Giacomo Magni, Nikhef Theory Group and VU Amsterdam

EFCA-NuPECC-APPEC workshop **DESY**, Hamburg **14 December 2023**

email: gmagni@nikhef.nl

Approximate N3LO Parton Distributions with the NNPDF framework

Introduction & Motivations

$$\sigma(x,Q^2) = \sum_{i} \int_x^1 \frac{dz}{z} \mathscr{L}_{ij}(z,\mu^2) \ \hat{\sigma}_{ij}(\frac{x}{z},\frac{Q^2}{\mu^2},\alpha_s) + \mathcal{O}(\frac{z}{z},\frac{Q^2}{\mu^2},\alpha_s) + \mathcal{O}(\frac{z}{\mu^2},\alpha_s) + \mathcal{O}(\frac{z$$

- Predictions for LHC observes relies on two main ingredients: PDFs and partonic Matrix Elements.
- ► In the last years many 2 to 1 processes have been calculated up to QCD at **N3LO**: $gg \rightarrow H$ [arxiv:1503.06056] $qq \rightarrow H$ (VBF) [arxiv:1606.00840]; Duhr, Dulat, Mistlberger [arxiv:1904.09990]; Duhr, Dulat, Hirschi, Mistlberger [arxiv:2004.04752] $pp \rightarrow W^{\pm}$ Duhr, Dulat, Mistleberger [arxiv:2007.13313]; Chen, Gehrmann, Glover, Huss, Yang, Xing Zhu [arxiv:2205.11426] $pp \rightarrow Z/\gamma, pp \rightarrow VH$ Baglio, Duhr, Mistlberger, Szafrond [arxiv:2209.06138]; Chen, Gehrmann, Glover, Huss, Yang, Xing Zhu [arxiv:2107.09085] Neumann, Campbell [arxiv:2207.07056]
- PDFs uncertainties are becoming a bottleneck for LHC precision calculations with the largest uncertainties along with the incomplete knowledge of $\alpha_{\rm s}$.
- Differences between PDF sets which are based on similar datasets have to be well motivated.

Duhr, Dulat, Mistleberger [arxiv:2007.13313]

1.1

1.05

0.95

20

40

 $\sigma/\sigma_{
m N3LO}$

60

80

100

Q [GeV]

120

NLO

– NNLO

– N3LO

K-Factor W^+

LHC 13TeV

160

180

 $\mu_{\text{cent.}}=Q$

140

Theory inputs for aN3LO PDFs.

