

RFSoC on MTCA

MTCA Workshop 2023

December 2023

What is a **RFSoC**?

- Radio Frequency System on a Chip
- Combination of analog I/Os and a FPGA on one chip
- Perfect for RF signal generation

- All in one chip
- Monolithic design of the FPGA and the ADCs/DACs
 - No need for additional converter chips, e.g. ADC
 - No power hungry external JESD204 interface needed
 - Low latency

Created by parkjisun from Noun Project

combine by parkjisun from Noun Project (CC BY 3.0)

- 6x ARM processors on board
 - Quadcore Arm A53
 - Dualcore Arm R5F
 - Wide range of computing possibilities

R

- Good software programming
 - Working only on the FPGA, no other drivers for ADC and DAC required
 - No need for an additional device driver for external analog chips
 - Easy configuration with AMD Vivado

AMDC Vivado ML Edition

https://www.xilinx.com/products/design-tools/vivado.html#advantages

Applications

- RFSoC's used for signal generation and analog readout
- High bandwidth and frequency accuracy are required

Source:

Presentation on MTCA Workshop 2022 from Atom Computing / Jan Marjanovic: Modular and scalable control systems for atomic array quantum computers

- Controlling systems with RF signals like AODs
- High frequency signals can enveloped in pulses
- Several envelope functional edges are possible, e.g. f(t)=A*sin²(t)

- Controlling trains in high vacuum pipes
- High reliable

- Wireless communication
- Development 5G/6G mobile communication systems
- Joined communication and sensing
 - Parallel radar and communication
- Waveforming
- Cellfree massive MiMo
 - High data bandwith

Who is our Partner IAF?

Future Radio Technology

System solutions for digital data transmission and IAF GmbH: communication systems Headquarters: Braunschweig Founded: 1992 Eight employees in research, Competence: development and production Design and development of hardware and Focus: software digital data transmission and communication systems. FPGA hardware design and programming

Development, VHDL programming and design

Sales, product management and integration

The Journey

- 19" / 1 U chassis
- HF- shielded housing
- Integrated active fans
- Interfaces:
 - RF in/out
 - Sampling clock in/out
 - Reference clock in/out
 - Trigger, synchronization
 - 2 x 100GbE
 - SFP/10GbE, 1GbE, USB, JTAG, SD

- 5 Gsps ADC
- 10 Gsps DAC
- 14 bit resolution
- Based on the Xilinx RFSoC Gen. 3 –
- 8 antennas per device
- Integrated clock generation
- Integrated NVME SSD for offline data storage
- Integrated RF frontend up to 6 GHz
- Connection of external RF frontends possible
- Scalable number of antennas n x 8
- Engineered by IAF Braunschweig

