Towards the evolution of the Parton Distribution Functions to percent accuracy

Giulio Falcioni

Universität Zürich and Università di Torino

Synergies between the EIC and the LHC Hamburg, 14-15 Dec. 2023

Based on

- Renormalization of gluonic leading-twist operators in covariant gauges, with **F. Herzog**, JHEP 05 (2022) 177
- Four-loop splitting functions in QCD The quark-quark case, with F. Herzog, S. Moch, A. Vogt, PLB 842 (2023) 137944
- Four-loop splitting functions in QCD The gluon-to-quark case, with F. Herzog, S. Moch, A. Vogt, PLB 846 (2023) 138215
- The double fermionic contribution to the four-loop quark-to-gluon splitting function, with F. Herzog, S. Moch, J. Vermaseren, A. Vogt, PLB 848 (2024) 138351

LHC physics to 1% accuracy

HL-LHC: theory dominates the error budget.

Vol. 7/2019 of CERN Yellow Reports: Monograph.

Towards the evolution of the Parton Distribution Functions to percent accuracy ${\bigsqcup_{\text{QCD evolution to N}}}^3\text{LO}$

Theory framework

- $\hat{\sigma}_{ij}(s x_i x_j, \mu^2)$: perturbative cross section.
- $f_i(x_i, \mu^2)$: non-perturbative Parton Distribution Functions.
- μ: factorisation scale dependence controlled by the DGLAP equation (Gribov,Lipatov 1972; Lipatov 1975; Altarelli,Parisi 1977; Dokshitzer 1977).

How far shall we go in perturbation theory?

	<i>Q</i> [GeV]	$\delta\sigma^{\rm N^3LO}$	$\delta(scale)$	δ (PDF-TH)
NCDY	100	-2.1%	$^{+0.66\%}_{-0.79\%}$	$\pm 2.5\%$
$CCDY(W^+)$	150	-2.0%	$^{+0.5\%}_{-0.5\%}$	$\pm 2.1\%$
$CCDY(W^{-})$	150	-2.1%	$^{+0.6\%}_{-0.5\%}$	±2.13%

J. Baglio, C. Duhr, B. Mistlberger, R. Szafron 2022

• N³LO corrections
$$O(\%)$$
: $\delta \sigma^{N^3LO} = \frac{\sigma^{N^3LO} - \sigma^{NNLO}}{\sigma^{NNLO}}$

- $\delta(\text{scale})$: renorm./factoris. scale uncertainty of the perturbative cross section.
- δ (PDF-TH): Additional error due missing N³LO PDFs.

Ingredients for N³LO phenomenology

- 3-loop partonic cross sections
 - Impressive progress in recent years (see e.g. Anastasiou et al. 2016; Mistlberger 2018; Duhr,Dulat,Mistlberger 2020; Baglio,Duhr,Mistlberger,Szafron 2022)
- 4-loop DGLAP kernels.

$$\mu^{2} \frac{d}{d\mu^{2}} f_{i}\left(x,\mu^{2}\right) = \int_{x}^{1} \frac{dy}{y} P_{ij}(\alpha_{s},y) f_{j}\left(\frac{x}{y},\mu^{2}\right),$$
$$P_{ij}(\alpha_{s},x) = \underbrace{a P_{ij}^{(0)}}_{\text{LO}} + \underbrace{a^{2} P_{ij}^{(1)}}_{\text{NLO}} + \underbrace{a^{3} P_{ij}^{(2)}}_{\text{NNLO}} + \underbrace{a^{4} P_{ij}^{(3)}}_{\text{N^{3}LO}}, a = \frac{\alpha_{s}}{4\pi}$$

Towards the evolution of the Parton Distribution Functions to percent accuracy ${\bigsqcup_{\text{QCD evolution to N}}}^3\text{LO}$

Interplay with the EIC

- Wilson coefficients W to N³LO (Moch, Vermaseren, Vogt 2005, 2009; Blümlein, Marquard, Schneider, Schönwald 2022).
- Progress in 3-loop **heavy flavour** contributions (Ablinger et al. 2022), see talk by **J. Blümlein**.
- EIC data expected to improve large-x PDFs (Armesto et al. 2023), see talks by **E. Nocera** and **N. Armesto**.

