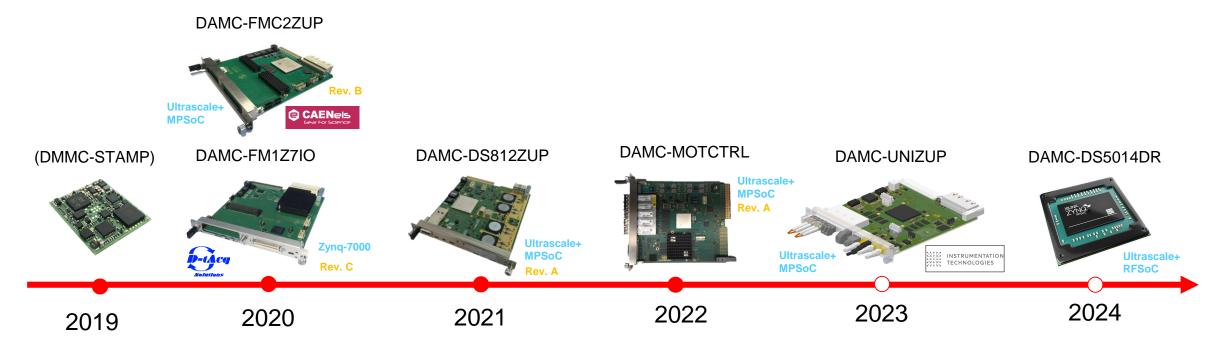
Update on Digital Hardware Developments at DESY

Michael Fenner, DESY Hamburg 12th MicroTCA Workshop for Industry and Research 6th of December 2023

Agenda

Short Board Presentation (based on modern MPSoCs)

- Digital AMC portfolio
- Highlights 2023: DAMC-UNIZUP and DRTM-8SFP+

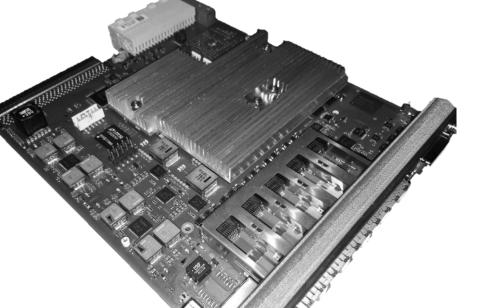

Yamaichi AMC Connector validation

Presentation of Lab Development Tools

- New MTCA Bring-up Adapter
- AMC and RTM Templates

Recent Board Portfolio

Timeline of SoC-Based Boards



All new boards follow our development strategy:

- Shared and common components
- 4- or 6-eye reviews
- Pool of proven design blocks: DMMC-STAMP, White Rabbit, Power Section, FPGA, (DDRx) Memories and others...
- All these Boards have achieved
 - Full Performance in Rev. A \rightarrow delivered to the partners (with 0, 1, 2 patch wires)
 - Series Production in Rev. B (we always had to address component obsolescence)
- Similar boards \rightarrow fast development cycles \rightarrow similar BSPs \rightarrow Very low surprise ratio

DESY offers licenses for all MicroTCA developments, so that the boards get available to 3rd parties. DESY.

DAMC-MOTCTRL MicroTCA.4 Motion controller

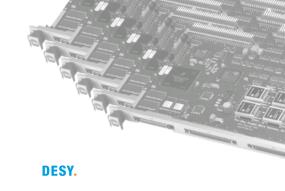
- Replacement for VME solution OMS MAXv: replacement for 6 cards (48 motors)
- Allows distributed, synchronous motor movement
- and **position-synchronous data acquisition** (via MicroTCA backplane triggers)

MPSoC:

- Optical interface to Motor Drivers
- Heterogeneous approach
 - MPSoC (2GB DDR4)
 - Kintex-7 (4GB DDR3)
 real-time control
- 5 SFP+ ports (1Gbps to 10Gbps)
 - e.g. 3x Motor interfaces, 2x Ring topology
- HW Support: CAN, EtherCAT, SERCOS
- 26-pin connector: 3.3V /5V IO
- Monitor/Keyboard interface via USB-C

