Computational Requirements of Lattice QCD Applications

Hubert Simma

21.3.2011

Zeuthen Cluster User Meeting

<u>Plan:</u>

The questions
 Tentative answers for the case of LQCD
 Advanced analysis

Computational Requirements

Aim: investigate and evaluate relation between

Questions: [Bertinoro 2006]

- Application domain
- Algorithms and computational kernels
- Basic computational requirements
 - problem size
 - storage requirements
 - computing requirements
- Advanced analysis
 - parallelism
 - communications
- Computer Architectures

Scientific Computing Applications

QCD: Strong interactions of quarks and gluons

- Relativistic quantum field theory
 - 4d space-time
 - path integral over all field configurations

$$\langle O \rangle \sim \int_{\text{fields}} O \cdot e^{-S_E}$$

- Coupling grows at low energies (large distances)
 - non-perturbative methods
 - fundamental fields \neq observable bound states (quarks, gluons) (p, n, π , ...)
- All predictions fixed by only $1 + N_f$ parameters!

$$\mathcal{L}_{\text{QCD}}(g_0, m_0^{(u)}, m_0^{(d)}, \ldots) = \frac{1}{4} G_{\mu\nu} G_{\mu\nu} + \sum_{f=1}^{N_f} \overline{\psi}(i \not D - m_0^{(f)}) \psi$$

Scientific Key Problems in (lattice) QCD

- Precise determination of the fundamental QCD parameters (e.g. from hadron masses) and comparison with determinations from different processes
- Spectroscopy of (well-known and exotic) Hadrons
- Ab-initio computation of "hadronic matrix elements" that enter in the interpretation of experimental data from many electroweak processes, e.g.

$$\Gamma(B \to \tau \nu) \sim |V_{ub}|^2 \cdot f_B^2$$

VS.

$$d\Gamma(B \to \pi \ell \nu) \sim |V_{ub}|^2 \cdot (\text{form factors})^2$$

• QCD thermodynamics (quark-gluon plasma)

Discretization of QCD on the Lattice

Finite 4-d euclidian space-time lattice:

quark field $\psi(x)$: 12 complex numbers at each site gauge field $U(x, \mu)$: 9 complex numbers at each link

e.g. lattice size $V = L^3 \times T = 64^3 \times 128 \rightarrow 0.3 \cdot 10^8$ sites

Lattice Action:

$$\mathcal{S} = S_g(U) + \overline{\psi} M(U) \psi + O(a)$$

 \Rightarrow rigorous non-perturbative definition of the QCD path integral

Theoretical research topics:

- improved actions to reduce discretisation errors, e.g. $O(a) \rightarrow O(a^2)$
- preserve/restore symmetries of continuum theory

a

LQCD Algorithms

Monte-Carlo method:

Estimate path integral by

$$\langle O \rangle \rightarrow \frac{1}{\#U} \sum_{U} O(U)$$

with gauge configurations U generated according to distribution (unquenched)

$$P(U) \sim e^{-S_g(U)} \cdot det M(U)$$

Algorithmic task:

Generate independent configurations

$$U_n \to U_{n+1} \to U_{n+2} \to \cdots$$

Algorithmic research topics:

- computation of the fermion determinant, e.g. $\det M(U) \sim \int D[\phi] e^{-\bar{\phi}(M^{\dagger}M)^{-1}\phi}$
- reduction of correlations between subsequent configurations

Key LQCD Kernels

Typically more than 80 % of CPU time is spent for

solve $M(U)\phi = b$

→ Krylov-space methods, polynomial approximations, . . .

 \rightarrow Pre-conditioning (e/o, Schwarz alternating procedure, SSOR, . . .) and deflation

Wilson-Dirac Operator:

• sparse

• regular

$$[\mathbf{M}\phi]_{x} = (D_{\mu}\gamma_{\mu} + m + a\cdots)\phi$$

$$\sim \phi_{x} - \kappa \sum_{\mu=\pm 1}^{\pm 4} \mathbf{U}_{\mu,\mathbf{x}} \otimes (1 - \gamma_{\mu}) \cdot \phi_{x+\hat{\mu}}$$

→ 1320 floating-point operations per lattice site

LQCD Computing Requirements

"The computational requirements voiced by these European groups sum up to more than 1 sustained Petaflop/s by 2009."

