PS Module Assembly @DESY

for the Phase 2 Upgrade of the CMS Outer Tracker

Paul Schütze for the DESY CMS Outer Tracker Team SiDet R&D Meeting 26.09.2023

Context: The HL-LHC

- Ever seen this one?
- High Luminosity LHC nutshell:
 - More data in less time (compared to LHC)
- More scientific:
 - Higher instantaneous
 & integrated luminosity
 - At the same bunch repetition rate this means higher pileup*

* number of proton-proton interactions in single bunch crossing

- → Challenging environment for all detector systems \rightarrow most systems require a replacement
 - ➔ This presentation: CMS Outer Tracker

Context: The CMS Outer Tracker

- CMS Tracking Detector for the HL-LHC phase:
 - Inner Tracker:
 - 3D Si sensors (innermost barrel layer) & planar n-in-p else
 - Blue&Yellow: different
 module dimensions
 - Outer Tracker:
 - Based on modules with two sensors each
 - Blue: Pixel-Strip (PS) modules
 - Orange: Strip-Strip (2S) modules

PS Module – The Mechanics

- Two sensors, Pixel (MaPSA) + Strip (PSs), •
- ... are separated by spacers .
- ... and mounted on a base plate. •

PS Module – The Mechanics

- Two sensors, Pixel (MaPSA) + Strip (PSs),
- ... are separated by spacers
- ... and mounted on a base plate.
- The signals are processed by Front-end hybrids (FEH)
- Power is supplied via the Power hybrid (POH)
- Data is transmitted via the readout hybrid (ROH)

PS Module – The Mechanics

- Two sensors, Pixel (MaPSA) + Strip (PSs),
- ... are separated by spacers
- ... and mounted on a base plate.
- The signals are processed by Front-end hybrids (FEH)
- Power is supplied via the Power hybrid (POH)
- Data is transmitted via the readout hybrid (ROH)

DESY will build > 1150 PS modules for the Phase II (HL-LHC) upgrade!

PS Module – The Track Trigger

- Track based triggering is challenging:
 - Tracker: huge number of channels
 - Data transfer & tracking algorithms usually too time consuming for triggering
- CMS OT Track Trigger:
 - The hits in the two sensors in one module are combined to form *stubs*, if they are closer (in *x*) than a configurable distance
 - This provides *fast* information on the track angle
 - ➔ Track angle correlates to the transverse momentum p_T
 - ➔ Information is sent to L1 trigger

PS Module – The Track Trigger

• Track based triggering is challenging:

.

- Tracker: huge number of channels
- Data transfer & tracking algorithms usually too time consuming for trigg A. Harb
- 2S prototype module CMS OT Track Trigger: Efficiency The hits in the two sensors in or $\hat{\mathcal{L}}$ (in x) than a configurable distan $\frac{10}{100}$ 0.8 0.8 This provides *fast* information 0.6 0.6 on the track angle Data Track angle correlates to the 0.4 0.4 Fit transverse momentum p_{π} 0.2 0.2 → Information is sent to L1 trigger 30 35 0 25 10 α [°] p_ (eq.@71.5 cm) [GeV/c]

Great Plan, let's build these things

- DESY will build one entire endcap
- DESY plans to produce > 1150 PS modules
 - All of these will be *integrated* onto the support structures at DESY*
- The endcap built at DESY also holds a similar amount of 2S modules, which will be produced at KIT (Karlsruhe)

* Disclaimer: I will only cover the module assembly as such – not the integration on support structures

Module Production

- Components are purchased from industrial manufacturers
 - Centralised via CERN, then delivered to production sites
 - Sensors purchased from HPK (Hamamatsu)
- Assembly:
 - Join all components to a functioning module
- *Quality assurance/control**:
 - Components are tested and inspected at many steps during the assembly to verify good quality and to prevent waste of components

26.09.2023

* Disclaimer: Also not covered here

Paul Schütze | PS Module Assembly |

POH

ROH

PSs

MaPSA

AIN spacer

The Components

The Components

Assembly Steps

Preamble

- Large number of assembly steps required
 - Many of them don't seem too challenging, but they require a high precision, high reproducibility and a *fast* throughput
- The development of individual assembly steps is distributed over the assembly centres
 - This includes the design, testing, manufacturing and distribution of jigs to other centres