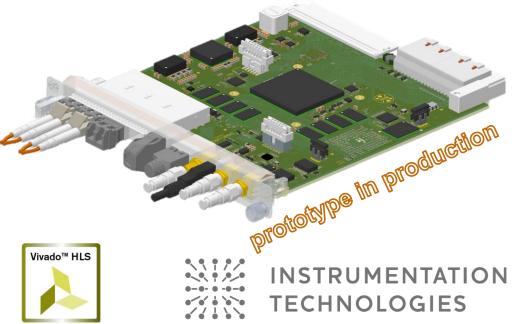
Power of this board lays in Firmware

- FW Team \rightarrow Michael Randall et al. \rightarrow Thursday 11:00 o'clock
- Developed a generic firmware module for **synchronous multi-axis motion** control + **encoder support** + limit-switch control.
- Released OSS FWK-based FW 1.0.0 with CLI for high-level instrument control software spec
- Successfully **deployed and tested prototypes** at two different locations.



responsible for non-realtime tasks

communication to other cards



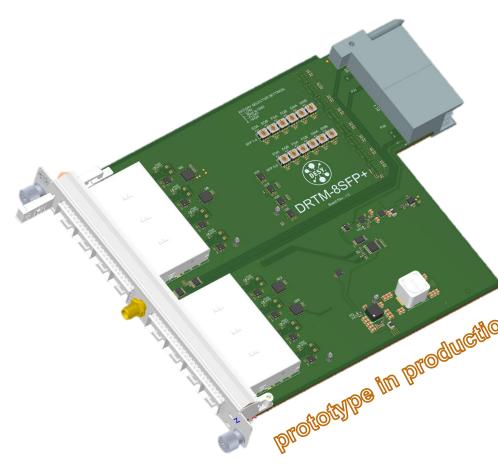
DAMC-UNIZUP: Universal MPSoC Processing Board

DAMC-UNIZUP

Inherited features:

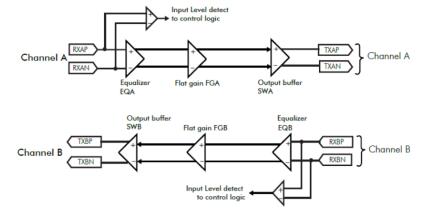
- Quad-Core ARM Cortex-A53 @1.5 GHz, Dual-Core ARM-R5 RT
 @600 MHz and Mali-400 MP2 graphics
- PCIe x4 (x8 option on supported systems); Gen.3 supported
- USB type-C Alternate Mode Display Port for standalone operation (no need for additional AMC CPU Module)
- Flexible clocking scheme and front panel connector for external clock input and White Rabbit support
- Supported by all Xilinx development tools (e.g. Vivado HLx)

"Step-sister" of DAMC-FMC2ZUP


Main Features:

- Inherits the technology of DAMC-FMC2ZUP
- Universal MPSoC Board with more powerful RTM connectivity
- High-Performance FPGA: Zynq Ultrascale+ ZU7CG...ZU11EG
 (in lower pin-count package)

New features


- **2 x 64bit** wide DDR4 interfaces (total of 8GB RAM)
- RTM D1.2 or D1.3 connectivity to MPSoC (assembly option)
 - D1.2: 38 LVDS pairs and 4 MGTs \rightarrow e.g. parallel ADCs on RTM
 - D1.3: 28 LVDS pairs and 8 MGTs → e.g. JESD204B ADCs on RTM
- 4 SFP+ ports integrated
- GTH Transceivers operate at 16.375 Gbps (no 28Gbps GTY)
- Connectors for slow and fast trigger inputs/outputs on front panel
- 2 front panel clock inputs via SMA, 1 output

DRTM-8SFP+ RTM Optical Interface Board:

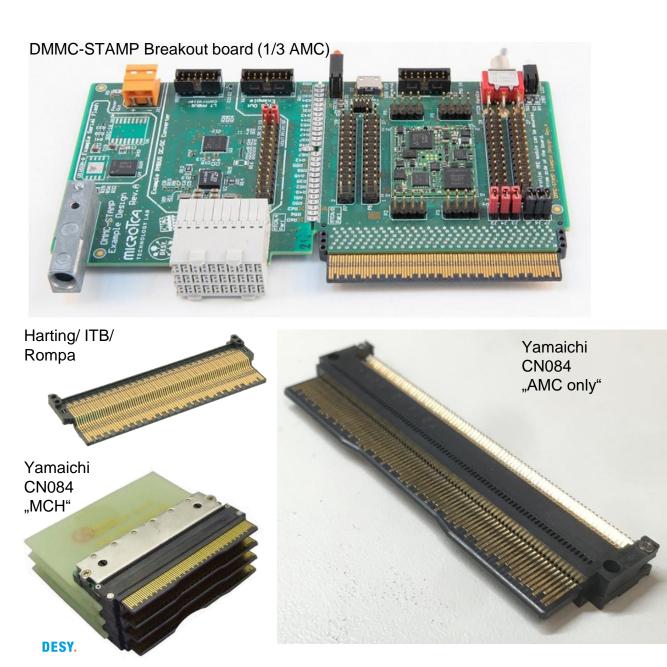
Main Features:

- Follows MicroTCA4.1 class definition (+voltage adjustment)
- Compatible to all our boards (and many partner's boards)
 - Compatible to 1.8V FPGAs (required for modern FPGA HP banks)
 - Compatible to 2.5V and 3.3V Zone 3 voltage (backwards compatibility)
- Allows data transmission of up to 12.5 Gbps
 - Provides sockets for 8 SFP+ transceiver modules
 - contains re-drivers for each channel with linear equalizer
 - · allows to tweak eye opening for optimal signal integrity

- RTM Class D1.1 to D1.3 compatibility \rightarrow up to 8 SFP+ Modules
 - Fits behind DAMC-UNIZUP with all 8 transceivers (Class D1.3)
 - Fits behind DAMC-FMC2UP with 2 transceivers (Class D1.1)
- Clock Input from RTM (replaces DESY clock feed-trough RTM)

DAMC-DS5014DR: RFSoC

DESY.


Main Features:

- 8x 14bits ADC, 5 Gsps, 6 GHz analog bandwidth
- 8x 14bits DAC, 10 Gsps, 6 GHz full-power BW
- DACs and ADCs to RTM or
- DACs and ADCs to front panel
- Coaxial analog Zone 3 RF Class RF1.1
- Flexible to-RTM or to-front-panel RF harness option

Yamaichi AMC Connector

AMC Connector Alternate Solution

- All our AMCs have a plastic connector
- Rompa/ ITB end-of-life notice affected all boards

Product End of Life Notice, Last Time Buy

Notification date: 18 November 2022

taken back ... - state 2023: "in production"

- We started to look for alternatives
- Yamaichi offers an MCH connector, but no separate AMC connector
- 1^{st} piece of stack should fit \rightarrow we gave it a try...
- Would like to share the results

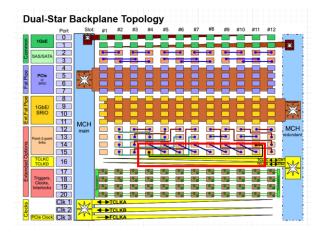
Why separate ANC Connector?

- Provides "smooth" mechanical interface
- Rounded plastic vs. chamfered glass fibers
- Flexibility in PCB thickness (up to 2.0mm)
- Easier to manufacture PCBs
- We see up to ~1000 mating cycles (5x more)
- Beyond that: backplane fails → catastrophic damage

Yamaichi CN084

Yamaichi CN084 without pin cover

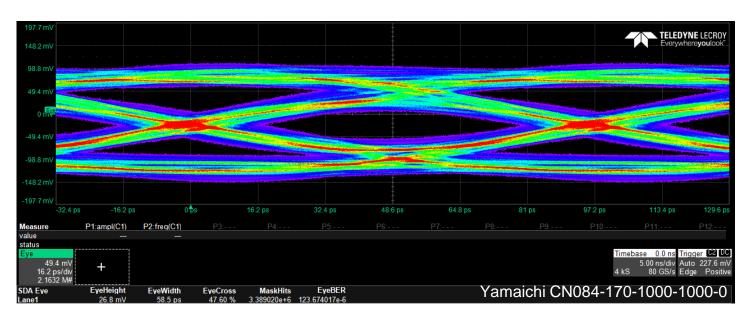
- Our focus: signal integrity
- 10Gbps data rate (or more)
- Good: No through-hole pins anymore
- Concern: Stubs created by gold fingers
- Question: How will the connector perform?
- We re-designed our DMMC STAMP breakout board and added some test connectors
- First lesson learned: We needed to design an alignment tool...

