
Computational Requirements of Lattice QCD Applications

Hubert Simma

21.3.2011

Zeuthen Cluster User Meeting

Plan:
q The questions
q Tentative answers for the case of LQCD
q Advanced analysis

H. Simma, Computational Requirements of LQCD 1

Computational Requirements

Aim: investigate and evaluate relation between

applications and architectures

Questions: [Bertinoro 2006]

• Application domain

• Algorithms and computational kernels

• Basic computational requirements

– problem size
– storage requirements
– computing requirements

• Advanced analysis

– parallelism
– communications

• Computer Architectures

H. Simma, Computational Requirements of LQCD 2

Scientific Computing Applications

H. Simma, Computational Requirements of LQCD 3

QCD: Strong interactions of quarks and gluons

• Relativistic quantum field theory

– 4d space-time
– path integral over all field configurations

〈O〉 ∼
∫

fields

O · e−SE

• Coupling grows at low energies (large distances)

– non-perturbative methods
– fundamental fields 6= observable bound states

(quarks, gluons) (p, n, π, . . .)

• All predictions fixed by only 1 +Nf parameters!

LQCD(g0,m
(u)
0 ,m

(d)
0 , . . .) =

1
4
GµνGµν +

Nf∑
f=1

ψ(i 6D −m(f)
0)ψ

H. Simma, Computational Requirements of LQCD 4

Scientific Key Problems in (lattice) QCD

• Precise determination of the fundamental QCD parameters (e.g. from hadron masses)
and comparison with determinations from different processes

• Spectroscopy of (well-known and exotic) Hadrons

• Ab-initio computation of “hadronic matrix elements”
that enter in the interpretation of experimental data
from many electroweak processes, e.g.

Γ(B → τν) ∼ |Vub|2 · f2
B

vs.
dΓ(B → π`ν) ∼ |Vub|2 · (form factors)2

• QCD thermodynamics (quark-gluon plasma)

H. Simma, Computational Requirements of LQCD 5

Discretization of QCD on the Lattice

Finite 4-d euclidian space-time lattice:

quark field ψ(x): 12 complex numbers at each site

gauge field U(x, µ): 9 complex numbers at each link

e.g. lattice size V = L3×T = 643× 128 Ô 0.3 · 108 sites

Lattice Action:

S = Sg(U) + ψM(U)ψ + O(a)

⇒ rigorous non-perturbative definition of the QCD path integral

Theoretical research topics:

• improved actions to reduce discretisation errors, e.g. O(a)→ O(a2)

• preserve/restore symmetries of continuum theory

H. Simma, Computational Requirements of LQCD 6

LQCD Algorithms

Monte-Carlo method:

Estimate path integral by

〈O〉 → 1
#U

∑
U

O(U)

with gauge configurations U generated according to distribution (unquenched)

P (U) ∼ e−Sg(U) · detM(U)

Algorithmic task:

Generate independent configurations

Un → Un+1 → Un+2 → · · ·

Algorithmic research topics:

• computation of the fermion determinant, e.g. detM(U) ∼
∫
D[φ] e−φ̄(M†M)−1φ

• reduction of correlations between subsequent configurations

H. Simma, Computational Requirements of LQCD 7

Key LQCD Kernels

Typically more than 80 % of CPU time is spent for

solve M(U)φ = b

Ô Krylov-space methods, polynomial approximations, . . .

Ô Pre-conditioning (e/o, Schwarz alternating procedure, SSOR, . . .) and deflation

Wilson-Dirac Operator:

• sparse

• regular

[Mφ]x = (Dµγµ +m+ a · · ·)φ

∼ φx − κ
±4∑

µ=±1

Uµ,x ⊗ (1− γµ) · φx+µ̂

Ô 1320 floating-point operations per lattice site

H. Simma, Computational Requirements of LQCD 8

LQCD Computing Requirements

”The computational requirements voiced by these European groups sum up
to more than 1 sustained Petaflop/s by 2009.”

[”Scientific case for European HPC infrastructure HET”]

Multiple simulations with different parameters are required
to gain full control on systematic errors from

• extrapolation to continuum limit a→ 0

• approach to physical (light) quark masses mq → 0

• finite volume: L4

• heavy quarks (or other big scale differences)

H. Simma, Computational Requirements of LQCD 9

LQCD Computing Requirements (cont.)

