

Update of SmartBKG --

Improved Selective Background Monte Carlo Simulation at Belle II with Graph
Attention Networks
and Weighted Events

Boyang Yu¹, Nikolai Hartmann¹, Thomas Kuhr¹

¹ Ludwig-Maximilians-Universität München

KISS B2, Sept 28, 2023

Belle II Experiment:

- At SuperKEKB
 - Electron-positron collider
 - Centre-of-momentum energy close to the mass of Y(4S) resonance to mainly produce B mesons
 - Located in Tsukuba, Japan
- Detector for reconstruction and identification of charged and neutral particles
- Search for new physics
- World's highest luminosity
- Huge MC dataset for analysis

Normal Monte Carlo Simulation data flow

Simulation with smart background selection

Previous Works:

- **PhD Thesis**: Hadronic Tag Sensitivity Study of $B \to K^{(*)} \nu \bar{\nu}$ and Selective Background Monte Carlo Simulation at Belle II, James Kahn, 2019
- Talk: Selective background Monte Carlo simulation at Belle II, James Kahn, CHEP 2019

Tree Structures of Particle Decay

1

Graph Neural Network

Dataset:

- Each event (each **Graph**):
 - ightharpoonup Decay of $\Upsilon(4S) \to B^0 \bar{B}^0$
 - Particles (Nodes)
 - ➤ Mother/Daughter relations (two way **Edges**) + self loops
 - Each particle (each **Node**)
 - > PDG id
 - > 8 Features: Production time, Energy, Position (3d), Momentum (3d)
- Label per event: Pass/Fail after the skims
 - * FEI Hadronic B0, retention rate 4.25%
- Other event level **attributions** for further analysis: e.g. M_{bc} , ΔE etc.

Tagging method:

Retention rate after reconstruction and selection of tag-side B candidate:

	Hadronic B+	Hadronic B ⁰
Mixed $(\Upsilon(4s) \to B^0 \bar{B}^0)$	5.62%	4.25%

Updating node features:

Graph Convolutional Networks (GCN)

-> Graph structure remains

Updating global features:

Global Average Pooling
-> Graph structure degenerated

Improvement

Improvement with attention mechanism

Graph Attention Networks (GAT)

-> Graph structure remains

Global Attention Pooling (GAP)

-> Graph structure degenerated

Each head (color) represents a different set of attention weights

Final Architecture: GAT+GAP

NN Performance

Best AUC* improved from 0.9083 to 0.9122

* Area under the Curve of ROC (The closer to 1 the better)

Visualization of Node/Edge-Attentions

Y(4S)

Bias due to False-Negatives with Naive Filtering

Skim NN	Positive	Negative
Pass	True-Positive (TP)	False-Negative (FN)
Fail	False-Positive (FP)	True-Negative (TN)

Weighting

	Sampling Method	Reweighting Method
Use of NN output	As probability to keep event randomly	As score for selection according to fix threshold
Weight	Inverse of NN output	Decided with the help of another classifier
Loss to train NN	Speedup	Binary cross entropy

Metric: Speedup

--Improvement of computation time to produce the same effective number of events with the help of NN filter:

Speedup:
$$s = \frac{t_{no_filter}}{t_{filter}}$$

Effective Sample Size:
$$N_{eff} = \frac{(\sum \omega_i)^2}{\sum \omega_i^2}$$

Weighting performance

	Sampling	Reweighting
Maximum speedup	2.0	6.5
Bias	No bias	Small bias on some of the variables

Practice

Test the module using $B^+ \to K^+ \nu \nu$ inclusive reconstruction:

$B^+ \rightarrow K^+ \nu \nu$ inclusive	skim.WGs.ewp	SmartBKG
Datasets	Run full chain with charged generic MC	Train: Charged generic MC14 Test: Run full chain with charged generic MC and SmartBKG
Process (Time measurement)	DetSim & RecSkimROEY(4S) Reconstruction	 NN Prediction & Sampling DetSim & Rec (Test only) Skim ROE Y(4S) Reconstruction
Sample sizes	0.5M	Train: 1.7M Test: 0.5M
Retention rate	3.68%	16.1% (True-Positive-Rate: 60.4%)
Speedup	-	Theoretical during training: 2.09 Measured in practice: 1.92

Test the module using $B^+ \to K^+ \nu \nu$ inclusive reconstruction

Summary

Conclusion:

- Attention mechanism can improve NN performance for selective background monte carlo simulation
- Bias is avoided with sampling method while a speedup of factor 2 can still be maintained
- Reweighting method can reach much higher speedup up to 6.5 but will still have some bias in the variables that are not used in the training of the extra classifier

Plans:

- Further improvements of the NN and its training
- Further improvements of weighting methods

Thank You for your Attention

Boyang Yu¹, Nikolai Hartmann¹, Thomas Kuhr¹

¹ Ludwig-Maximilians-Universität München

KISS B2, Sept 28, 2023

Backup

Tagging method:

Retention rate after reconstruction and selection of tag-side B candidate:

FEI Skim	Hadronic B ⁺	Hadronic B ⁰
Mixed $(\Upsilon(4s) \to B^0 \bar{B}^0)$	5.62%	4.25%

Final Architecture: GAT+GAP

Quantitative Studies

Comparison

Parameters:

- $n_{\text{heads}} = 4$
- $n_{\text{layers}} = 6$
- n_units = 128
- batch_size = 128
- $n_{train} = 0.9M$
- $n_val = 0.1M$
- $n_{\text{test}} = 0.5M$