Baseplate + Inserts

- Baseplate:
 - Carbon fibre reinforced plastic, 200 um thickness
 - Support for all other components (though not rigid)
- Inserts:
 - Aluminum *washers* with sleeves
 - Required for positioning of components and mounting on the support structure (disks)
 - Important for grounding
- Jig-based assembly

Baseplate + Isolator

- Kapton sheet (KS, ~20 um) as isolator between sensor backside (HV) and Baseplate
- Apply glue on Baseplate+Inserts
- Push KS against stops & fix via vacuum
- Flip Baseplate and position on KS via pins
- Place weight piece on top
- Leave for glue distribution & curing for ~24 h

Reproducibility – Glue Application

• Good reproducibility is essential for a production of more than a thousand modules: positioning of components, **glue volume**, ...

Volumetric Dispensing I

- Status Quo: purely pneumatic application of glue (Polytec 601-LV) via glue dispensing robot
- Issue:
 - Minimal changes in ratio of glue components $(\mathcal{O}(1\%))$ leads to viscosity variations
 - Significant variation in dispensed volume leads to spillage or lack of glue
- Solution:
 - Volumetric dispensing unit: preeflow eco-PEN 300 SS & eco-CONTROL EC200
 - Flow range: < 1.48 ml/min

Volumetric Dispensing II

- Flow defined via eco-CONTROL (volume per time), kept the same for all assembly steps (0.04 ml/min)
- As before: programme defined via PC enables/disables the dispensing during motion
 - ➔ Line density defined via velocity
- High reproducibility in glue volume (e.g. $\mathcal{O}(2 \text{ mg})$ in PI to BP) (\rightarrow scale uncertainty)
- Higher reproducibility in needle position calibration (drop at needle tip)

PSs + HV Tail

- HV Tail supplies backside of strip sensor with bias voltage
- Multiple steps:
 - Jig-based gluing of HV Tail to sensor
 - Wire bonding of HV Tail to sensor
 - Encapsulation of wire bonds

Bare Module *Automated* **Assembly**

Image Viewer

- Robotic assisted assembly of ...
 - Baseplate (+Inserts+Isolator)
 - PSp (MaPSA, pixel sensor)
 - Spacers
 - PSs (strip sensor)
- High relative precision essential for this routine
 - Motion stages: ~ 4 um precision
 - Rotation stage: ~ 175 urad precision
 - Microscope camera: 1.2 um resolution
- Pattern recognition on fiducial markers on sensors guides the relative alignment of components
- Vertical stage with vacuum tool picks up and places components based on provided parameters and PatRec

Bare Module *Automated* **Assembly**

Hybrid Gluing

- Hybrids for signal collection, data aggregation, communication to services, power distribution
- Hybrids positioned via pins and fixed via pushers during glue curing

Wire bonding

- Wire bonds (25 um aluminum wire) to connect ...
 - Sensors to hybrids
 - PSp to bias voltage
- Currently the bottleneck of the production:
 - ~ 2 h per module
 - Single machine available

Wire bond Encapsulation

- Wire bonds are encapsulated for protection against physical damage and resonant vibrations in the magnetic field
- Glue dispensing robot: application of lines of Sylgard 186 (silicone elastomer)

Assembly Step	Min. (curing) Time		Assembly Step		Min. (curing) Time
Baseplate + Inserts	1 d		PSs + HV Tail (glu	e)	1 d
Baseplate + Isolator	1 d		PSs + HV Tail (enca	ap.)	1 d
	Assembly Step		Min. (curing) Time		
	Automated Assem	oly	1.5 h + 1 d		
	Hybrid Gluing		1 d		
	Wire bonding (PS	s)	1 h		
	Wire bonding (PS	p)	1 h		
	Encapsulation (PS	s)	1.5 d		
	Encapsulation (PS	p)	1.5 d		
	Total		~ 8 d		

Assembly Step	Min. (curing) Time		Assembly Step		Min. (curing) Time	
Baseplate + Inserts	1 d		PSs + HV Tail (glue)		1 d	
Baseplate + Isolator	1 d		PSs + HV Tail (encap.)		1 d	
		Assembly Step		Min. (curing) Time 1.5 h + 1 d		Electrical Test
Metrology		Automated Assembly				Electrical rest
		Hybrid Gluing		1 d		
		Wire bonding (PSs)		1 h		
		Wire bonding (PSp)		1 h		
		Encapsulation (PSs)		1.5 d		
		Encapsulation (PSp)		1.5 d		
		Total		~ 8 > 9 d		

