Review of TMD studies

Alexey Vladimirov

ECFA-NuPECC-APPEC Workshop Synergies between the EIC and the LHC

December 14, 2023

<ロ> <四> <四> <日> <日> <日> <日</p>

Nowadays, extractions of TMDs are mainly driven by LHC, despite it has not perfect low-q_T resolution and no polarization.
LHC is perturbation-theory dominated, and thus we can polish our codes and prepare them for future.
Future is for EIC, which will be perfect machine for TMDs.

・ロト ・日下・ ・ ヨト

		Quark Polarization											
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)									
Nucleon Polarization	υ	$f_1(x,k_T^2) \bullet$ Unpolarized		$h_1^{\perp}(x, k_T^2)$ Boer-Mulders									
	L		$g_1(x,k_T^2) \xrightarrow[Helicity]{\bullet} \xrightarrow{\bullet}$	$h_{LL}^{\perp}(x, k_T^2)$ \longrightarrow \cdot \bullet \bullet \bullet \bullet Kozinian-Mulders, "worm" gear									
	т	$f_{1T}^{\perp}(x,k_T^2)$ • - • • • • • • • • • • • • • • • • • •	$g_{1T}(x,k_T^2) \bigoplus_{r=0}^{r} - \bigoplus_{r=1}^{r}$ Kozinian-Mulders, "worm" gear	$h_{1}(x,k_{T}^{2}) \stackrel{\bullet}{\bigoplus} - \stackrel{\bullet}{\bigoplus} \\ \hline h_{1T}^{\perp}(x,k_{T}^{2}) \stackrel{\bullet}{\bigoplus} - \stackrel{\bullet}{\bigoplus} \\ \hline Pretzelosity$									

Selection of topics for this review

- ▶ New fits of pion and proton unpolarized TMD (PDFs and FFs)
 - ▶ New precision N⁴LL
 - Better estimation of uncertainties
 - ▶ More problems...
- ▶ New achievements in the theory
 - \blacktriangleright Matching TMD \rightarrow small-x dipole
 - Collinear distributions from TMDs
 - ▶ Power corrections (!)
- ▶ First computation of TMD from lattice

・ロト ・日 ・ ・ ヨ ・ ・

Preprints: JLAB-THY-23-3780, LA-UR-21-20798, MIT-CTP/5386

TMD Handbook

 Renaud Boussarie¹, Matthias Burkardt², Martha Constantinou³, William Detmold⁴, Markus Ebert^{4,5}, Michael Engelhardt², Sean Fleming⁶, Leonard Gamberg⁷, Xiangdong Ji⁸, Zhong-Bo Kang⁹,
 Christopher Lee¹⁰, Keh-Fei Liu¹¹, Simonetta Liuti¹², Thomas Mehen¹³, Andreas Metz³, John Negele⁴, Daniel Pitonyak¹⁴, Alexei Prokudin^{7,16}, Jian-Wei Qiu^{16,17}, Abha Rajan^{12,18}, Marc Schlegel^{2,19}, Phiala Shanahan⁴, Peter Schweitzer²⁰, Iain W. Stewart⁴, Andrey Tarasov^{21,22}, Raju Venugopalan¹⁸, Ivan Vitev¹⁰, Feng Yuan²³, Yong Zhao^{24,4,18}

ArXiV: 2304.03302

- ▶ 350+ pages on TMD factorization and related topic
- ▶ Good introduction to the topic
- ▶ Various topics, from definitions to models, small-x, sub-leading power, etc.

• • • • • • • • • • • • •

ART23

[V.Moos, I.Scimemi, AV, P.Zurita, 2305.07473]

* data included for the first time

- ► ATLAS
 - ▶ Z-boson at 8 (y-diff.)
 - ▶ Z-boson at 13 TeV (0.1% prec.!)