m

~~~~

~~~~

m

~~~~

Towards NNPDF4.0 aN3LO.

\*\*\*\*\*

m

-

~~~~

~~~~

m

Impact on future observables.



\*\*\*\*\*

~~~~~

~~~~

m

## **PDFs determination at aN3LO**

Several theoretical inputs are needed in a PDF fit:

 The main ingredient are the QCD splitting functions which controls the DGLAP evolution.

$$Q^2 \frac{df_i}{dQ^2} = P_{ij}(x, \alpha_s) \otimes f_i(x, Q^2)$$

• VFNS matching conditions for each running component.

$$f_i^{(n_f+1)}(x, Q^2) = A_{ij}(x, \alpha_s) f_j^{(n_f)}(x, Q^2)$$

 DIS partonic coefficients functions, accounting for massive corrections when possible.

$$F_k = x \sum_{i=-n_f}^{n_f} C_{k,i}(x, \alpha_s) \otimes f_i(x, Q^2), \quad k = \{1, 2, 3\}$$

 Hadronic coefficients. At N3LO they can be included mainly through *k*-factors.





### Not all of them are yet available at N3LO

 Construct reliable approximations from existing calculations.

Determine theory uncertainties both from:

Incomplete Higher Order corrections (IHOU)

Missing Higher Order corrections (MHOU)

| *  |    |  |  |
|----|----|--|--|
| r, |    |  |  |
|    |    |  |  |
|    |    |  |  |
|    |    |  |  |
|    | F  |  |  |
|    |    |  |  |
| •  |    |  |  |
| •  |    |  |  |
|    |    |  |  |
|    |    |  |  |
|    |    |  |  |
|    |    |  |  |
|    |    |  |  |
|    |    |  |  |
|    |    |  |  |
|    |    |  |  |
| 10 | )0 |  |  |
|    |    |  |  |
|    |    |  |  |

# aN3LO splitting functions

Analytical calculations of the complete N3LO spitting functions are not available yet. But many information are available.

In DGLAP evolution we can distinguish:

4 Singlet splitting functions: 
$$Q^2 \frac{d}{dQ^2} \begin{pmatrix} g \\ \Sigma \end{pmatrix} = \begin{pmatrix} P_{gg} & P_{gq} \\ P_{qg} & P_{qq} \end{pmatrix} \otimes \begin{pmatrix} g \\ \Sigma \end{pmatrix}$$
  
3 Non-Singlet splitting functions:  $Q^2 \frac{dV}{dQ^2} = P_{NS,v} \otimes V$ 

Non Singlet Know limits:

- ► Large-n<sub>f</sub> limit: Davies, Vogt, Ruijl, Ueda, and Vermaseren. [arXiv:1610.07477]; Gehrmann, Manteuffel, Sotnikov, Yan [arxiv:2308.07958]  $\mathcal{O}(n_f^2), \mathcal{O}(n_f^3)$
- **Small-***x* **limit:** Davies, Kom, Moch, Vogt. [arXiv:2202.10362]
- Large-x limit: Moch, Ruijl, Ueda, Vermaseren, Vogt [arXiv:1707.08315]

$$P_{NS}^{(3)} \approx A_4 \frac{1}{(1-x)_+} + B_4 \delta(1-x) + C_4 \ln(1-x) + D_4, \quad x \to 1$$

► 8 lowest Mellin Moments: [arXiv:1707.08315]



The **Non Singlet** splitting functions can be estimated with quite precise accuracy for phenomenological studies.

## N3LO Non Singlet splitting functions dependency on active flavors

|                       | $n_f^0$      | $n_f^1$      | $n_f^2$      | $n_f^3$      |
|-----------------------|--------------|--------------|--------------|--------------|
| $\gamma_{ns,-}^{(3)}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\gamma_{ns,+}^{(3)}$ | $\checkmark$ | $\checkmark$ | √            | $\checkmark$ |
| $\gamma_{ns,s}^{(3)}$ |              | $\checkmark$ | $\checkmark$ |              |







# aN3LO splitting functions

In DGLAP evolution we can distinguish:

- **4 Singlet** splitting functions:  $Q^2 \frac{d}{dQ^2} \begin{pmatrix} g \\ \Sigma \end{pmatrix} = \begin{pmatrix} P_{gg} & P_{gq} \\ P_{qg} & P_{qq} \end{pmatrix} \otimes \begin{pmatrix} g \\ \Sigma \end{pmatrix}$
- ▶ 3 Non-Singlet splitting functions:

$$Q^2 \frac{dV}{dQ^2} = P_{NS,v} \otimes V$$

#### Singlet known limits:

- ► Large- $n_f$  limit: Davies, Vogt, Ruijl, Ueda, Vermaseren. [arXiv:1610.07477];  $\mathcal{O}(n_f^3)$ Gehrmann, Manteuffel, Sotnikov, Yan [arxiv:2308.07958]  $\mathcal{O}(n_f^2)$  only for  $P_{qq,PS}$ ,  $P_{qg}$
- **Small-***x* **limit:** Bonvini, Marzani [arXiv:1805.06460]  $P_{ij}^{(3)} \supset \sum_{ij}^{3} \frac{\ln^{k}(x)}{x}$
- ► Large-*x* limit: Duhr, Mistlberger, Vita [arXiv:2205.04493]; Henn, Korchemsky, Mistlberger [arXiv:1911.10174]; Soar, Moch, Vermaseren, Vogt [arXiv:0912.0369].

$$P_{ii}^{(3)} \approx A_{4,i} \frac{1}{(1-x)_{+}} + B_{4,i} \delta(1-x) + C_{4,i} \ln(1-x) + D_{4,i}$$
$$P_{ij}^{(3)} \approx \sum_{k}^{6} \ln^{k}(1-x)$$

► 5 (10) lowest Mellin Moments: Moch, Ruijl, Ueda, Vermaseren, Vogt[arXiv:2111.15561]; Falcioni, Herzog, Loch, Moch, Vogt [arXiv:2302.07593], [arxiv:2307.04158]

See also G.Falcioni talk



The **Singlet** splitting functions are way more challenging and can be determined only with a finite accuracy.

#### N3LO Singlet splitting functions dependency on active flavors

|                        | $n_f^0$      | $n_f^1$      | $n_f^2$ | $n_f^3$ |
|------------------------|--------------|--------------|---------|---------|
| $\gamma_{gg}^{(3)}$    | $\checkmark$ | $\checkmark$ | ~       | √       |
| $\gamma_{gq}^{(3)}$    | $\checkmark$ | $\checkmark$ | ~       | √       |
| $\gamma_{qg}^{(3)}$    |              | $\checkmark$ | √       | √       |
| $\gamma^{(3)}_{qq,ps}$ |              | $\checkmark$ | √       | √       |



# aN3LO splitting functions

How can do we combine the different limits ?

The approximation procedure is performed in Mellin space for each  $n_f$  part independently:

$$\gamma_{ij}^{(3)} = \gamma_{ij,n_f^3}^{(3)} + \gamma_{ij,N\to\infty}^{(3)} + \gamma_{ij,N\to0}^{(3)} + \gamma_{ij,N\to0}^{($$

 $\tilde{\gamma}_{ij} = \sum a_{ij}^{(l)} G_l(N)$ The parametrised part is constructed as:

- 1. A function  $G_1$  for the leading unknown large-N contribution.
- 2. A function  $G_2$  for the leading unknown small-N contribution.
- 3. 3 (8) functions  $G_l$  for the sub-leading small-N and large-N contributions.
- 4. Vary the functions  $G_l$  to generate a variety of approximations. This will estimate **IHOU**
- Only theoretical inputs are considered.
- All the implemented approximations respect momentum sum rules.

 $\tilde{\gamma}_{ij}^{(3)}$ 

Mellin transformation:

$$\tilde{\gamma}_{ij}(N) = \int_0^1 x^{N-1} P_{ij}(x) dx$$

Rule of thumb: small- $N \rightarrow$  small-x, large- $N \rightarrow large-x$ 

Adopted basis function for  $\tilde{\gamma}_{aa}^{(3)}$ 

| $G_1(N)$ | $\mathcal{M}[(1-x)\ln^2(1-x)]$                                                                                                                       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| $G_2(N)$ | $-\frac{1}{(N-1)^2} + \frac{1}{N^2}$                                                                                                                 |
| $G_3(N)$ | $rac{1}{N^4}, \ rac{1}{N^3}, \ \mathcal{M}[(1-x)\ln(1-x)] \ \mathcal{M}[(1-x)^2\ln(1-x)^2], \ rac{1}{N-1}-rac{1}{N}, \ \mathcal{M}[(1-x)\ln(x)]$ |
| $G_4(N)$ | $\mathcal{M}[(1-x)(1+2x)],  \mathcal{M}[(1-x)x^2], \ \mathcal{M}[(1-x)x(1+x)],  \mathcal{M}[(1-x)]$                                                  |