CPU-Cost: current physics projects at level of several tens of Tflops × year

Nflop ∼ L5...6 ·
(1
a

)6...7

·
(1
mq

)1...2

Ô mainly SIMD floating-point arithmetics (64-bit and 32-bit)

Ô predictable control flow (loops)

Storage (main memory):

S =
(
L
a

)4 · (Nφ · 12 +NU · 36) complex words

Ô strongly algorithm-dependent: Nφ = 6 . . . 200 and NU = O(3)

Ô predictable access pattern (index tables)

H. Simma, Computational Requirements of LQCD 10

Computer Architectures used for LQCD

q Commercial Super-Computers
Cray, BlueGene, . . .

q LQCD-Optimized Architectures
with custom designed network and/or processors
APE, QCDOC, QPACE, . . .

q PC Clusters

q GPUs

q . . .

(provided e.g. through DESY / NIC, the Gauss Center, HLRN, or PRACE,. . .)

H. Simma, Computational Requirements of LQCD 11

H. Simma, Computational Requirements of LQCD 12

Advanced Analysis

Performance is a “convolution” of

application
signatures

⊗ hardware
characteristics

Example:

linear algebra Dirac operator
φ′ = a · φ1 + φ2 φ′ = Mφ

FP operations / site 8× 12 1320
Memory access (cword / site) 3× 12 ≤ 180
ratio 2.6 ≥ 7.3
communications no yes
data re-use no yes

Ô Different application kernels usually depend on different hardware characteristics!

H. Simma, Computational Requirements of LQCD 13

Information Exchange

Ixy(N, σ) ≡ data exchange for specific computational task of size N
between computer sub-systems x and y with storage σ

where x, y = registers (R), memory (M), cache (C), processors (P, P ′), . . .

More explicit: compute for several specific implementations, i, separately

• Iixy(N) information exchange

• Six(N) storage requirement

Then
Ixy(N, σ) = min

{i:Six(N)≤σ}
Iixy(N)

N.B.: A typical optimisation tradeoff:

storage requirement ↔ information exchange

e.g.

• SC vs. ICM (cache misses)

• SM vs. IPP ′ (communication overhead)

H. Simma, Computational Requirements of LQCD 14

Hardware Model

Devices for: Parametrized by:

• control ISA, . . .

• data storage size: 0 ≤ σi <∞

• data transport/processing
bandwidth: βij <∞
latency: λij ≥ 0

Structure:

described by a “Hardware Architecture Graph” (HAG) with

• nodes = storage devices

• arcs = transport devices

H. Simma, Computational Requirements of LQCD 15

Application Analysis

Computational Tasks: Quantified by:

• data set (input, output, temporary variables) storage requirement: Si

• data transport/processing tasks (equations) information exchange: Iij

Data Dependencies:

described by a Directed Acyclic Graph (DAG) with

• arcs = RAW dependencies (variable lives)

• nodes = transport operations

H. Simma, Computational Requirements of LQCD 16

Implementation

Main problems:

r Code Selection

transport operations
(DAG)

−→ HW instructions
(DAG’)

r Resource Allocation

data set (variables)
= arcs of DAG’

−→ storage devices
= nodes of HAG

operations (instructions)
= nodes of DAG’

−→ transport devices
= arcs of HAG

r Scheduling

* Allocation and scheduling are interrelated and NP-hard problems
(to be tackled by algorithm, programmer, compiler, hardware)

H. Simma, Computational Requirements of LQCD 17

Example: x′ = x + 1;

r Code selection

r Allocation of resources
DAG’ HAG

(x, r, r′, x′) −→ (M, R, R, M)
(LD, ST; INC) −→ (BUS; ALU)

r Scheduling

n positive storage life times

Û transport in forward time

H. Simma, Computational Requirements of LQCD 18

Analysis of the Wilson-Dirac Operator

Hopping term (without even-odd preconditioning):

φ′ =
4∑

µ=1

{U(x, µ)(1− γµ)φ(x+ µ̂) + · · ·}

⇒ every U link used twice and every φ field used 8 times

Implementation without cache

SC = 0
IRM/v = (8 + 1)|φ|+ 8|U | = 180 cword

(v = number of lattice sites, |φ| = size of φ field per site, |U | = size of U link)

Maximal cached implementation

IRC/v = (8 + 1)|φ|+ 8|U | = 180 cword
SC/v = 1|φ|+ 4|U | = 48 cword
ICM/v = 2|φ|+ 4|U | = 60 cword

H. Simma, Computational Requirements of LQCD 19

Scheduling Strategies for the Dirac Operator

(1) Fixed φ′:

foreach x ∈ X: compute φ′x = [Dφ]x

(2) Fixed φ:

foreach x ∈ X: φ′x = 0
foreach x ∈ X:

foreach µ:
accumulate in φ′x±µ̂ contribution of φx

(3) Fixed U :

foreach µ:
foreach x ∈ Xµ:

accumulate in φ′x±µ̂ contributions Ux,µ

N.B.: The order for running through the sites x ∈ X is free!