["Scientific case for European HPC infrastructure HET"]

Multiple simulations with different parameters are required to gain full control on systematic errors from

- extrapolation to continuum limit $a \rightarrow 0$
- approach to physical (light) quark masses $m_q \rightarrow 0$
- finite volume: L^4
- heavy quarks (or other big scale differences)

	/	-		/			
\boldsymbol{r}							
						1	
						/	
	/	_		/			

LQCD Computing Requirements (cont.)

<u>CPU-Cost</u>: current physics projects at level of several tens of Tflops \times year

$$N_{flop} \sim L^{5...6} \cdot \left(\frac{1}{a}\right)^{6...7} \cdot \left(\frac{1}{m_q}\right)^{1...2}$$

→ mainly SIMD floating-point arithmetics (64-bit and 32-bit)

→ predictable control flow (loops)

Storage (main memory):

$$S = \left(\frac{L}{a}\right)^4 \cdot \left(N_\phi \cdot 12 + N_U \cdot 36\right)$$
 complex words

- → strongly algorithm-dependent: $N_{\phi} = 6 \dots 200$ and $N_U = O(3)$
- → predictable access pattern (index tables)

Computer Architectures used for LQCD

Commercial Super-Computers Cray, BlueGene, . . .

LQCD-Optimized Architectures with custom designed network and/or processors APE, QCDOC, QPACE, ...

□ PC Clusters

GPUs

•

(provided e.g. through DESY / NIC, the Gauss Center, HLRN, or PRACE, . . .)

Advanced Analysis

Performance is a "convolution" of

application signatures	\otimes	hardware characteristics
---------------------------	-----------	-----------------------------

Example:

	linear algebra	Dirac operator
	$\phi' = a \cdot \phi_1 + \phi_2$	$\phi' = M\phi$
FP operations / site	8×12	1320
Memory access (cword / site)	3×12	\leq 180
ratio	2.6	\geq 7.3
communications	no	yes
data re-use	no	yes

→ Different application kernels usually depend on different hardware characteristics!

Information Exchange

 $I_{xy}(N,\sigma) \equiv$ data exchange for specific computational task of size N between computer sub-systems x and y with storage σ

where x, y = registers (R), memory (M), cache (C), processors (P, P'), . . .

More explicit: compute for several specific implementations, *i*, separately

- $I^{i}_{xy}(N)$ information exchange
- $S^{i}_{x}(N)$ storage requirement

Then

$$I_{xy}(N,\sigma) = \min_{\{i:S_x^i(N) \le \sigma\}} I_{xy}^i(N)$$

N.B.: A typical optimisation tradeoff:

storage requirement \leftrightarrow information exchange

e.g.

- S_C vs. I_{CM} (cache misses)
- S_M vs. $I_{PP'}$ (communication overhead)

Hardware Model

Devices for:

- control
- data storage
- data transport/processing

Parametrized by:

ISA, . . .

size: $0 \le \sigma_i < \infty$ bandwidth: $\beta_{ij} < \infty$ latency: $\lambda_{ij} \ge 0$

Structure:

described by a "Hardware Architecture Graph" (HAG) with

- nodes = storage devices
- arcs = transport devices

Application Analysis

Computational Tasks:

- data set (input, output, temporary variables)
- data transport/processing tasks (equations)

Quantified by:

storage requirement: S_i information exchange: I_{ij}

Data Dependencies:

described by a Directed Acyclic Graph (DAG) with

- arcs = RAW dependencies (variable lives)
- nodes = transport operations

Implementation

Main problems:

de Selection		
transport operations (DAG)	\longrightarrow	HW instructions (DAG')
source Allocation		
data set (variables) = arcs of DAG'	\longrightarrow	storage devices = nodes of HAG
operations (instructions) = nodes of DAG'	\longrightarrow	transport devices = arcs of HAG

□ Scheduling

 Allocation and scheduling are interrelated and NP-hard problems (to be tackled by algorithm, programmer, compiler, hardware)

$\hfill \square$ Allocation of resources

 $\begin{array}{ccc} \mathsf{DAG'} & \mathsf{HAG} \\ (x,r,r',x') & \longrightarrow & (\mathsf{M, R, R, M}) \\ (\mathsf{LD, ST; INC)} & \longrightarrow & (\mathsf{BUS; ALU}) \end{array}$

□ Scheduling

Analysis of the Wilson-Dirac Operator

Hopping term (without even-odd preconditioning):

$$\phi' = \sum_{\mu=1}^{4} \{ U(x,\mu)(1-\gamma_{\mu})\phi(x+\hat{\mu}) + \cdots \}$$