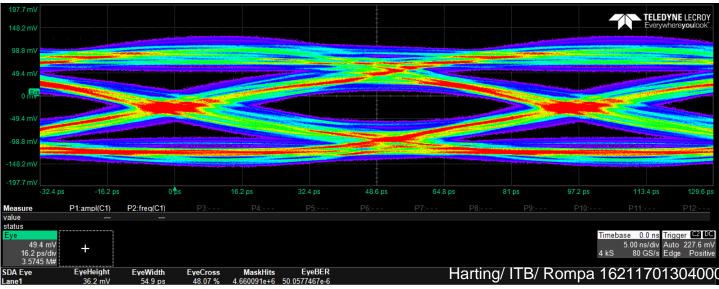


DMMC-Stamp Breakout Board Test Platform

10G Eye Test Setup

- We installed two boards and tested the longest P2P path
- We generated signals with ZCU102 evaluation board
- Measured eye at 10Gbps


Test Setup: 10Gbps Signal Generation with IBERT on ZCU102



Soldered-in semi-rigid cables for reference measurement (Harting/ITB/Rompa)

10G Eye Test Results

Yamaichi results:

- 26.8mV eye height
- 58.5ps eye width

Harting/ ITB/ Rompa results:

- 36.2mV eye height
- 54.9ps eye width

Similar results (Longer FR4 traces on test board) However, TX pre-emphasis settings needed (identical settings on both connectors)

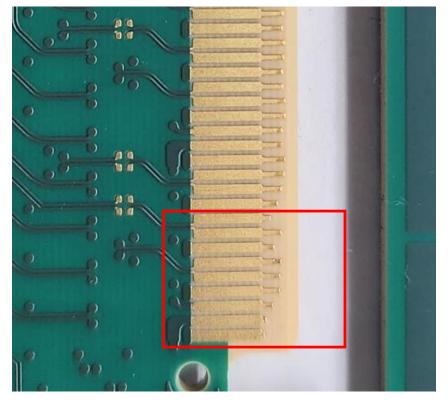
Fully approved for new DESY designs.

	2 mV 1 mV -32 4 ps -16 2 ps ure P1:ampl(C1) P	0 ************************************	162 pp 24.	2.4 ps	466 ps 64 8 ps PD PT	P8	St ps		1134 ps P11	1296 P12 Tingger 🖽
-13. -102. -191. -280. -369. Meas	3 mV 3 mV 2 mV 2 mV 3 2 4 ps 1 mV -32 4 ps 1 m2 ps 1 mV -32 4 ps 1 m2 ps					P8				
	3 m 3 m 2 m 2 m 2 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4		162 pp 2	2.4 ps	466ps 644ps		81 ps	972.ps	113.4 ps	129 €
	3 mV 3 mV 2 mV									
	3 mV 3 mV									
	S mV								- - -	
	Fig.									
	6 mV	C. STILL PROVIDE LA		n a star San Isan				Long Control		
	A REAL PROPERTY AND INCOME.			Contraction of the						
	5 mV			an or a de la						
253	5 mV		a an ann ann ann ann an ann an ann an an				The second second	-held being being	Engly	YNE LECR
.	00007-64	* *	4 67 40 (00444)	* *	C 04 JD (40440)	* *	4000-		* *	
	PRBS 7-bit	~	1.67 dB (00111)	~	6.94 dB (10110)	~	1000 m	nV (11110)	~	
	PRBS 7-bit	~	1.67 dB (00111)	~	6.94 dB (10110)	~		nV (11110)	~	
	PRBS 7-bit	~	1.67 dB (00111)	~	6.94 dB (10110)	~		nV (11110)	~	
	PRBS 7-bit	~	1.67 dB (00111)	~	6.94 dB (10110)	~	1000 m	nV (11110)		
								-		
					TX Post-Cursor		17, 2011	Swing		

Manufacturing Challenge

- Yamaichi requests 0.3µm gold Surface
- DMMC-STAMP-Breakout: ENIG (4-7µm Ni / 0.05 0.1µm Au)
- "Soft Gold" does not fulfill requirement
- With DAMC-UNIZUP we tried hard gold

MCH-1 <u>CN084A-170-1000-1000-1</u> Note.2


Note 1. Plating specification on the PCB pads MCH PCB : Au 0.30 μ m MIN. over Ni 1.27 μ mMIN.

Shaft A-2 CN084A-08ME-2 Note.3

Second Try: Tie-bars have been milled off (but: step remains)

First Try: left-over Tie-bards have been partially ripped off.

- Hard gold needs contacts for electrode \rightarrow tie bars are left over
- **First try:** Final milling did not work well and ripped off tie bars Long tie bars with different P/N length would be unacceptable for signal integrity
- Second try: Tie bars were milled away (step created..., ok for now)
- **Third try** (next board):

Etch off tie bars: Can be done by manufacturer

Try thicker soft gold: ENPIG? (Electroless Nickel Electroless Palladium Immersion Gold)

Development Tools

Typical Bring-Up Setup

With RTM Support...

