Fast simulation of E320 beamline

Ruth

Name Surname City, Date

HELMHOLTZ

Goals of this study

For Cherenkov tests at E320

- How do we need to dimension our detector to catch the Comptron Spectrum?
- Implement E320 spectrometer in fast simulation
- Run on Ptarmigan signal simulation with E320 parameters
- Challenge: E320 spectrometer is not just a dipole, but has quads!

FACET-II Experimental Area

- Existing hardware:
 - E320 Interaction Point (IP)
 - Details from Sebastian Meuren
 - Differential pumping system no beam intercepting windows between IP and dump exit window
 - Quad triplet after IP
 - Spectrometer dipole
 - nominal dispersion of ~6cm at dump table
 - Spectrometer diagnostics:
 - Chambers for in vacuum electron diagnostics
 - In air electron, photon diagonotics at "dump table"

Electron beam parameter	$\mathrm{Current}^{\mathbf{a}}$	Operational range
Delivered beam energy, (GeV)	10	10 - 13
Norm. emittance, (mm-mrad)	~ 20	3-6
Bunch configuration	Single	Two-bunch
Charge per bunch, (nC)	2	1.3/0.6
Peak current, (kA)	_	30/15
RMS energy spread, $(\%)$	~ 1	0.8/0.3
Repetition rate, (Hz)	1 - 30	1 - 30
IP β^* , (cm)	50	5-50

Spectrometer beamline

	Z location [m]	Element	Details
Compton IP	~1992.8	e-beam/laser IP	
Q0D quad	1996.98	Quad	Length = 1 m, Integrated gradient $B'L = -14 \text{ T}$ (**)
Q1D quad	1999.21	Quad	Length = 1 m, Integrated gradient $B'L = 22 T$ (**)
Q2D quad	2001.43	Quad	Length = 1 m, Integrated gradient $B'L = -14 \text{ T}$ (**)
Spec. Dipole	2005.94	Dipole	Length = 0.98 m, Integrated field $BL = 0.26$ Tm (**)
Vacuum exit window	2015.54	Window	5mm thick aluminum, 6 in. wide
Dump shield	2027.3	Gap	2 in. wide gap in lead wall, 4 in. thick
Dump Entrance	2028.0	Gap	2.5 in. gap in shielding
Dump	2028.6	Beam stop	Water cooled copper block - shielded by 8 in.+ lead, 11in. + borated polyethelyne

** max (nominal) fields, settings may change to change focal energy and nominal dispersion

Side view

E320 Ptarmigan config

```
control:
```

```
dt_multiplier: 0.5
radiation_reaction: true
pair_creation: true
rng_seed: 0
increase_pair_rate_by: 1.0
```

laser:

```
a0: a0
wavelength: wavelength
fwhm_duration: tau * femto
#waist: 2.5 * micro
waist: 0.6 * 0.8 / a0 * sqrt(2 * 0.8 *laser_energy * 100000. / tau) * micro
#Waist: 147.839 * sqrt(laser_energy) * wavelength / (a0 * sqrt(tau))
#waist: (1 + 0.1/(2 * pi))*147.839 * sqrt(laser_energy) * wavelength / (a0 * sqrt(tau))
polarization: linear
```

beam:

n: 1000000
species: electron
charge: 12.5e9 * e
gamma: initial_gamma
sigma: 0.01 * initial_gamma
radius: [35.0 * micro, normally_distributed]
length: 30.0 * micro
collision_angle: -30.0 * degree
rms_divergence: 70.0 * micro

output:

ident: auto
dump_all_particles: hdf5
discard_background_e: true
coordinate_system: beam
units: hep

constants:

```
a0: 0.5
laser_energy: 0.14 # joules (on target)
laser_energy_uncompressed: 0.6 #joules
wavelength: 0.8 * micro
tau: 60.0 # fs
initial_gamma: 10.0 * GeV / (me * c^2)
pi: 3.14159
```

Linear Beam Optics

- Define local coordinate system that follows ideal orbit
- Our beamline consists of: drift volumes, quadrupoles and dipoles
- Effect of beamline elements on trajectory expressed through matrix formalism
- In our case: Dipole treated separately (paraxial approximation doesn't hold, large deviation)

Linear Beam Optics

Taken from <u>Slides by W. Hillert</u> (CERN accelerator school)

Drift Volumes

Taken from <u>Slides by W. Hillert</u> (CERN accelerator school)

 $\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} =$

horizontal displacement horizontal angular displacement vertical displacement vertical angular displacement

hor. trace space
vert. trace space

$$\mathbf{M} = \begin{pmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} & 0 & 0 \\ \mathbf{r}_{21} & \mathbf{r}_{22} & 0 & 0 \\ 0 & 0 & \mathbf{r}_{33} & \mathbf{r}_{34} \\ 0 & 0 & \mathbf{r}_{43} & \mathbf{r}_{44} \end{pmatrix} = \begin{pmatrix} \mathbf{M}_{x} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \mathbf{M}_{y} \end{pmatrix}$$

Particle trajectory: $\vec{X} = \mathbf{M} \cdot \vec{X}_0$

$$\mathbf{M}_{drift} = \begin{pmatrix} 1 & L & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Quadrupoles

Taken from <u>Slides by W. Hillert</u> (CERN accelerator school)

"horizontally focusing" **QF** (*k* < 0): $\frac{1}{\sqrt{|k|}}\sin\Omega$ $\cos\Omega$ 0 0 0 0 0 0 $\sqrt{|k|}\sin\Omega$ $\cos\Omega$ $L \rightarrow 0$ \mathbf{M}_{QF} \rightarrow = $\frac{1}{\sqrt{|k|}}\sinh\Omega$ 1 0 0 $\cosh \Omega$ 0 0 0 0 0 0 $\sqrt{|k|} \sinh \Omega$ $\cosh\Omega$

Quadrupole Strength

$$k = \frac{q}{p}g = \frac{2q\mu_0}{p}\frac{n \cdot I}{a^2}, \quad [k] = m^{-2}$$

QD (k > 0): "horizontally de-focusing"

0

0

0

Dipole

$$x = x_0 + x' * L$$
$$x' = x'_0$$
$$y = y_0 - L * \tan \alpha$$
$$y' = y'_0 + \tan \alpha$$

- Dipole: effect of a drift volume in x-direction
- Bending in y-direction

X-direction

Y-direction

10GeV electrons 7.6cm below beam axis

Y-direction ZOOMED

Compton Spectra

• Should be ok to map with 3mm straws