmoid
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Convolutional Neural Networks (CNNs)

• Convolutional operation with certain kernel size

• Activation function gives opportunity to classify, weight, cut

• Feature maps focus on different properties

• Training minimizes difference between output and target

• Dilation varies field of view (FoV) without increasing parameters

• Keep parameters low (≈ 100 /≈ 400) and FoV realistic (≤ 24) due 
to FPGA implementation

Rectified
Linear Unit 
(ReLU)

Sigmoid
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CNN Training Workflow

• Programming environment: Python / Keras / Tensorflow

• Framework on CERN GitLab

• Different approaches for general architecture

• For each: application of hyperparameter search with Keras Tuner [a]
• Hyperband Algorithm for faster scanning of hyperparameter search space [b]
• Limit to N parameters requires parameterization of search space

• Once architecture found, repeat training ~100𝑥 to estimate reproducibility of CNN

• Use loss as first estimate to choose „best“ weights (simply mean absolute error)

• Secondly: look into performance measures

• Training/Evaluation data from AREUS simulation (C++ - CERN)
• Easy to produce high amount of data
• Need to emulate all possible scenarios and balance ratio of importance in learning data
• Tuning preliminary as final influence i.e. on particle reconstruction not yet studied in detail

[a]: https://keras.io/keras_tuner/ [b]: https://arxiv.org/abs/1603.06560

[6,7]
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CNNs for LAr Readout: Two Recent Approaches

Plain 2-layered CNN (2CNN)

• Dilation enables larger Field of View (FoV)

• ReLU activation functions

• Output: reconstructed energy

4-layered CNN with Tagging (4TCNN)

• Sigmoid and ReLU activation functions

• Intermediate output tags signal overlaps

• Output: reconstructed energy

ReLU

Sigmoid

ReLU
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Performance Measure: Energy Reconstruction as Function of Gap

4-Conv CNN

with Tagging

2-Conv CNN

Optimal Filter

2D Histogram for further interpretation

➢ OF struggles with overlapping pulses (gap < 25 BC), 
CNNs show improvement
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σ

ΔE

98 % range

Performance Evaluation - Combining all: Star Plot

✓ Performance overview
x    No replacement for

other plots as details
might be hidden

Score indicates CNN performance:

𝑠𝑐(𝑋) = 1 −
𝑋_𝐴𝑁𝑁

𝑋_𝑂𝐹
• Red circle: (=0) OFMax yield
• Outer circle: (=1) best yield
• Inside circle (<0): worse than OF
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Varying Size of Training Dataset N

Equally enhance all 6 training sub-datasets: 

• [200, 400, 600, 800, 1000]*10,000 BC for each
scenario

• Some scores not affected

• For others: at least 600*10,000 BC for each
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Improving gap=0

Zero gap not resolvable by
CNNs

→ Add another dataset to
training dataset which holds 0 
gaps

✓

x
Zero gap behavior improved
but energy resolution drops

→ optimize ratio of 0 gap
occurrence in training data e.g. 
via additional parameter for
hyperparameter search

Initial training Training with Zero Gap
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Summary and Outlook

Summary

• ANNs are able to replace Optimal Filtering algorithm

• FPGA resource requirements regarding latency and bandwidth 
can be satisfied

• Different performance requirements must be met or weighed 
against each other

• Visualisation in star plot gives overview

Outlook

• Further improvements by applying quantization aware training 
and more CNN parameters

• Study for influence of energy reconstruction by ANNs for full 
event reconstruction

• Further tests on FPGA hardware ongoing Thank you for your
attention!
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Sources I

Slide 2:

[1] URL: https://static1.bmbfcluster.de/3/4/3/8_ef6a5eef8f44963/3438meg_22ce2885dae52af.jpg. 

[2] Joao Pequenao. Computer generated image of the whole ATLAS detector. CERN. Mar. 27, 2008. 

URL: https://cds.cern.ch/record/1095924 (visited on 05/10/2023).

[3] Karl Jakobs. Lecture Material. CERN. 2015. 

