Hybrid static potentials from Laplacian eigenmodes

R. Höllwieser, T. Korzec, F. Knechtli,

M. Peardon, L. Struckmeier, J.-A. Urrea-Niño

University of Wuppertal, Trinity College Dublin

Lattice QCD

- link variables $U_{\mu}(x) = \exp(i \int_{x}^{x+a\hat{\mu}} A_{\mu} dx^{\mu})$
- Wilson line $U_s(\vec{x}, \vec{y}) = \exp(i \int_{\vec{x}}^{\vec{y}} A_\mu dx^\mu) = \prod U_\mu$
- path-ordered product of link variables, on-/off-axis
- plaquette, Wilson loop W(R,T), static $\overline{Q}Q$ pair

potential Hyl

esons Born-(

orn-Oppenheimer

Visualizations

t Conclusion

Motivation

- ▶ hybrid mesons (valence glue, exotics, XYZ), (hybrid) static-light
- identify bound states using Born-Oppenheimer approximation Braaten et al. (2014), Capitani et al. (2019)
- observation of (hybrid) string breaking in QCD, *e.g.*, Bali et al. (2008), Bulava et al. (2019)
- calculate the (hybrid) static potential with high resolution
- \Rightarrow on the lattice we have to work with off-axis separated quarks
- ► the spatial part of the Wilson loop has to go over stair-like paths through the lattice → not unique, computationally expensive
- ⇒ alternative operator which ensures gauge invariance of the quark-anti-quark $\bar{Q}(\vec{x})U_s(\vec{x},\vec{y})Q(\vec{y})$ trial state
- required gauge transformation behavior:

 $U'_s(\vec{x}, \vec{y}) = G(\vec{x})U_s(\vec{x}, \vec{y})G^{\dagger}(\vec{y})$

Laplace trial states

- idea taken from Neitzel et al. (2016) SU(2)
- eigenvectors $v(\vec{x})$ of the 3D covariant lattice Laplace operator
- ► spatial Wilson line: $U'_s(\vec{x}, \vec{y}) = G(\vec{x})U_s(\vec{x}, \vec{y})G^{\dagger}(\vec{y})$ $v'(\vec{x})v'^{\dagger}(\vec{y}) = G(\vec{x})v(\vec{x})v^{\dagger}(\vec{y})G^{\dagger}(\vec{y})$
- ▶ Wilson loop of size $(R = |\vec{r}| = |\vec{x} \vec{y}|) \times (T = |t_1 t_0|)$

 $W(R,T) = \langle \operatorname{tr} \left[U_t(\vec{x};t_0,t_1) U_s(\vec{x},\vec{y};t_1) U_t^{\dagger}(\vec{y};t_0,t_1) U_s^{\dagger}(\vec{x},\vec{y};t_0) \right] \rangle$

R. Höllwieser, Hybrid static potentials from Laplacian eigenmodes

Static Perambulator

static perambulator $\tau_{ij}(\vec{x},t_0,t_1) = v_i^{\dagger}(\vec{x},t_0)U_t(\vec{x};t_0,t_1)v_j(\vec{x},t_1)$

$$Q(t) = \sum_{\vec{x},t_0} \langle \sum_{i,j}^{N_v} \tau_{ij}(\vec{x},t_0,t_0+t) \rangle$$

expectation value should vanish, no single quarks...

Optimal trial state results

- Gaussian profile functions: $\rho_i^{(k)}(\lambda_i) = \exp(-\lambda_i^2/2\sigma_k^2)$
- define correlation matrix W_{kl} using 7 different $\sigma_{k,l}$, SVD $(u_{k,l})$
- GEVP: $W(t)\nu^{(n)} = \mu^{(n)}W(t_0)\nu^{(n)}$, $\mu^{(n)}$ give effective energies
- optimal profiles $\tilde{\rho}_R^{(n)}(\lambda_i) = \nu_k^{(n)} u_{k,l} \exp(-\lambda_i^2/2\sigma_l^2)$

▶ $24^3 \times 48, \beta = 5.3, N_f = 2, \kappa = 0.13270, a = 0.0658$ fm

R. Höllwieser, Hybrid static potentials from Laplacian eigenmodes

Static-hybrid potentials

Hybrid static potentials are characterized by the following quantum numbers $\Lambda_{\eta}^{\epsilon}$, Bali et al. (2005), Bicudo et al. (2015):

