

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

Anne-Sophie Berthold

PUNCH Meeting 18th September 2023

The ATLAS Detector at the LHC

Large Hadron Collider (LHC):

- Proton bunches collide with **25 ns** spacing (40 MHz) •
- 2029: Start of High Luminosity LHC (HL-LHC) with • up to ~7 x nominal luminosity

ATLAS Detector → Phase-II upgrade (2026-2028)

- From ~20 collisions to up to ~200 collisions per • bunch crossing (BC) \rightarrow pileup & trigger rate increases
- Readout electronics of Liquid-Argon (LAr) • calorimeter needs to be improved

LAr Calorimeter Readout

FPGA – Field Programmable Gate Array

[7]

- Real-time signal processing
- Installation of 556 highperformance FPGAs

Optimal Filtering Algorithm (OF)

calculates deposited energy per cell

- Trigger system applies additional maximum finder
- Good in energy resolution **but**

Development of Neural Networks to improve energy reconstruction

ML for Processing of ATLAS Lar Calorimeter Signals with FPGAs Anne-Sophie Berthold PUNCH // 18 September 2023 Readout

Convolutional Neural Networks (CNNs)

- Convolutional operation with certain **kernel** size ٠
- Activation function gives opportunity to classify, weight, cut ٠

 y_t ... node output for time t

A ... activation function

Convolutional Neural Networks (CNNs)

- Convolutional operation with certain kernel size
- Activation function gives opportunity to classify, weight, cut
- Feature maps focus on different properties
- **Training** minimizes difference between output and target

Convolutional Neural Networks (CNNs)

- Convolutional operation with certain kernel size
- Activation function gives opportunity to classify, weight, cut
- Feature maps focus on different properties
- **Training** minimizes difference between output and target
- **Dilation** varies field of view (FoV) without increasing parameters
- Keep parameters low ($\approx 100 / \approx 400$) and FoV realistic (≤ 24) due to FPGA implementation

CNN Training Workflow

- Programming environment: Python / Keras / Tensorflow
- Framework on CERN GitLab
- Different approaches for general architecture
- For each: application of hyperparameter search with Keras Tuner [a]
 - Hyperband Algorithm for faster scanning of hyperparameter search space [b]
 - Limit to *N* parameters requires parameterization of search space
- Once architecture found, repeat training $\sim 100x$ to estimate **reproducibility** of CNN
- Use loss as first estimate to choose "best" weights (simply mean absolute error)
- Secondly: look into performance measures
- Training/Evaluation data from *AREUS* simulation (C++ CERN)
 - Easy to produce high amount of data
 - Need to emulate all possible scenarios and balance ratio of importance in learning data
 - Tuning preliminary as final influence i.e. on particle reconstruction not yet studied in detail

[a]: https://keras.io/keras_tuner/ [b]: https://arxiv.org/abs/1603.06560

ML for Processing of ATLAS Lar Calorimeter Signals with FPGAs Anne-Sophie Berthold PUNCH // 18 September 2023

[6,7]

CNNs for LAr Readout: Two Recent Approaches

Plain 2-layered CNN (2CNN)

- Dilation enables larger Field of View (FoV)
- ReLU activation functions
- Output: reconstructed energy

4-layered CNN with Tagging (4TCNN)

Field of View = 20

- Sigmoid and ReLU activation functions
- Intermediate output tags signal overlaps
- Output: reconstructed energy

Energy Reconstruction

Performance Measure: Energy Reconstruction as Function of Gap

PUNCH // 18 September 2023

DRESDEN

Performance Evaluation - Combining all: Star Plot

Varying Size of Training Dataset N

Equally enhance all 6 training sub-datasets:

- [200, 400, 600, 800, 1000]*10,000 BC for each scenario
- Some scores not affected
- For others: at least 600*10,000 BC for each

UNIVERSITÄT

DRESDEN

Zero gap not resolvable by CNNs

→ Add another dataset to training dataset which holds 0 gaps

ML for Processing of ATLAS Lar Calorimeter Signals with FPGAs Anne-Sophie Berthold PUNCH // 18 September 2023

Initial training

Training with Zero Gap

Zero gap behavior improved but energy resolution drops

→ optimize ratio of 0 gap occurrence in training data e.g. via additional parameter for hyperparameter search