URL: https://www.particles.uni-freiburg.de/dateien/vorlesungsdateien/particledetectors/kap8

[4] ATLAS Collaboration. Monitoring and data quality assessment of the ATLAS liquid argon calorimeter.

CERN. May 13, 2014. URL: https://cds.cern.ch/record/1701107 (visited on 05/24/2023).

Slide 3:

[5] Intel. Stratix 10 FPGA. 

 URL: https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected

-revolution (visited on 04/18/2021).

https://static1.bmbfcluster.de/3/4/3/8_ef6a5eef8f44963/3438meg_22ce2885dae52af.jpg
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https://www.particles.uni-freiburg.de/dateien/vorlesungsdateien/particledetectors/kap8
https://cds.cern.ch/record/1701107
https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution
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Sources II

Slides 7: 

[6] Keras Logo. URL: https://keras.io/ (visited on 05/25/2023)

[7] Tensorflow Logo. URL: https://www.vectorlogo1.zone/logos/tensorflow/index.html 

 (visited on 05/25/2023)

Papers related to these slides:

• Georges Aad et al. Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS Lar 
Calorimeters. In: Computing and Software for Big Science 5.1 (Oct. 2021) DOI: 10.1007/s41781-021-00066-y. 
URL: https://doi.org/10.1007/s41781-021-00066-y.

• Georges Aad et al. Firmware implementation of a recurrent neural network for the computation of the energy 
deposited in the liquid argon calorimeter of the ATLAS experiment. 2023. DOI: 10.48550/ARXIV.2302.07555. URL: 
https://doi.org/10.48550/arXiv.2302.07555. 

https://keras.io/
https://www.vectorlogo1.zone/logos/tensorflow/index.html
https://doi.org/10.1007/s41781-021-00066-y
https://doi.org/10.48550/arXiv.2302.07555
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Used Training Data

No. Bunch Filling Signal Gap Energy Range Bunch Length N x 
10,000 
BCs

Determines LHC 
filling pattern –
succession of pp 
collisions

Occurrance of
high-E signal hits

high: up to 80% 
low: up to 10%
of possible energy
range

leads to variation
in timing of
incoming pulse

Relative 
number in 
training
dataset

1) each filled const, gap=45 high 5 cm 1/6

2) each filled const, gap=45 low 5 cm 1/6

3) each filled None only pile-up 5 cm 1/6

4) each filled random, gaussian: 
mu=30, sigma=10

high 5 cm 1/6

5) each filled random, gaussian: 
mu=30, sigma=10

low 5 cm 1/6

6) each filled random, gaussian: 
mu=30, sigma=10

high 50 cm 1/6

Training data contain sequences with 6 different scenarios

Furthermore: artificial loss enhancement for signal hits >1 GeV by factor=30 (keras parameter <sample_weight>)

Larger variance of
pulse timing

total fraction of
low energetic hits
enlarged to push 
energy resolution
in this range

overlapping
signals
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Sequence Comparison

Example sequence for few
events

I.e.: scenario where Optimal 
Filter struggles:

• Close signals cannot be
resolved

• Signals within undershoot
underestimated

ANN:

• Optimized to reconstruct
overlapping signals

Signal Gap
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First Performance Measure: Energy Resolution

1D Histogram for overall energy resolution

Optimal Filter: larger deviation spread in low energy region, negative bias in high energy region

CNNs: improvement in energy resolution, more even and centered distribution

Performance stable within large energy range

𝐸𝑡𝑟𝑢𝑒 < 0.5 GeV 𝐸𝑡𝑟𝑢𝑒 > 0.5 GeV Median and Mean over 𝐸𝑡𝑟𝑢𝑒
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Performance Studies: Different Detector Regions

➢ Same architecture trained for different detector regions → shows similar results

[
4
]
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Performance Evaluation: Energy Resolution

Receiver Operating Characteristic (ROC) Curves

• Indicate detection performance

• Signal efficiency

= 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

• Background rejection

= 
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

• Dependent on threshold

CNNs reach higher signal efficiencies at same 
background rejection level compared to OFMax

Efficiency 
enhancement
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Performance Studies: Fakes

Spectrum of predicted transverse
energy in BCs without energy
deposition
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