Simulating penetrating
atmospheric leptons in IceCube

Early experiments with adaptive sampling
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IceCube
5 m string spacing

m DOM spacing

1.5K

« Started full operation in
2011

1K _

 Wide energy range: ~30
GeV neutrinos to PeV
muons

 Heavy CORSIKA users
since ca. 2002
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CR, gamma, and neutrino detection
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Trickiest backgrounds: rare showers dominated
by single high-energy muon or neutrino
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CORSIKA in IceCube
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1. Run CORSIKA showers to 2832 m asl

2. Propagate muons to instrumented lceCube detects ~1e11 air showers
volume, simulation stochastic losses per year. We need to choose which
showers to simulate. (Even with
3. Propagate photons to DOMs SIBYLL)

4. Simulate detector response
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Muon Event Types in Volume Detector
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This is boring, and
expensive to simulate
(CORSIKA running
time scales with
multiplicity)
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High Energy Muon High Multiplicity Bundle
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This is an interesting

shower:

« background to
neutrino searches

- tracer of forward

physics

& .

ratio~1:10

for bright events

Energy Spectrum follows Nucleons Energy Spectrum follows Nuclei
-same as Neutrinos! Patrick Berghaus 3

Muon Multiplicity Spectrum d
Patrick Berghaus, 2012
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https://docushare.icecube.wisc.edu/dsweb/Get/Document-62498/mumultspec_pb_crgroup.pdf

Simulating interesting showers

DESY

Carefully tune injected energy spectrum &
mass composition to avoid simulating
excessively high-multiplicity showers. Only
accounts for average shower behavior.

Sample from a parameterization of the muon
flux at depth (MUPAGE/MuonGun).
Parameterization loses information for > 1
muon.

Apply a known bias by aborting boring showers
as quickly as possible. Used to require
mucking about in CORSIKA internals
(ICECUBE1 option from v7.50); now
significantly easier with D. Baack’s dynamic
stack.
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Cor++: CORSIKA plug-ins in C++

Standard CORSIKA %Ag

« Secondaries of each interaction to FIFO
storage

* Depth-first propagation

* Minimizes in-memory size of shower

DYNSTACK CORSIKA (since v7.57, June 2017) %ﬁ\g
* Secondaries to custom storage

« Can change propagation order, drop particles,
stop the entire shower, gather statistics, etc.

 Similar to Geant4 actions

https://github.com/tudo-astroparticlephysics/Cor-PlusPlus
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Biasing scheme for single-like showers

- User specifies a target fraction of showers to accept (“bias factor,” e.g. 0.01)
* Plugin uses the Elbert formula to pick a muon energy threshold for each shower

10° 4 10° 4

1072 A

Vertical showers
—— 1 PeV proton

P(N,(X > Xmin) > 0)
-

Q
Acceptance probability
=
<

107° + 1 PeV iron
1010 — 1 EeV proton
— 1 EeViron
! 1072 4
10™* 1073 1072 107! 10° 104 1073 1072 107! 10°
Xmin = Eu, min/Eprimary/A Xmax = Eu, max/Eprimary/A

e Shower is killed with a probability (always < 1!) based on the highest-energy muon in the

shower
¢ Kill probability increases monotonically with energy, so shower can be killed before the first muon

is produced.
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Demo: vertical proton showers

1071 5
] 5 ] :
2 1071 1 2 1077 -
(@] o 3
£ c ]
8 10_3 T 8 —4 :
n w 1077 3
Q 3 Q ]
— 1 —
= ] £ 1075
C _5 - (e E
L 10 L ]
1076 5
T T
_g 10° A 'qE)
= 5 10° 1 -
() ] )
= 104 1 = -
= ) = - 103 ] —
= =
L et LR | ! LR | L | L LR | ! LR | ! L | LR |
10~3 1072 1071 100 1073 1072 1071 10°
E
Muon energy =—— Leading muon energy - Fu T
primary prlmary
+ 10k showers Showers Bias factor  Killed Interactions Time per shower
-+ 100k biased showers (6448 complete) killed complete
<+ 1M biased showers (1233 complete) led 1 0 N/A 937 169 + 0.5 ms
+ Combined with weights leb le-2 93552 40 954 20 + 0.5 ms
1e6 le-4 998767 6 867 2 4+ 0.5 ms

DESY.



Demo: vertical proton showers
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Figure of merit: effective livetime/walltime

* Weight: simulated cosmic ray
fluence / expected flux (1/s) *
undersampling weight

Optimized sampling
« Effective livetime: sum(w)/sum(w”2) \

<

« ~similar to integrated luminosity 504

—o— MuonFilter
—o— (CascadeFilter
—e— HighQFilter

« Currently optimal biasing speeds up
computation by a factor ~10

Livetime / GPU Time x 1000
—
o
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Undersampling Factor

Natural-rate sampling

K. Meagher @ CHEP 2023
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Next steps

« Generalize!
* Replace 1D bias with an ML model

« Learn arbitrary target distributions
(i.e. different event selections)

* Investigate bias book-keeping in
higher dimensions
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