Simulating penetrating atmospheric leptons in IceCube

Early experiments with adaptive sampling

Jakob van Santen < jakob.van.santen@desy.de > KISS B2 meeting, 2023-09-28

IceCube

an optical Cherenkov detector in the deep Antarctic ice

CR, gamma, and neutrino detection

Trickiest backgrounds: rare showers dominated by single high-energy muon or neutrino

CORSIKA in IceCube

- 2. Propagate muons to instrumented volume, simulation stochastic losses
- 3. Propagate photons to DOMs
- 4. Simulate detector response

IceCube detects ~1e11 air showers per year. We need to **choose which** showers to simulate. (Even with SIBYLL)

Muon Event Types in Volume Detector

This is boring, and expensive to simulate (CORSIKA running time scales with multiplicity)

This is an interesting shower:

- background to neutrino searches
- tracer of forward physics

for bright events

High Energy Muon

High Multiplicity Bundle

Energy Spectrum follows Nucleons
-same as Neutrinos! Pa

Patrick Berghaus
Muon Multiplicity Spectrum

Energy Spectrum follows Nuclei

3

Patrick Berghaus, 2012

Muc

Simulating interesting showers

 Carefully tune injected energy spectrum & mass composition to avoid simulating excessively high-multiplicity showers. Only accounts for average shower behavior.

 Apply a known bias by aborting boring showers as quickly as possible. Used to require mucking about in CORSIKA internals (ICECUBE1 option from v7.50); now significantly easier with D. Baack's dynamic stack.

Cor++: CORSIKA plug-ins in C++

Standard CORSIKA

- Secondaries of each interaction to FIFO storage
- Depth-first propagation
- Minimizes in-memory size of shower

1 6 2 5 4 3

DYNSTACK CORSIKA (since v7.57, June 2017)

- Secondaries to custom storage
- Can change propagation order, drop particles, stop the entire shower, gather statistics, etc.
- Similar to Geant4 actions

Biasing scheme for single-like showers

- User specifies a target fraction of showers to accept ("bias factor," e.g. 0.01)
- Plugin uses the Elbert formula to pick a muon energy threshold for each shower

- Shower is killed with a probability (always < 1!) based on the highest-energy muon in the shower
- Kill probability increases monotonically with energy, so shower can be killed before the first muon is produced.

8

Demo: vertical proton showers

Demo: vertical proton showers

Figure of merit: effective livetime/walltime

- Weight: simulated cosmic ray fluence / expected flux (1/s) * undersampling weight
- Effective livetime: sum(w)/sum(w^2)
- ~similar to integrated luminosity
- Currently optimal biasing speeds up computation by a factor ~10

Natural-rate sampling

K. Meagher @ CHEP 2023

Next steps

- Generalize!
- Replace 1D bias with an ML model
- Learn arbitrary target distributions (i.e. different event selections)
- Investigate bias book-keeping in higher dimensions