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

- We have flexible lab development tools
- DESY provides them on request:
 - Bring-up PCB production files
 - Aluminium frame production files

Write an email to me if you are interested in the files!

Bottom view

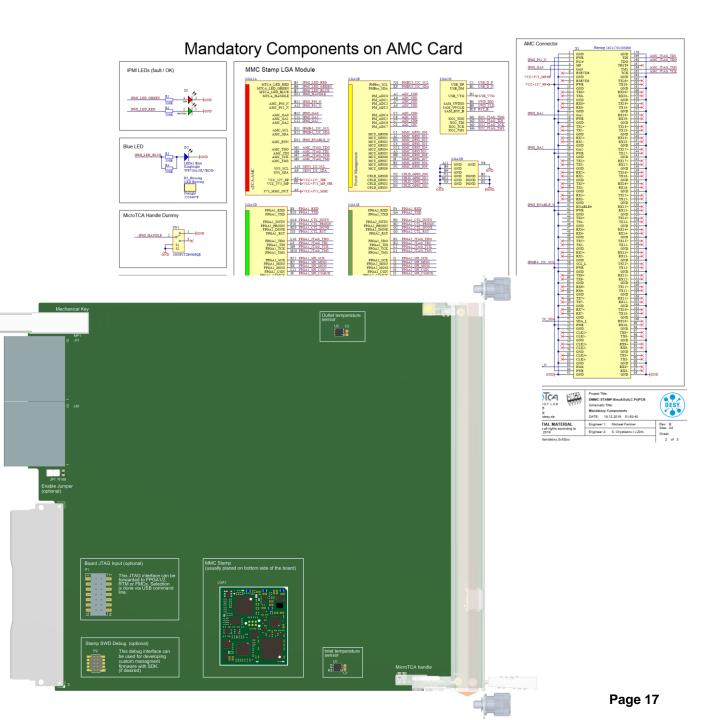
MicroTCA template

Idea: Jump-Start with MicroTCA as you would with any other board

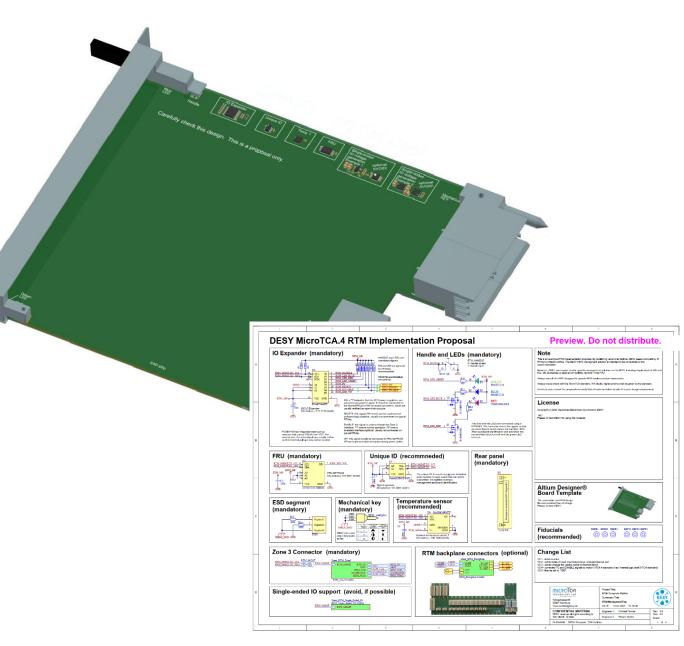
Fully MicroTCA compliant "empty" board

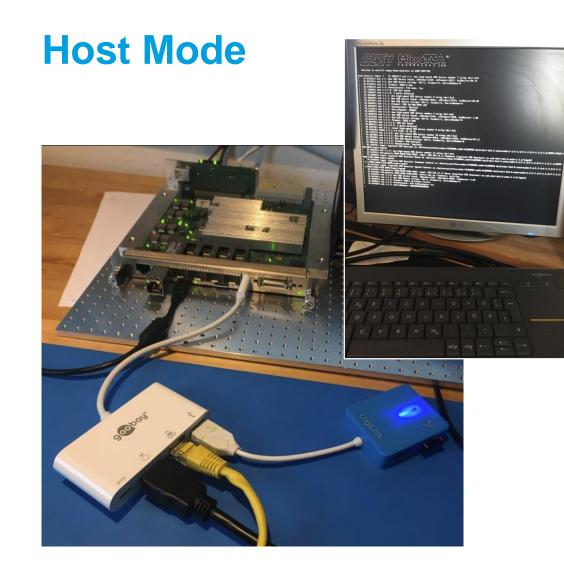
- Start with correct mechanical Shape
- AMC and RTM "only" get power
- All the management is done on DMMC-STAMP