► CMS

- Z-boson at 7 and 8 TeV
- Z-boson at 13 TeV (y-diff.)
- ▶ \mathbf{Z}/γ up to $Q = 1000 \mathbf{GeV}$

▶ LHCb

- Z-boson at 7 and 8 TeV
- ▶ Z-boson at 13 TeV (y-diff.)
- Further more:
 - Z-boson at Tevatron
 - ▶ W-boson at Tevatron
 - **Z-boson at RHIC**
 - ▶ DY at PHENIX
 - ▶ DY at FERMILAB (fix target)

627 data points

vs. 457 in SV19 vs. 484 in MAP22

First extraction at N^4LL

ART23

[V.Moos, I.Scimemi, AV, P.Zurita, 2305.07473]

* data included for the first time

- ► ATLAS
 - ▶ Z-boson at 8 (y-diff.)
 - ▶ Z-boson at 13 TeV (0.1% prec.!)

► CMS

- Z-boson at 7 and 8 TeV
- Z-boson at 13 TeV (y-diff.)
- ▶ \mathbf{Z}/γ up to $Q = 1000 \mathbf{GeV}$

▶ LHCb

- Z-boson at 7 and 8 TeV
- ▶ Z-boson at 13 TeV (y-diff.)
- Further more:
 - Z-boson at Tevatron
 - ▶ W-boson at Tevatron
 - **Z-boson at RHIC**
 - ▶ DY at PHENIX
 - ▶ DY at FERMILAB (fix target)

627 data points

vs. 457 in SV19 vs. 484 in MAP22

First extraction at N^4LL

Very presice test of TMD evolution

TOTAL ($N_{\rm pt} = 627$): $\chi^2 / N_{\rm pt} = 0.96^{+0.09}_{-0.01}$

(口) (四) (

ART23

Extra features of analyses:

- ▶ Flavor dependent NP-ansatz (first time!)
 - ▶ 2 parameters per flavor
 - ▶ $u, d, \bar{u}, \bar{d}, \text{rest}$
- ▶ New parametrization for Collins-Soper kernel (3 parameters)
- ► Consistent inclusion of the PDF uncertainty (first time!)
- \blacktriangleright artemide

$$\lim_{b \to 0} F(x,b) = C(x,b) \otimes q(x) + \mathcal{O}(b^2)$$

Propagation of PDF uncertainty into TMD uncertainty

$$\lim_{b \to 0} F(x,b) = C(x,b) \otimes q(x) + \mathcal{O}(b^2)$$

Propagation of PDF uncertainty into TMD uncertainty

Pion TMDPDF										
AV	[1907.10356]	$N^{2}LL$	Problems with normalization							
MAP	[2210.01733]	N ³ LL	Problems with normalization							
JAM	[2302.01192]	NLO	TMD and PDF fitted simultaneously							

Problem with factorization or with collinear PDF?

Alexey Vladimirov

Pion TMDPDF										
AV	[1907.10356]	N^2LL	Problems with normalization							
MAP	[2210.01733]	N ³ LL	Problems with normalization							
JAM	[2302.01192]	NLO	TMD and PDF fitted simultaneously							

Problem with factorization or with collinear PDF?

Alexey Vladimirov

æ

Problems with normalization at lower-energy

Multiple observations of normalization problems at Q < 10 - 15GeV

- ► ~ 30% at $Q \sim 10 15 \text{GeV} (\pi \text{DY}, \text{DY})$
- ► ~ 100 150% at $Q \sim 3 5$ GeV (π DY, DY, SIDIS)

Possible source is **power corrections!**

	E228-200						43 1		1.01 35.39		1.12	34.6%	1			
$SV19 \stackrel{E228-300}{E228-400}$							3	0.91		28.8% 20.1%	1.01	27.8%				
		E228-400 E772 E605				3	35 1.86 53 0.57		86 57	8.9% 20.7%	1.93	7.9%				
		Low energy DY total			26	33	0.97		1.04		10.070	1				
	PHENIX	3	0.29	0.12	0.42^{+0}_{-0}	.15 .10	10.%		PH	PHENIX 200		2	2.21	0.88	3.08	1
	STAR	11	1.91	0.28	2.19^{+0}_{-0}).51).31	15.%	STAR 510			7	1.05	0.10	1.15		
	E288 (200)	43	0.31	0.07	0.38^{+0}_{-0}).12).05	44.%		DY collider total		251	1.86	0.2	2.06	1	
ART	23 (300)	53	0.36	0.07	0.43^{+0}_{-0}	1.08 1.04	48.%	E28		88 200 GeV		30	0.35	0.19	0.54	MAP22
11101	(400)	79	0.37	0.05	0.48^{+0}_{-0}).11).03	48.%		E288 300 GeV			39	0.33	0.09	0.42	
	E772	35	0.87	0.21	1.08^{+0}_{-0}	1.08 1.05	27.%		E28	8 400 Ge	V	61	0.5	0.11	0.61]
	E605	53	0.18	0.21	0.39^{+0}_{-0}	1.03).00	49.%	E77		72		53	1.52	1.03	2.56]
	*** *		1.1				1.1		E60	15		50	1.26	0.44	1.7	