 \Rightarrow every U link used twice and every ϕ field used 8 times

Implementation without cache

$$S_C = 0$$

 $I_{RM}/v = (8+1)|\phi| + 8|U| = 180 \ cword$

(v = number of lattice sites, $|\phi| =$ size of ϕ field per site, |U| = size of U link)

Maximal cached implementation

$$I_{RC}/v = (8+1)|\phi| + 8|U| = 180 \ cword$$

$$S_C/v = 1|\phi| + 4|U| = 48 \ cword$$

$$I_{CM}/v = 2|\phi| + 4|U| = 60 \ cword$$

Scheduling Strategies for the Dirac Operator

(1) Fixed ϕ' :

foreach $x \in X$: compute $\phi'_x = [D\phi]_x$

(2) Fixed ϕ :

 $\begin{array}{l} \text{foreach } x \in X \colon \phi_x' = 0 \\ \text{foreach } x \in X \colon \\ \text{foreach } \mu \colon \\ \text{accumulate in } \phi_{x \pm \hat{\mu}}' \text{ contribution of } \phi_x \end{array}$

(3) Fixed U:

foreach μ : foreach $x \in X_{\mu}$: accumulate in $\phi'_{x\pm\hat{\mu}}$ contributions $U_{x,\mu}$

N.B.: The order for running through the sites $x \in X$ is free!

Data-Reuse in the Dirac Operator

Explicit Caching of "moving 3d-slice":

Sweeping along 0-direction through 3-d slices of $L_1 \times L_2 \times L_3$ sites

- load operands for one new slice
- computation with operands from 3 slices: $\phi' = D[U] \cdot \phi$
- store results of completed slice

Explicit Caching of "moving 3d-slice":

Sweeping along 0-direction through 3-d slices of $L_1 \times L_2 \times L_3$ sites

- load operands for one new slice
- computation with operands from 3 slices: $\phi' = D[U] \cdot \phi$
- store results of completed slice

Explicit Caching of "moving 3d-slice":

Sweeping along 0-direction through 3-d slices of $L_1 \times L_2 \times L_3$ sites

- load operands for one new slice
- computation with operands from 3 slices: $\phi' = D[U] \cdot \phi$
- store results of completed slice

Explicit Caching of "moving 3d-slice":

Sweeping along 0-direction through 3-d slices of $L_1 \times L_2 \times L_3$ sites

- load operands for one new slice
- computation with operands from 3 slices: $\phi' = D[U] \cdot \phi$
- store results of completed slice

yields optimal data re-use with limited cache requirement

$$S_C = \frac{V}{L_0} \cdot (3|\phi| + 4|U|)$$
$$I_{CM} = V \cdot (2|\phi| + 4|U|)$$

Explicit Caching of "moving 3d-slice":

Sweeping along 0-direction through 3-d slices of $L_1 \times L_2 \times L_3$ sites

- load operands for one new slice
- computation with operands from 3 slices: $\phi' = D[U] \cdot \phi$
- store results of completed slice

yields optimal data re-use with limited cache requirement

$$S_C = \frac{V}{L_0} \cdot (3|\phi| + 4|U|)$$
$$I_{CM} = V \cdot (2|\phi| + 4|U|)$$

Also other explicit blocking methods can yield very high re-use

Parallelisation of LQCD

Exploit trivial data parallelism

Processor grid: $P_0 \times P_1 \times P_2 \times P_3 = P$

Local lattice: $L_0 \times L_1 \times L_2 \times L_3 = V/P$

- → Simple geometric data decomposition:
- uniform
- static
- → Communications:
- mainly nearest neighbour
- information exchange is proportional to number of remote neighbour sites per node

$$A = 2\frac{V}{P}\sum_{i}\frac{1}{L_{i}} \quad (P_{i} > 1)$$

→ Strong scaling up to thousands of processes

Optimisations at Algorithm Level

Iterative solvers:

Combine differnt point-operations while data in registers/cache

Example: Update of vectors (spinor fields) in CG iteration

Schwarz Alternating Procedure:

- natural decomposition into cache-friendly blocks
- reduced data dependencies between blocks (Dirichlet BC)
- reduced information exchange I_{CM} and $I_{PP'}$

Summary

□ LQCD has huge but relatively simple computing requirements

- many FP operations per memory access
- regular control flow and data access patterns (memory, communications)

□ Theoretical methods have been refined and tested to

- analyse interplay between application and hardware
- evaluate new architectures
- guide algorithmic choices and implementation strategies