- 8x 5 Gsps ADC
- 8x 9,85 Gsps DAC
- 930k logic cells
- 4200 DSP slices

•											
	ZU21DR	ZU25DR ZU27DR ZU28DR	ZU29DR	ZU39DR	ZU4	2DR	ZU43DR	ZU4	6DR	ZU47DR ZU48DR	ZU49DR
	Gen 1			Gen 2	Ger			n 3			
# of ADCs	0	8	16	16	_		-	-		-	-
Max Rate (GSPS)	0	4.096	2.058	2.220	-		-	-		-	-
# of ADCs	-	-	_	-	8	2	4	8	4	8	16
Max Rate (GSPS)	-	-	-	-	2.5	5.0	5.0	2.5	5.0	5.0	2.5
# of DACs	0	8	16	16	8		4	1	.2	8	16
Max Rate (GSPS)	0	6.554	6.554	6.554	9.85 ⁽²⁾		9.85 ⁽²⁾	9.85 ⁽²⁾		9.85 ⁽²⁾	9.85 ⁽²⁾
Number of DDCs per RF-ADC ⁽¹⁾		1	1	1	1		2	1		1	1
RF Input Freq. Max (GHz)		4			6						
Decimation/ Interpolation		1x, 2x, 4x, 8x			1x, 2x, 3x, 4x, 5x, 6x, 8x, 10x, 12x, 16x, 20x, 24x, 40x						
	# of ADCs Max Rate (GSPS) # of ADCs Max Rate (GSPS) # of DACs Max Rate (GSPS) f DDCs C ⁽¹⁾ rreq. Max	# of ADCs0# of ADCs0Max Rate (GSPS)0# of ADCs-Max Rate (GSPS)-# of DACs0Max Rate (GSPS)0# of DACs0Max Rate (GSPS)0f DDCs (C1)0freq. Max ion1	ZU21DRZU25DR ZU27DR ZU28DR# of ADCs08Max Rate (GSPS)04.096# of ADCsMax Rate (GSPS)Max Rate (GSPS)Max Rate (GSPS)08Max Rate (GSPS)08Max Rate (GSPS)01# of DACs06.554Max Rate (GSPS)01f DDCs (C1)01ireq. Max ion4	ZU21DR ZU25DR ZU28DR ZU29DR # of ADCs 0 8 16 Max Rate (GSPS) 0 4.096 2.058 # of ADCs - - Max Rate (GSPS) - - Max Rate (GSPS) - - Max Rate (GSPS) - - Max Rate (GSPS) 0 8 16 Max Rate (GSPS) 0 6.554 6.554 f DDCs (C1) 0 1 1 ireq. Max - 4 - n/ ion 1x, 2x, 4x, 8x -	ZU21DR ZU25DR ZU28DR ZU29DR ZU39DR # of ADCs 0 8 16 16 Max Rate (GSPS) 0 4.096 2.058 2.220 # of ADCs - - - Ø of ADCs - - - Max Rate (GSPS) - - - - Ø of ADCs - - - - # of DACs 0 8 16 16 Max Rate (GSPS) - - - - # of DACs 0 8 16 16 Max Rate (GSPS) 0 6.554 6.554 6.554 fDDCs C(1) 0 1 1 1 ireq. Max ion 4 5 1x, 2x, 4x, 8x 1x, 2x, 4x, 8x	ZU21DR ZU25DR ZU28DR ZU29DR ZU39DR ZU4 $accord for for ADCs$ 0 8 16 16 6 $adcord for ADCs$ 0 8 16 16 6 $adcord for ADCs$ 0 4.096 2.058 2.220 6 $adcord for ADCs$ - - - 8 8 $adcord for ADCs$ - - - 8 8 $adcord for ADCs$ - - - 8 8 $adcord for ADCs$ - - - - 8 8 $adcord for ADCs$ - - - - 8 8 $adcord for ADCs$ - - - - 2.5 8 $adcord for ADCs$ 0 8 16 16 8 $adcord for ADCs$ 0 8 16 16 8 $f DACs$ 0 6.554 6.554 6.554 9.8 $f $	ZU21DR ZU25DR ZU28DR ZU29DR ZU39DR ZU42DR # of ADCs 0 8 16 16 Max Rate (GSPS) 0 4.096 2.058 2.220 Max Rate (GSPS) 8 2 Max Rate (GSPS) 8 2 Max Rate (GSPS) 8 2 Max Rate (GSPS) 8 2 Max Rate (GSPS) 0 8 16 16 8 Max Rate (GSPS) 0 8 16 16 8 Max Rate (GSPS) 0 6.554 6.554 9.85(2) Max Rate (GSPS) 0 1 1 1 Image: Complex Rate (GSPS) 0 1 1 1 Image: Complex Rate (GSPS) 0 1 1 1 1 Image: Complex Rate (GSPS) 0 1 1 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ZU21DR ZU25DR ZU28DR ZU29DR ZU39DR ZU42DR ZU43DR ZU45DR	ZU21DRZU25DR ZU28DRZU29DRZU39DRZU42DRZU43DRZU47DR </td

Table 1: RF Data Converter Subsystem Features

From a 1U Crate to MTCA

- Base RFSoC AMC
- Frontends on the AMC
- Mid-size double AMC
- Flexible design
- Commercial of-the-shelf
- No FMC, all on AMC
- 40 GbE
- PCIe Gen4

Customized Frontends:

E.g:

- 10...6000 MHz
 - no filter, no amplifier, P_{out} = -10 dBm
- 2400...2700 MHz
 - P_{out} = 20 dBm sample rate 3,6 GHz
- 3400...3800 MHz
 - P_{out} = 20 dBm, sample rate 4,8 GHz
- 5150...5900 MHz
 - P_{out} = 20 dBm, sample rate 4,8 GHz

- COTS AMC with RFSoC
- Custom RF front end on RTM
 - Bandfilter
 - Amplifier
 - Feedback Loops
- Low effort to individualize your system with custom RTMs
- Exchangeable RTMs

- Flexible design
 - RF on RTM or AMC
- Commercial of-the-shelf

Conclusion for Trapped-Ion QC

DowerBridge Computer **MTCA for Quantum computing**

- Customizable for multiple applications
- Customizable with exchangeable RTM modules
- Expandable with FMC modules

- Specification of the required RF signals: bandwidth, center frequency, modulation, signal level
- Specification of the RF interface, e.g. single ended, coaxial, 50 Ohm, SMA sockets only the Tx direction required or also Rx?
- How many parallel channels should be supported?
- Specification of the baseband signal to be transmitted: continuous streaming or periodically repeated sequence?
- Required memory depth for transmit/receive signals on board connection to computers / computer clusters for signal provision / evaluation: 100GbE or other?
- System controller for configuration and control / our current architecture: Linux on ARM processor is available on every SDR system, higher-level controller (PC) communicates with all SDR units via 1GbE

Let's talk on our pBC Booth