Problems with normalization at lower-energy

Warning! large data uncertainties

Multiple observations of normalization problems at Q < 10 - 15 GeV

• ~
$$30\%$$
 at $Q \sim 10 - 15 \text{GeV} (\pi \text{DY}, \text{DY})$

$$\triangleright \sim 100 - 150\%$$
 at $Q \sim 3 - 5 \text{GeV} (\pi \text{DY}, \text{DY}, \text{SIDIS})$

Possible source is **power corrections!**

æ

TMD factorization at NLP

- ▶ 4 TMDFFs, 16 TMDPDFs of twist-3
- ▶ NLP restoration of frame-invariance, gauge invariance, boost invariance
- NLO expression for coefficient functions
- LO evolution for twist-3 TMDs
- ▶ Qiu-Sterman-like terms in TMD factorization

æ

æ

E

・ロト ・回ト ・ヨト

æ

This explains why there are problems with low- k_T at $Q \sim 10 \text{GeV}$ LHC is "pure" perturbation theory EIC will be "more interesting"

・ロト ・回ト ・ヨト

э

Requires further investigation If true, all earlier phenomenology of TMDs is concerned.

э

Alexev Vladimirov

・ロト ・日ト ・ヨト

Collinear distribution from TMDs Naively

æ

Collinear distribution from TMDs Properly

(日)、<日)、<</p>

$$\int^{\mu} d^2 \mathbf{k}_T f_1(x, \mathbf{k}_T; \mu, \mu^2) \simeq q(x, \mu)$$

-3%

-4%

 $-5\% \stackrel{E}{=}_{10^{-3}}$

Pavia '19

< D > < B >

 10^{-2}

 \boldsymbol{x}

SV '10

20

Pavia '19

10

 $k_T^{
m cut} ~[{
m GeV}]$

15

 ${\mathop{\mathrm{d}}
olimits}^{\mathrm{Tr}}_{\mathrm{d}^2}ec{k}_T\,f_d(x,ec{k}_T)/f_d(x) = 0$

-6%

-8%

-10%

'n

5

 10^{-1}

æ

(日)、

Determination of Collins-Soper kernel from the lattice

[Avkhadiev, Shanahan, Wagman, Zhao, hep-lat/2307.12359

- ▶ Physical pion mass
- ▶ NNLO accuracy
- ▶ Attention to various sources of uncertainties

First determination of the TMDPDF from the lattice

Systematic uncertainty still unknown...

æ

・ロト ・回ト ・ヨト ・ヨト

Conclusion

TMD studies are progressing, especially in the theory side (expect new wave of updated extractions next years)

- ▶ Phenomenology
 - New extractions of unpolarized TMDs
 - Systematic problems with normalization of low-energy data
- ▶ Theory
 - Power corrections [complete NLP, kinematic power corrections]
 - Better understanding of relation with small-x
 - Integral relations
- ▶ Lattice
 - ▶ Trustful Collins-Soper results
 - ▶ First attempts to determine TMDPDFs

Nowadays, extractions of TMDs are **mainly** driven by LHC, despite it has not perfect low- q_T resolution and no polarization. LHC is perturbation-theory dominated, and thus we can polish our codes and prepare them for future. Future is for EIC, which will be perfect machine for TMDs.

backup 1

- 12

Check sign-change

$$\begin{split} f_{1T}^{\perp}(sea) &\to -f_{1T}^{\perp}(sea) \\ \chi^2/N_{pt} &= 0.88^{+0.16}_{-0.06} \text{ vs. } \chi^2/N_{pt} &= 1.00^{+0.22}_{-0.08} \end{split}$$

Current data does not check sign-change!

Alexey Vladimirov

TMD