Assembly Step	Min. (curing) Time		Assembly Step		Min. (curing) Time
Baseplate + Inserts	1 d		PSs + HV Tail (glue)		1 d
Baseplate + Isolator	1 d		PSs + HV Tail (encap		1 d
	Assembly Step		Min. (curing) Time		Electrical Test
Metrology	Automated Assem	bly	1.5 h + 1 d		Electrical lest
 Note: These are only the time-critical tests Additional reception tests on individual components 	Hybrid Gluing		1 d		
	Wire bonding (PS	s)	1 h		
	Wire bonding (PS	p)	1 h		
	Encapsulation (PS	Ss)	1.5 d		
	Encapsulation (PS	Sp)	1.5 d		
	Total		~ 8 > 9 d		

Assembly Ste	ep	Min. (curing) Time		Assembly Step		Min. (curing) Time
Baseplate + Ins	erts	1 d		PSs + HV Tail (glu	ıe)	1 d
Baseplate + Iso	lator	1 d		PSs + HV Tail (enc	ap.)	1 d
		Assembly Step		Min. (curing) Time		
		Automated Assembly		1.5 h + 1 d		
 Note: These are only the time-critical tests Additional reception tests on individual components 	Hybrid Gluing		1 d	•	Anothor noto:	
	Wire bonding (PSs)		1 h		This is an ideal world	
	Wire bonding (PS	p)	1 h		scenario – permanent availability of personnel, tools and components More realistic: en-bloc	
	Encapsulation (PS	Ss)	1.5 d			
	Encapsulation (PS	Sp)	1.5 d	•		
		Total	al ~- 8 > 9 d ^{pr}		preparation, delays	

PS Module Assembly @DESY

Status

Kickoff Modules

- *Kickoff Batch*: ~ 5 modules to be built per assembly centre in Q3/4 2023
- Status @DESY:
 - Bare module assembly completed
 - Waiting for hybrid delivery
- Special case:
 - Module equipped with on-silicon temperature sensors for thermal studies on PS modules
 - Different workflow required
 - ➔ Strong angular misalignment of sensors

Kickoff Modules – Bare Module Metrology

Metrology performed via SmartScope Flash CNC 300

Module ID	Δx [µm]	Δy [µm]	Δz [mm]	α (PSp-PSs) [µrad]	Temperature
PS_26_05_DSY-00006	3	14	2.605	309	module
PS_26_05_DSY-00101	-3	-1	2.598	18	
PS_26_05_DSY-00102	-23	-34	2.642	2590	
PS_26_05_DSY-00103	-13	9	2.639	29	
PS_26_05_DSY-00104	2	-162	2.597	91	
PS_26_05_DSY-00105	1	-5	2.599	47	

Incident: in consequence to a software bug, the PSs+Spacers subassembly was (at the correct time and transverse position) moved onto the PSp+BP subassembly without braking. PSs+Spacers was subsequently moved up by 20 µm (glue joint).

- ➔ Substantial force was applied on sensors and glue joints
- → Misalignment along y, IV measurement of PSs normal, PSp impossible to measure

Kickoff Modules – Bare Module Metrology

Metrology performed via SmartScope Flash CNC 300

Module ID	Δx [µm]	Δy [µm]	Δz [mm]	α (PSp-PSs) [µrad]
PS_26_05_DSY-00006	3	14	2.605	309
PS_26_05_DSY-00101	-3	-1	2.598	18
PS_26_05_DSY-00102	-23	-34	2.642	2590
PS_26_05_DSY-00103	-13	9	2.639	29
PS_26_05_DSY-00104	2	-162	2.597	91
PS_26_05_DSY-00105	1	-5	2.599	47

Demonstrates ability to assemble PS modules well within specifications despite two issues with known causes

Conclusions

- Assembly workflow for PS modules presented
 - Kickoff (bare) modules assembled: positive results despite few issues
 - Looking forward to hybrid reception
- Assembly workflow established for single modules
 - ➔ Upscaling required for production (tools, personnel, schedules)
- Preproduction of PS modules to start in early 2024
 - Begin with reduced production throughput
- Series production to start in Summer 2024

• Feel free to visit us in 25c and take a look