H. Simma, Computational Requirements of LQCD 20

Data-Reuse in the Dirac Operator

Implicit Caching of “disjoint blocks”

Model for information exchange
between cache and memory

Measured execution time of
CHROMA code on single Opteron
node) [J. Grieger]

H. Simma, Computational Requirements of LQCD 21

Data-Reuse in the Dirac Operator (cont.)

Explicit Caching of “moving 3d-slice”:

Sweeping along 0-direction through 3-d slices of L1 × L2 × L3 sites

• load operands for one new slice

• computation with operands from 3 slices: φ′ = D[U] · φ

• store results of completed slice

H. Simma, Computational Requirements of LQCD 22

Data-Reuse in the Dirac Operator (cont.)

Explicit Caching of “moving 3d-slice”:

Sweeping along 0-direction through 3-d slices of L1 × L2 × L3 sites

• load operands for one new slice

• computation with operands from 3 slices: φ′ = D[U] · φ

• store results of completed slice

H. Simma, Computational Requirements of LQCD 23

Data-Reuse in the Dirac Operator (cont.)

Explicit Caching of “moving 3d-slice”:

Sweeping along 0-direction through 3-d slices of L1 × L2 × L3 sites

• load operands for one new slice

• computation with operands from 3 slices: φ′ = D[U] · φ

• store results of completed slice

H. Simma, Computational Requirements of LQCD 24

Data-Reuse in the Dirac Operator (cont.)

Explicit Caching of “moving 3d-slice”:

Sweeping along 0-direction through 3-d slices of L1 × L2 × L3 sites

• load operands for one new slice

• computation with operands from 3 slices: φ′ = D[U] · φ

• store results of completed slice

yields optimal data re-use with limited cache requirement

SC = V
L0
· (3|φ|+ 4|U |)

ICM = V · (2|φ|+ 4|U |)

H. Simma, Computational Requirements of LQCD 25

Data-Reuse in the Dirac Operator (cont.)

Explicit Caching of “moving 3d-slice”:

Sweeping along 0-direction through 3-d slices of L1 × L2 × L3 sites

• load operands for one new slice

• computation with operands from 3 slices: φ′ = D[U] · φ

• store results of completed slice

yields optimal data re-use with limited cache requirement

SC = V
L0
· (3|φ|+ 4|U |)

ICM = V · (2|φ|+ 4|U |)

Also other explicit blocking methods can yield very high re-use

H. Simma, Computational Requirements of LQCD 26

Parallelisation of LQCD

Exploit trivial data parallelism

Processor grid: P0 × P1 × P2 × P3 = P

Local lattice: L0 × L1 × L2 × L3 = V/P

Ü Simple geometric data decomposition:

• uniform

• static

Ü Communications:

• mainly nearest neighbour

• information exchange is proportional to
number of remote neighbour sites per node

A = 2
V

P

∑
i

1
Li

(Pi > 1)

Ô Strong scaling up to thousands of processes

H. Simma, Computational Requirements of LQCD 27

Optimisations at Algorithm Level

Iterative solvers:

Combine differnt point-operations while data in registers/cache

Example: Update of vectors (spinor fields) in CG iteration

• s← r + β · s

• q ← A · s

• global (s, q)

• set α← (r,r)
(s,q)

Ü

• compute locally

s ← r + β · s
q ← A · s

(s, q)loc

• compute global (s, q) and set

α← (r,r)
(s,q)

ICM/v = 7|φ| Ü ICM/v = 4|φ|

Schwarz Alternating Procedure:

• natural decomposition into cache-friendly blocks

• reduced data dependencies between blocks (Dirichlet BC)

• reduced information exchange ICM and IPP ′

H. Simma, Computational Requirements of LQCD 28

Summary

q LQCD has huge but relatively simple computing requirements

• many FP operations per memory access

• regular control flow and data access patterns

(memory, communications)

q Theoretical methods have been refined and tested to

• analyse interplay between application and hardware

• evaluate new architectures

• guide algorithmic choices and implementation strategies

H. Simma, Computational Requirements of LQCD 29