- Large logs  $1/x \ln^3(x)$ ,  $1/x \ln^2(x)$  arise at N3LO. MHOU (from scale) variations) fails in small-x region.
- ► Good agreement between different perturbative orders at large-x.
- IHOU are not negligible. Having 10 moments available would be enough to reduce IHOU.
- Off diagonal terms  $P_{qg}$ ,  $P_{gq}$  are more difficult to estimate (large- $N \rightarrow 0$ ).







8

# aN3LO DGLAP evolution

- Valence-like PDFs display good perturbative convergence on all the x-range.
- Impact of the N3LO corrections is at most at percent level. Ongoing benchmark study with MSHT and FHMV to asses a region in which agreement between different aN3LO splitting functions approximations can be found.

Relative difference to NNLO evolution from,  $Q = 1.41 \rightarrow 100 \text{ GeV}$ 







See also T.Cridge talk







## **DIS Structure Functions**

DIS structure functions are known at N3LO in the massless limit (ZM-VFNS) for  $F_2, F_L, F_3$ :

- ► DIS NC: Larin, Nogueira, Van Ritbergen, Vermaseren [arxiv:9605317] Moch, Vermaseren, Vogt [arxiv:0411112], [arxiv:0504242]
- ► DIS CC: Davies, Moch, Vermaseren, Vogt [arxiv:0812.4168] [arxiv:1606.08907]

DIS Heavy structure functions can be parametrised joining the known limits  $(Q \rightarrow m_h^2 Q \gg m_h^2 \text{ and } x \rightarrow 0)$  with proper damping functions  $f_1, f_2$ .

$$C_{g,h}^{3} = C_{g,h}^{(3,0)} + C_{g,h}^{(3,1)} \ln(\frac{\mu}{m_{h}}) + C_{g,h}^{(3,2)} \ln^{2}(\frac{\mu}{m_{h}})$$
$$C_{g,h}^{(3,0)} = C_{g,h}^{thr}(z, \frac{m_{h}}{Q}) f_{1}(z) + C_{g,h}^{asy}(z, \frac{m_{h}}{Q}) f_{2}(z)$$

KLMV Kawamura, Lo Presti, Moch, Vogt [arxiv:1205.5727]







10

## **DIS VFNS at aN3LO**

During a PDF fit different flavour schemes need to be joined together using a proper Variable Flavor Number Scheme

## **PDFs matching conditions** are now available at

N3LO almost completely, with the exception of  $a_{H,g}^{(3)}$ : Bierenbaum,

Blümlein, Klein [arXiv:0904.3563] Ablinger, Behring, Blümlein, De Freitas, Hasselhuhn, von Manteuffel, Round, Schneider, Wißbrock. [arXiv:1406.4654], Ablinger, Behring, Blümlein, De Freitas, Goedicke, von Manteuffel, Schneider Schonwald [arXiv:2211.0546].

$$\begin{pmatrix} g \\ \Sigma^{(n_f)} \\ h^+ \end{pmatrix}^{n_f+1} (\mu_h^2) = \mathbf{A}_{S,h^+}^{(n_f)} (\mu_h^2) \begin{pmatrix} g \\ \Sigma^{(n_f)} \\ h^+ \end{pmatrix}^{n_f} (\mu_h^2)$$

 $F_{h,FONLL} = F_{ZM}^{(n_f+1)} + F_{FFNS}^{(n_f)}$  $-\lim_{m_h\to 0} F_{FFNS}^{(n_f)}$ 



In NNPDF studies DIS structure functions are computed in the **FONLL** procedure [arxiv:1001.2312]:

- Extended up to N3LO for the Heavy structure functions  $F_{heavy}$
- Extended up to NNLO for light  $F_{light}$  + massless N3LO contributions. 11





## Collider DY @ aN3LO

- Corrections to **collider DY** and *W* productions (differential in  $m_{\ell\ell}$  or  $y_Z$ ) can be included through k-factors.
- N3LO effects are around 1-2% of the total cross sections for LHC experiments, and quite flat in the boson rapidity.
- Differential distributions in  $p_t$  are included only up to NNLO.
- ► N3LO corrections to other hadronic processes used in PDFs fits (*t*, *tt*, *Jets*, *FTDY*) are not known or public available.
- Whenever N3LO ME are not available we introduce NNLO MHOU.



Atlas high-mass DY 7 TeV





\*\*\*\*\*

m

\*\*\*\*