Towards the N³LO DGLAP kernels

- Large-n_f limit (Gracey 1994, 1996; Davies,Vogt,Ruijl,Ueda,Vermaseren 2016)
- Flavour non-singlet quark combination

$$f_{\mathsf{NS},ik}^{\pm} = (f_i \pm f_{\overline{i}}) - (f_k \pm f_{\overline{k}}), \qquad i, k = u, d, s, \dots$$

Complete planar limit (Ruijl,Ueda,Vermaseren,Vogt 2017)

- n_f^2 term in $P_{qq}^{(3)}$ (Gehrmann, von Manteuffel, Sotnikov, Yang 2023)
- n_f^2 term in $P_{gq}^{(3)}$ (Falcioni, Herzog, Moch, Vermaseren, Vogt 2023)
- Flavour non-singlet: n_f C_F³ term (Gehrmann,von Manteuffel,Sotnikov,Yang 2023)

Approximate results

• The **moments** of the **DGLAP** kernerls govern the evolution of the **moments** of the **PDFs**.

$$\int_0^1 dx \, x^{N-1} \, \mathcal{P}_{ij}^{(N)}(x, \alpha_s) = -\gamma_{ij}^{(N)}.$$

- Moments up to N = 16 (non-singlet PDFs), N = 12 (γ_{qq}) and N = 10 (Moch,Ruijl,Ueda,Vermaseren,Vogt 2017, 2021, 2023)
- Approximate evolution from a fixed number of moments (Moch,Ruijl,Ueda,Vermaseren,Vogt non-singlet 2017; McGowan,Cridge,Harland Lang,Thorne 2022; Hekhorn,Magni 2023) See also talks by T. Cridge and G. Magni

Towards the evolution of the Parton Distribution Functions to percent accuracy Moments of the DGLAP kernels

This talk

- An efficient approach to compute moments.
- Evolution of the **quark (singlet)** density q_s :
 - Moments of the quark-to-quark splitting kernel P_{qq}.
 - Moments of the gluon-to-quark splitting kernel P_{qg}.
- Approximate evolution of q_S for $x\gtrsim 10^{-5}$ to % accuracy.
- Outlook

Towards the evolution of the Parton Distribution Functions to percent accuracy Moments of the DGLAP kernels

The OPE method

 Scale dependence in DIS controlled by anomlaous dimensions of local operators (Gross,Wilczek 1974; Politzer, Georgi 1974)

$$\mu^2 \frac{d}{d\mu^2} \mathcal{O}_i^{(N)} = -\gamma_{ij}^{(N)} \mathcal{O}_j^{(N)}$$

• ...but $\mathcal{O}_i^{(N)}$ can **mix** with **unphysical operators**.

- Unphysical terms determined to **two loops** (Dixon, Taylor 1974) but overlooked.
- Two-loop calculation settled after 20 years (Hamberg,van Neerven 1993)!

Operator structure to four loops

• Systematic construction of **all** the operators for each N (Falcioni, Herzog 2022)

$$\widetilde{\mathcal{L}} = \underbrace{\mathcal{L}_{0} + c_{g} \, \mathcal{O}_{g}^{(N)} + \mathcal{O}_{\overline{\text{EOM}}}^{(N)}}_{\mathcal{L}_{GGI}} + \underbrace{\mathbf{s'} \left[\overline{c}^{a} \left(\partial^{\mu} A_{\mu}^{a} - \frac{\xi_{L}}{2} b^{a} \right) \right]}_{\text{Gauge fixing + ghost}}$$

$$\begin{split} \mathcal{O}_{\mathsf{EOM}}^{(N)} &= (D^{\mu}F_{\mu})^{a} \left[\underbrace{\eta \, \partial^{N-2}A^{a}}_{\mathcal{O}_{g}^{l}} + gf^{aa_{1}a_{2}} \sum_{i_{1}+i_{2}=N-3} \underbrace{\kappa_{i_{1}i_{2}}(\partial^{i_{1}}A^{a_{1}})(\partial^{i_{2}}A^{a_{2}})}_{\mathcal{O}_{g}^{ll}} \right. \\ &+ g^{2} \sum_{\substack{i_{1}+i_{2}+i_{3}\\N-4}} \underbrace{(\kappa_{i_{1}i_{2}i_{3}}^{(1)}f^{aa_{1}z}f^{a_{2}a_{3}z} + \kappa_{i_{1}i_{2}i_{3}}^{(2)}d_{4}^{aa_{1}a_{2}a_{3}} + \kappa_{i_{1}i_{2}i_{3}}^{(3)}d_{4ff}^{aa_{1}a_{2}a_{3}})(\partial^{i_{1}}A^{a_{1}})..(\partial^{i_{3}}A^{a_{3}}) + \dots \\ & \underbrace{\mathcal{O}_{g}^{ll}}_{\mathcal{O}_{g}^{ll}} \end{split}$$