Loss:

• Entropy

EarlyStopping:

- patience = 3
- delta = 1e-5

	GCN(sep)	GAT(sep)	GAT(gen)	GAT+GAP(gen)
TrainingTime	3619.46s	4047.47s	3471.48s	5049.81s
AUCValues	0.90831	0.90937	0.90891	0.91216

Grid Search

Best Combinations

Batch- size	Number of units	AUC	Training Time
<mark>128</mark>	<mark>128</mark>	0.9117	<mark>5205</mark>
256	32	0.9105	4061
256	128	0.9105	2666
<mark>512</mark>	<mark>32</mark>	0.9117	<mark>3568</mark>
512	128	0.9115	2228
1024	<mark>32</mark>	0.9115	<mark>1716</mark>
1024	256	0.9102	3556

AUC Training Time

Network Sizes

# Units	# Parameters
32	120,527
64	459,951
128	1,808,495
256	7,184,367
512	28,651,247

Hyperparameter Optimization

Model	AUC
GCN(sep)	0.908
GAT(sep)	0.909
GAT(gen)	0.909
GATGAP(gen)	0.912

Batch Size	Number of Units	AUC	Training Time in s
128	16	0.9131	10940
512	32	0.9117	3568
128	128	0.9117	5205
1024	32	0.9115	1716
512	128	0.9115	2228
256	128	0.9115	2666
256	32	0.9115	4061

Number of Units	Number of Parameters
16	34,911
32	120,527
64	459,951
128	1,808,495

Final Configuration:

- GATGAP Model using PyTorch + Deep Graph Library (DGL)
- 6 layers with 4 attention heads each and 32 units for GAT output & global features $-> \approx 120 k$ parameters
- Batch size 1024 (GPU training)

Sampling Method:

Reweighting Method:

Studied reweighters:

- GBDT Reweighting
- Histogram Reweighting

Reweighting Method:

- Train a Gradient Boosting Decision Tree (GBDT) classifier with some event level variables to distinguish between True-Positve events and False-Negative events
- GBDT Reweighting: use the outputs of the classifier directly:

$$W = \frac{1}{p_{clf}} = \frac{1}{p_{TP}/p_{TP+FN}} = \frac{p_{pass_skim}}{p_{TP}}$$

 Histogram Reweighting: compare the score histogram of all the events that can pass the skim (True-Positive + False-Negative) with the score histogram of True-Positives to give each bin of score a scaling factor:

$$w = w_{bin_i|p_{clf} \in bin_i} = \frac{H_{pass_skim,i}}{H_{TP,i}}|_{p_{clf} \in bin_i}$$

Skim NN	Positive	Negative
Pass	True-Positive (TP)	False-Negative (FN)
Fail	False-Positive (FP)	True-Negative (TN)

Relative statistical uncertainty and effective sample size

Variable	Formula	Remark
NN outputs / Probabilities to pass	$\{p_i\}$	'i' refers to each event in the whole sample (batch)
Weights	$\{\omega_i\} = \left\{\frac{1}{p_i}\right\}$	Infinities (at $p_i=0$) are excluded and set to 0 Avoid the bias by construction
Relative statistical uncertainty	$S = \frac{\sqrt{\sum \omega_i^2 p_i}}{\sum \omega_i p_i}$	$\sum \omega_i^2 p_i = \sum \omega_i$ $\sum \omega_i p_i = N$ Here consider only passed events (label = 1)
Effective sample size	$N_{eff} = \frac{1}{S^2}$	Number of events needed to reach the same statistical uncertainty without sampling

Speedup rate

Variable	Formula	Remark
Skim retention rate	r = 0.05	Probability to pass the skim process
Times of different phases in ms	$t_{gen} = 0.08$ $t_{NN} = 0.63$ $t_{SR} = 97.04$	Taken from previous studies
Effective number of events after sampling	$n_{+} = \sum p_{i}$ $n_{-} = \sum (1 - p_{i})$	$\{p_i\}$ will be devided into two subsets where the events will/won't pass the skim process
Time consuming with NN filter	$t_{+} = [n_{TP}r + n_{FP}(1-r)](t_{gen} + t_{NN} + t_{SR})$ $t_{-} = [n_{FN}r + n_{TN}(1-r)](t_{gen} + t_{NN})$	Positive/Negative: Result of sampling True/False: Result of sampling == skim process
Time consuming without NN	$t_0 = N_{eff} (t_{gen} + t_{NN})$	To reach the same statistical uncertainty
(Inverse) Speedup rate	$R = \frac{t_+ + t}{t_0}$	The lower the better

Robustness:

Weak dependency of Speedup on t_{NN} and t_{SR} Safe to generalize

KS-Test

skim.WGs.ewp.inclusiveBplusToKplusNuNu

- Track cleanup:
 - $p_t > 0.1$
 - thetaInCDCAcceptance
 - dr<0.5 and abs(dz)<3.0
- Event cleanup:
 - 3 < nCleanedTracks < 11
- Kaon pre-cuts:
 - track cleanup + event cleanup + nPXDHits > 0
- K+ reconstruction
- Kaon cuts:
 - p_t rank=1
 - kaonID>0.01
- B+ reconstruction
- B+ cut:
 - mva_identifier: MVAFastBDT_InclusiveBplusToKplusNuNu_Skim > 0.5