Radiation Hardness CMS HGCal Silicon Sensors

16th Terascale Detector Workshop

Jan Kieseler for the CMS HGCAL Silicon Sensor Group

23.2.2024

Institut für Experimentelle Teilchenphysik

Globally

- New endcap calorimeter for CMS ($|\eta| = 1.5 3$)
- 620 m² Si, 6M channels

Si sensors:

- High fluences up to 10^16 neq/cm2
- Two different sensor types, different optimal annealing scenarios
- Large area to cover with Si sensors: production line for 8" wafers being commissioned for HGCAL
- Radiation damage and annealing behaviour needs to be understood
- Crucial input for operation and warming up scenarios during technical stops

The HGCAL

The Breadth of Studies

- In general three thicknesses and technologies
- → 300µm (FZ), up to 2 * 10¹⁵ n_{eq}/cm²
- ▶ 200µm (FZ), up to 5 * 10¹⁵ n_{eq}/cm²
- ▶ 120µm (EPI), up to 10 * 10¹⁵ n_{eq}/cm²

Assuming 3 ab⁻¹

Jan Kieseler

Surface

Bulk material

Full Sensor Studies

- Handling and 'physical robustness'
- HV stability, radiation hardness
- Homogeneity of cell properties
- Impact of geometry: partials, edges, supply lines, ...

Irradiation of large wafers at RINSC

In a cylinder with dry ice

Jan Kieseler

• Fluences up to 1 (1.6) n_{eq}/cm^2 expected for 3 (4.5) ab⁻¹ of data

- Long exposure in the reactor
- Substantial annealing during irradiation
- Constant temperature monitoring required
- Recently achieved to stay within beneficial annealing regime
 - Optimised puck material
 - Split irradiation rounds

The Probe Station

- Temperature controlled chuck ranging from -40°C to typical annealing temperatures
- Open source design of probe card

Jan Kieseler

E. Brondolin, et al, arXiv:1903.10262, NIM A

2.4

Values for U = 600.0 V

Values for U = 600.0 V

Jan Kieseler

full

Full and Partial Sensor Leakage Current

°_

7.5 °₽

6.5

Values for U = 600.0 V

- Volume-normalised current increases with fluence
- Global pattern similar for all sensors in an irradiation batch
- Fluence or annealing time profiles

• Locally, all cells, including those in proximity to dicing and internal supply lines, show very consistent leakage current behaviour

Quantitative Overview

Outer Calibration cell (#29)

Edge Large cell (#192)

700

800

 $U_{bias}(V)$

500

600

Jan Kieseler

- Select cells on isofluence lines
- Normalise each cell current to the cell volume: ρ_I
- Normalise to the standard cell ρ
- Agree within 10% for different cell layouts and positions
- Mostly constant with bias voltage (same scaling)
- Even for large wafers, and partial wafers, the electrical characteristics are mostly homogenous

CMS HGCAL Collaboration, arXiv:2209.10159, JINST O. Kaluzinska, https://indico.cern.ch/event/1334364/contributions/5672066/

- EM radiation (X-ray) creates electron-hole pairs in the SiO₂ layer
- Holes can be trapped
- Creates charge build-up at the interface
 - Can deteriorate inter-pad isolation
- $N \propto V_{FB}$

[PhD thesis of Ioannis Kopsalis]

- Anneals relatively fast
- Challenging to measure in a reproducible way

Surface Damage

[Illustration V. Hinger]

X-ray Irradiation of Test Structure

- Sample cooled during irradiation and measurement
- Integrated setup avoids moving the sample between irradiation and measurement steps
- Fully automated measurement software enables reproducible and long term measurements
- Allows systematically studying of different oxide variants provided by the manufacturer

Oxide Quality

- Long continuous measurement campaigns possible (10² kGy correspond to a week)
- Detailed study of oxide quality using a floating and biased MOS (to emulate an electric field) ... and other properties
- "New Type C" chosen for production

M. Defranchis,

https://indico.cern.ch/event/1096847/contributions/4743792/ paper in preparation

Characterising the Bulk Material

- Combined setup to measure charge collection, leakage current, and capacitance
- Enables precise and long-term annealing studies
- Irradiation of samples: JSI (well controlled environment)

Jan Kieseler

Electrical Characteristics

- The electrical capacitance can provide a handle to extract the depletion voltage
- Beneficial annealing dominates until approx. 100 minutes @ 60°C

J.K. et al, arXiv:2211.04849, JINST

e depletion voltage 60°C

- Depletion voltage extracted from capacitance measurements depends on measurement frequency
- Higher fluencies and thicker sensors increase frequency dependence: there is no "good" frequency
- Frequency dependence also depends on annealing
- Investigate collected charge instead

Frequency Dependence

J.K. et al, arXiv:2211.04849, JINST L. Diehl, https://indico.cern.ch/event/1270076/contributions/5450197/

Charge Collection Efficiency Annealing

- A broad program of measurements to study the radiation hardness of the HGCAL silicon
 - Full sensors
 - Surface effects
 - Bulk properties
- First measurements with full and partial sensors up to $1.4 \ 10^{16} \, n_{eq}/cm^2$
- Qualified surface damage in a reproducible manner
- Comprehensive studies of the bulk material in terms of electrical characteristics and charge collection also extending to different annealing temperatures

Summary

BACKUP

Jan Kieseler

CCE measurement

Jan Kieseler

Full Sensor Irradiation Cooling

Dry ice for cooling of the cylinder

Jan Kieseler

Cylinder in reactor beam port radial to reactor core

Wafer Types

Low-Density sensor ~ 200 cells of 1.1 cm² size 300 µm & 200 µm active thickness

High-Density sensor ~ 450 cells of 0.5 cm² size

120 µm active thickness

Low-Density "Partial sensor" example from "Multi-Geometry" sensor

High-Density "Partial sensor" example from "Multi-Geometry" sensor

Jan Kieseler