- Agreement with general theory (Joglekar, Lee 1974)
- Agreement with explicit results at **three loops** (Gehrmann,von Manteuffel,Yang 2023).

Moments of the quark-to-quark kernel

• Only \mathcal{O}^{I} and \mathcal{O}^{II} mix with **pure singlet** $\gamma_{ps}(N)$

$$\gamma_{qq}(N) = \gamma_{ps}(N) + \gamma^+_{ns}(N)$$

• Results for the first ten moments (N = 20) (Falcioni, Herzog, Moch, Vogt 2023)

$$\begin{array}{lll} \gamma^{\,\,(3)}_{\,\,\rm ps}({\it N}\,{=}\,2) &=& -691.5937093\,\,r_{\!\!P}\,{+}\,84.77398149\,\,r_{\!\!P}^2\,{+}\,4.466956849\,\,r_{\!\!P}^3\,\,,\\ & & \\ & & \\ \gamma^{\,\,(3)}_{\,\,\rm ps}({\it N}\,{=}\,20) &=& -0.442681568\,\,r_{\!\!P}\,{+}\,0.805745333\,\,r_{\!\!P}^2\,{-}\,0.020918264\,\,r_{\!\!P}^3\,. \end{array}$$

• Checks with moments up to N = 12

(Moch,Ruijl,Ueda,Vermaseren,Vogt 2023), large n_f limit (Davies,Moch,Ruijl,Ueda,Vermaseren,Vogt 2016), complete n_f^2 colour factor (Gehrmann,von Manteuffel,Sotnikov,Yang 2023).

Moments of the gluon-to-quark kernel

The same approach applied to $\gamma_{qg}(N)$

• Results for ten moments (Falcioni, Herzog, Moch, Vogt 2023)

$$\begin{array}{lll} \gamma_{\rm qg}^{(3)}(N\!=\!2) &=& -654.4627782 \ r_{\rm f} + 245.6106197 \ r_{\rm f}^2 - 0.924990969 \ r_{\rm f}^3 \ , \\ \gamma_{\rm qg}^{(3)}(N\!=\!4) &=& 290.3110686 \ r_{\rm f} - 76.51672403 \ r_{\rm f}^2 - 4.911625629 \ r_{\rm f}^3 \ , \\ & \ddots & \\ \gamma_{\rm qg}^{(3)}(N\!=\!20) &=& 52.24329555 \ r_{\rm f} - 109.3424891 \ r_{\rm f}^2 - 2.153153725 \ r_{\rm f}^3 \ . \end{array}$$

- Agreement with moments up to N = 10 (Moch,Ruijl,Ueda,Vermaseren,Vogt 2021,2023)
- Agreement with the large-n_f limit (Davies,Vogt,Ruijl,Ueda,Vermaseren 2016)

Towards the evolution of the Parton Distribution Functions to percent accuracy \Box Approximate N³LO evolution of the quark density

Approximations of $P_{qq}^{(3)}(x)$ (I)

Construction of 80 function matching $\gamma_{qq}(2) \dots \gamma_{qq}(20)$ and known end-point behaviour (Falcioni,Herzog,Moch,Vogt 2023)

- Small-x limits
 - Coefficients of $\frac{\log^2 x}{x}$ (Catani, Hautmann 1994)
 - Coefficients of log^k x with k = 6, 5, 4 (Davies,Kom,Moch,Vogt 2022)
- Large-x limits
 - Coefficients of $(1 x)^j \log^k (1 x)$ with k = 4, 3 and $\forall j \ge 1$ (Soar, Moch, Vermaseren, Vogt 2010)

Towards the evolution of the Parton Distribution Functions to percent accuracy

Approximate N³LO evolution of the quark density

Approximations of $P_{qq}^{(3)}(x)$ (II)