Summary and Outlook

Summary

- ANNs are able to replace Optimal Filtering algorithm
- FPGA resource requirements regarding latency and bandwidth can be satisfied
- Different performance requirements must be met or weighed against each other
- Visualisation in star plot gives overview

Outlook

- Further improvements by applying quantization aware training and more CNN parameters
- Study for influence of energy reconstruction by ANNs for full event reconstruction
- Further tests on FPGA hardware ongoing

Sources I

Slide 2:

- [1] URL: <u>https://static1.bmbfcluster.de/3/4/3/8_ef6a5eef8f44963/3438meg_22ce2885dae52af.jpg</u>.
- Joao Pequenao. Computer generated image of the whole ATLAS detector. CERN. Mar. 27, 2008.
 URL: <u>https://cds.cern.ch/record/1095924</u> (visited on 05/10/2023).
- [3] Karl Jakobs. Lecture Material. CERN. 2015. URL: <u>https://www.particles.uni-freiburg.de/dateien/vorlesungsdateien/particledetectors/kap8</u>
- [4] ATLAS Collaboration. *Monitoring and data quality assessment of the ATLAS liquid argon calorimeter.* CERN. May 13, 2014. URL: <u>https://cds.cern.ch/record/1701107</u> (visited on 05/24/2023).
- Slide 3:
- [5] Intel. *Stratix 10 FPGA*.

URL: <u>https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected</u> <u>-revolution</u> (visited on 04/18/2021).

Sources II

Slides 7:

- [6] *Keras Logo*. URL: <u>https://keras.io/</u> (visited on 05/25/2023)
- [7] *Tensorflow Logo*. URL: <u>https://www.vectorlogo1.zone/logos/tensorflow/index.html</u> (visited on 05/25/2023)

Papers related to these slides:

- Georges Aad et al. Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS Lar Calorimeters. In: Computing and Software for Big Science 5.1 (Oct. 2021) DOI: 10.1007/s41781-021-00066-y. URL: <u>https://doi.org/10.1007/s41781-021-00066-y</u>.
- Georges Aad et al. Firmware implementation of a recurrent neural network for the computation of the energy deposited in the liquid argon calorimeter of the ATLAS experiment. 2023. DOI: 10.48550/ARXIV.2302.07555. URL: <u>https://doi.org/10.48550/arXiv.2302.07555</u>.

Used Training Data

Training data contain sequences with 6 different scenarios

Furthermore: artificial loss enhancement for signal hits >1 GeV by factor=30 (keras parameter <sample_weight>)

No.	Bunch Filling	Signal Gap	Energy Range	Bunch Length	N x 10,000 BCs	
	Determines LHC filling pattern – succession of pp collisions	Occurrance of high-E signal hits	high: up to 80% low: up to 10% of possible energy range	leads to variation in timing of incoming pulse	Relative number in training dataset	total fraction of low energetic hits enlarged to push energy resolution in this range
1)	each filled	const, gap=45	high	5 cm	1/6	
2)	each filled	const, gap=45	low	5 cm	1/6	
3)	each filled	None	only pile-up	5 cm	1/6	
4)	each filled	random, gaussian: mu=30, sigma=10	high	5 cm	1/6	overlapping signals
5)	each filled	random, gaussian: mu=30, sigma=10	low	5 cm	1/6	
6)	each filled	random, gaussian: mu=30, sigma=10	high	50 cm	1/6	Larger variance of pulse timing

Sequence Comparison

Example sequence for few events

I.e.: scenario where Optimal Filter struggles:

- Close signals cannot be resolved
- Signals within undershoot underestimated

ANN:

• Optimized to reconstruct overlapping signals

First Performance Measure: Energy Resolution

1D Histogram for overall energy resolution

Optimal Filter: larger deviation spread in low energy region, negative bias in high energy region

CNNs: improvement in energy resolution, more even and centered distribution

Performance stable within large energy range

Performance Studies: Different Detector Regions

> Same architecture trained for different detector regions \rightarrow shows similar results

Performance Evaluation: Energy Resolution

Receiver Operating Characteristic (ROC) Curves

- Indicate detection performance
- Signal efficiency = true positives true positives+false negatives
 Background rejection true negatives
 - true negatives+false positives
- Dependent on threshold

CNNs reach **higher signal efficiencies** at same background rejection level compared to OFMax

Performance Studies: Fakes

Spectrum of predicted transverse energy in BCs without energy deposition