Purpose: facilitate development


- Allows design migration (e.g. from VME)
- Source design files (Altium Designer) are provided
 - Schematics
 - PCB

Components:


- MMC SoM, LEDs, Connectors, Temperature Sensors
- USB Interface for Management and Status


 MMC Stamp Breakout Board bases on the template

RTM Template

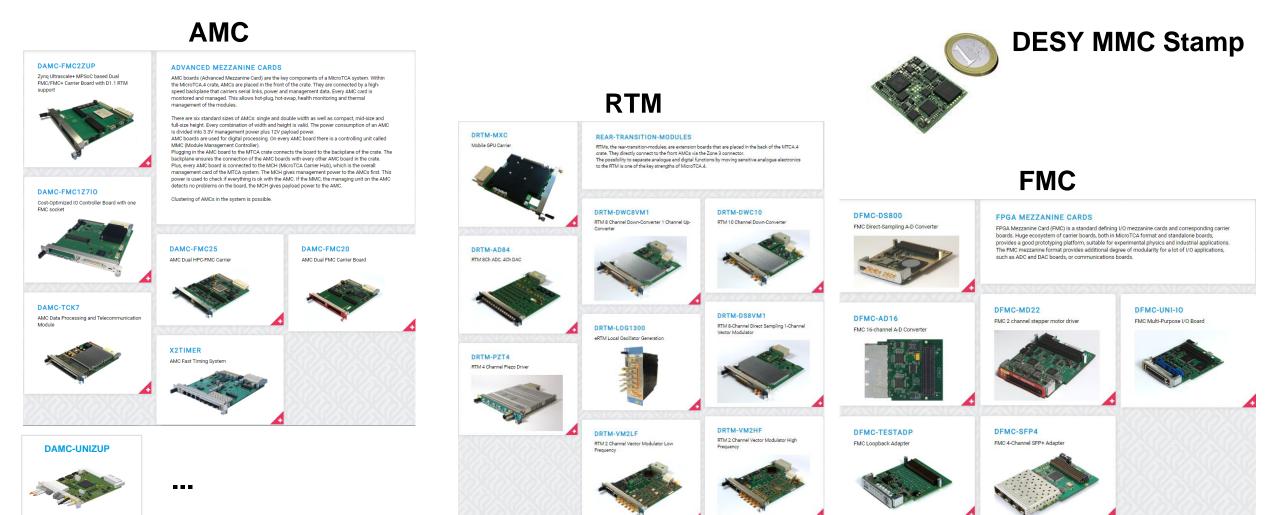
- We also provide a RTM Template
- Depicts MicroTCA4.1 Class recommendation (compatibility to ~70% of known AMCs)
- Complete guide and "empty Board" for own MTCA RTM designs → Altium Designer Template
- MTCA Standard leaves freedom for RTM interface implementation (vendorspecific) → risk of non-interchangeable AMC-RTM pairs
- DESY has a "class concept" → Interchangeable boards
- DESY collected and documented best design practices beyond the standard

Many modern FPGAs are SoMs

From the outside: only SD Card, USB-C socket visible

But:

- ARM Processor is inside
- Boards run Yocto Linux
- USB-C dock brings out complete PC connectivity
 - HDMI
 - USB for Keyboard and Storage
 - Ethernet Network Interface
- PCIe Root Complex: Board can replace a complete CPU module inside MicroTCA (depends on processing needs)
- Board can work completely standalone like a PC


Acknowledgments: Stanislav Chystiakov, Robert Wedel, Martin Tolkiehn and the whole DESY MSK team

Contact

DESY. Deutsches	Michael Fenner		
Elektronen-Synchrotron	MSK		
	michael.fenner@desy.de		
www.desy.de	+49 (0) 40-8998-1885		

Overview of "commercial" products

- Complete ecosystem of MicroTCA products
- DESY has licensed nearly all boards so they are available for 3rd parties
- Strategy: Focus on your application, take standard products from others