Towards the evolution of the Parton Distribution Functions to percent accuracy \Box Approximate N³LO evolution of the guark density

Towards the evolution of the Parton Distribution Functions to percent accuracy

Approximate N³LO evolution of the quark density

Approximations of $P_{qg}^{(3)}(I)$

The trial functions for $P_{qg}^{(3)}$ are constrained by the limits at

- Small-*x*:
 - Coefficients of $\frac{\log^2 x}{x}$ (Catani, Hautmann 1994)
 - Coefficients of log^k x with k = 6, 5, 4 (Davies,Kom,Moch,Vogt 2022)
- Large-*x*:
 - Coefficients of log^k(1 x) with k = 6, 5, 4 (Soar, Moch, Vermaseren, Vogt 2010; Vogt 2010; Almasy, Soar, Vogt 2011)
 - Coefficients of (1 x) log^k(1 x) with k = 6, 5, 4 (Soar, Moch, Vermaseren, Vogt 2010)

The coefficients of $\log^{k}(1-x)$ with k = 1, 2, 3 are **unknown**

Towards the evolution of the Parton Distribution Functions to percent accuracy

Approximate N³LO evolution of the quark density

Approximations of $P_{qg}^{(3)}$ (II)

Towards the evolution of the Parton Distribution Functions to percent accuracy \Box Approximate N³LO evolution of the guark density

Physical contribution to $q_{S}(x, \mu^{2})$ evolution $P_{as}(x)$ to N³LO using $\alpha_s = 0.2$ (left). $P_{ag} \otimes g$ (right) $x g(x) = 1.6 x^{-0.3} (\mathbf{1} - \mathbf{x})^{4.5} (1 - 0.6 x^{0.3})$ 0.1 1.1 $x[P_{\alpha\sigma} \otimes g](x)$ $xP_{\alpha\sigma}(x)$ 0.08 = = N³LO_{A B} 1.05 $N^{2}LO$ 0.06 NLO ----···· LO 0.04 = = $N^{3}LO_{AB}/NLO$ N²LO/NLO 0.02 0.95 $\alpha_{c} = 0.2, n_{c} = 4$ 0 10 -3 10^{-2} 10 -5 10^{-4} 10 -3 x 10⁻² 10 -4 10⁻¹ 10^{-1} х

Towards the evolution of the Parton Distribution Functions to percent accuracy \Box Approximate N³LO evolution of the guark density

Scale evolution of the quark distribution

Physical evolution of the quark density $\dot{q}_S = P_{qq} \otimes q_S + P_{qg} \otimes g$

Stability under variations of the renormalisation scale

$$\Delta_{\mu_r} \dot{q}_S = \frac{1}{2} \frac{\max[\dot{q}_S(\mu_r^2 = \lambda \mu_f^2)] - \min[\dot{q}_S(\mu_r^2 = \lambda \mu_f^2)]}{\operatorname{average}[\dot{q}_S(\mu_r^2 = \lambda \mu_f^2)]}, \qquad \lambda = \frac{1}{4} \dots 4$$

Getting ready for %-level accuracy at LHC and EIC

- The OPE approach allows us to compute efficiently moments up to N = 20 of $P_{qq}(x)$ and $P_{qg}(x)$.
- We constructed approximate N³LO kernels quantifying uncertainties
 - Negligible uncertainties for $P_{qq} \otimes q_S$.
 - Uncertainty of O(1%) for $P_{qg}\otimes g$ up to $x\gtrsim 10^{-5}$.
- N³LO corrections to the scale derivativative of q₅ amount to (2±1)% at x = 10⁻⁵.
- Improved scale stability O(%) for $x\gtrsim 10^{-5}$

Towards the evolution of the Parton Distribution Functions to percent accuracy Conclusion and outlook

Outlook

- Ongoing work on the evolution of the **gluon density**. Higher technical complexity.
- Progress on the n²_f colour factor of P_{gq}(x) (Falcioni, Herzog, Moch, Vermaseren, Vogt 2023)
 - Results for 30 moments (N = 60).
 - Analytic reconstruction in terms of ζ-values, harmonic sums and rational denominators with integer coefficients.
 - Full result for the n_f^2 colour factor!
- Stay tuned!

Towards the evolution of the Parton Distribution Functions to percent accuracy

Conclusion and outlook

Thank you!