~~~~

mm

- Towards NNPDF4.0 aN3LO.
- Impact on future observables.

~~~~

~~~~

m

m


~~~~

\*\*\*\*

~~~~

-

PDF MHOU from scale variations

For a given observable, MHOU are estimated by varying the unphysical scales. MSTH [arxiv:1811.08434], NNPDF [arxiv:1906.10698], [arxiv:2105.05114]

- Not a unique procedure. Scale variations are not the unique procedure.
- Factorization scale variations are introduced during the DGLAP evolution.
- **Renormalization scale variations** are retained inside the coefficient functions and varied differently for different kind of processes.
- The way in which μ_f, μ_r are varied simultaneously define a so called point prescription.

- ✦ We use NNLO MHOU to estimate unknown N3LO effects.
- ◆ In addition we can add N3LO MHOU to account for further higher order corrections.

Partonic coefficients

 κ_F

IHOU from aN3LO variations

IHOU are propagated to the PDF fit by constructing a covariance matrix by varying a single splitting function (during the DGLAP evolution) or DIS coefficient at the time: 37

$$Cov_{ij,IHOU} = \sum_{l=1}^{N_{par}} \frac{1}{N_{var,l} - 1} \sum_{k=1}^{N_{var,l}} (T_{i,k} - \bar{T}_i)(T_{j,k} - \bar{T}_j) \quad i, j = 1, \dots, n_{data}$$

• **IHOU** are **independent** from **MHOU**, so they can be added in quadrature:

$$Cov_{ij} = Cov_{ij,EXP} + Cov_{ij,MHOU} + Cov_{ij,IHOU}$$

Theory uncertainties correlate different processes and experiments.

See also E.R. Nocera talk

Impact of theory uncertainties

IHOU in DIS datasets

- **IHOU** have a lager effect on the **small-x**, **low-Q** DIS data.
- Approximations of DIS massive coefficient functions are included.

NNLO MHOU in LHC datasets

 NNLO MHOU from renomalization scale variations are included where N3LO ME are not available. Main effect is to deweight jets datasets.

NNPDF4.0 aN3LO

- Preliminary aN3LO fits show an effect of N3LO corrections specially for gluon g and Singlet Σ .
- At **large-***x* PDFs are compatible within one sigma with NNLO determinations.

- Shift in N3LO NNLO predictions is within 1% in most of the kinematic coverage.
- Exceptions are visible in small-x DIS data some collider **DY** data.

NNPDF4.0 aN3LO

• MHOU have a non trivial effect and can induce shifts both in the **central value** and in **uncertainty** size.

- MHOU improve perturbative convergence, specially at NLO
- ► aN3LO MHOU are generally smaller.

Theory inputs for aN3LO PDFs.

m

~~~~

~~~~

m

Towards NNPDF4.0 aN3LO.

m

~~~~

m

Impact on future observables.



~~~~

~~~~

m

# **Higgs Production at LHC**

• ME for both **VBF** and **gluon fusion Higgs** production are available at N3LO:  $gg \rightarrow H$  [arxiv:1503.06056]  $qq \rightarrow H$  (VBF) [arxiv:1606.00840]

- Larger effects are visible in gluon fusion, leading to a small suppression w.r.t NNLO PDFs.
- Higgs VBF is more stable at different perturbative orders.





# **Drell-Yan at LHC**

- Also for collider gauge boson production, usage of aN3LO PDFs seems to **improve the** perturbative convergence.
- Similar N3LO/NNLO ratio as in MSHT20 aN3LO.

Duhr, Dulat, Mistleberger [arxiv:2007.13313]





#### PRELIMINARY



# **DIS structure functions at EIC**

- At **EIC** we will be able to measure **many DIS observables**, with high precision, specially for **heavy quarks**.
- EIC will cover **large**-*x* kinematic regions, with higher accuracy than what we know so far.
- N3LO QCD corrections are just one of the many required ingredients.



### Polarised structure function $g_1(x)$ at the EIC



### Projection of $F_{2,charm}(x)$ at the EIC





See also [arxiv:2311.00743]

Heavy Quarks in Polarised Deep-Inelastic Scattering at the Electron-Ion Collider [in preparation]





# Summary & Conclusion

m

mm

-

som.

~~~~

m

~~~~

~~~~

m

where a

mm

~~~~

-

-



- Computing precise and accurate LHC observables require including theory uncertainties in PDFs.
- First aN3LO PDFs from the major fitting groups are (will be soon) available.
- Ongoing effort to benchmark inputs and validate these results.
- aN3LO PDFs mainly include aN3LO corrections to **DGLAP** and **DIS**.
- They can be used both with N3LO partonic cross section, but also to evaluate missing higher order effects as they are provided with theory uncertainties.

# Summary & Conclusion





## N3LO Splitting functions benchmarks







 $xP_{qq}(x), \ \alpha_s = 0.2 \ n_f = 4$ 0.12- MSHT (prior)  $xP_{qq}$ MSHT (posterior) 0.10 ---- MRUVV --- This work 0.08 0.06 0.04 0.02 - $0.00 \\ 10^{-5}$  $10^{-4}$  $10^{-1}$  $10^{-3}$  $10^{-2}$ x

## PDF comparison with MSHT20



27