- $\Lambda = 0, 1, 2, 3, \ldots \equiv \Sigma, \Pi, \Delta, \Phi, \ldots$, the absolute value of the total angular momentum with respect to the axis of separation of the static quark-antiquark pair
- η = +, − ≡ g, u, the eigenvalue corresponding to the operator P ∘ C, i.e. the combination of parity and charge conjugation
- ϵ = +, -, the eigenvalue corresponding to the operator P_x, which denotes the spatial reflection with respect to a plane including the axis of separation (Λ > 0 degenerate)
- ⇒ derived from the continuous group $D_{\infty h}$, which leaves a cylinder along a chosen axis invariant, with irreducible representations (irreps): $A_1^{\pm}(\Sigma_{\pm}^+)$, $A_2^{\pm}(\Sigma_{\pm}^-)$, $E_1^{\pm}(\Pi_{\pm})$, $E_2^{\pm}(\Delta_{\pm})$, $E_3^{\pm}(\Phi_{\pm})$,...
- \Rightarrow on the lattice we have D_{4h} , with 10 irreps: A_1^{\pm} , A_2^{\pm} , B_1^{\pm} , B_2^{\pm} , E^{\pm}
- \Rightarrow subduction relations $A_{1,2}^{\pm} \rightarrow A_{1,2}^{\pm}, E_1^{\pm} \rightarrow E^{\pm}, E_2^{\pm} \rightarrow B_1^{\pm} \oplus B_2^{\pm}, \dots$

esons Born-(

nheimer Visuali

isualizations

Conclusion

Wilson loop static-hybrid states

standard construction with handles, e.g. Σ_{g}^{-} , Capitani et al. (2019)

esons Borr

n-Oppenheimer

Visualizations

nt Conclusion

Laplacian static-hybrid states

- we can realize gluonic excitations via covariant derivatives $\nabla_{\vec{k}}v(\vec{x}) = \frac{1}{2}[U_k(\vec{x})v(\vec{x}+\hat{k}) - U_k^{\dagger}(\vec{x}-\hat{k})v(\vec{x}-\hat{k})]$
- ► derivative based operators that transform according to the 10 irreps of the cubic group O_h: ∇_i(T₁), B_i = ε_{ijk}∇_j∇_k(T₁), D_i = |ε_{ijk}|∇_j∇_k(T₂), E_i = Q_{ijk}∇_j∇_k(E), ∇²(A₁)
- ▶ since D_{4h} is a subgroup of O_h we have the subduction relations $A_1^{\pm} \rightarrow A_1^{\pm}, A_2^{\pm} \rightarrow B_1^{\pm}, E^{\pm} \rightarrow A_1^{\pm} \oplus B_1^{\pm}, T_1^{\pm} \rightarrow A_2^{\pm} \oplus E^{\pm}$ and $T_2^{\pm} \rightarrow B_2^{\pm} \oplus E^{\pm}$
- ► the three components of ∇_i get separated into one that transforms like A₂ (along the separation axis) and two that transform like E (the two orthogonal to the separation axis)
- ▶ with excited gluons also exotic quantum numbers accessible $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, 4^{+-}, 5^{-+}, \dots$
- ▶ in the pure quark model $P = (-1)^{L+1}$ and $C = (-1)^{L+S}$, with orbital angular momentum $L \in \{0, 1, 2, ...\}$ and spin $S \in \{0, 1\}$

Laplacian static-hybrid states

$$\begin{split} & \Sigma_{g}^{+} \colon v(-\vec{x})v^{\dagger}(\vec{x}) \quad \cdots \quad \bullet^{\dagger} \quad \leftrightarrow \cdots \quad \bullet^{\dagger} \mp \bullet \cdots \leftrightarrow^{\dagger} \\ & \Sigma_{u}^{+} \colon \nabla_{\vec{x}}v(-\vec{x})v^{\dagger}(\vec{x}) + v(-\vec{x})[\nabla_{\vec{x}}v(\vec{x})]^{\dagger} \\ & \Pi_{\pm} \colon \updownarrow \cdots \quad \bullet^{\dagger} \mp \bullet \cdots \uparrow^{\dagger} \quad \bullet \quad \uparrow^{\dagger} \bullet \cdots \quad \bullet^{\dagger} \mp \bullet \cdots \quad \bullet^{\dagger} \updownarrow \bullet \\ & \nabla_{\vec{k}}v(-\vec{x})v^{\dagger}(\vec{x}) \mp v(-\vec{x})[\nabla_{\vec{k}}v(\vec{x})]^{\dagger} \qquad (\vec{k} \perp \vec{x}) \\ & v(-\vec{x})[\nabla_{\vec{k}}v(-\delta\vec{x})]^{\dagger}v(-\delta\vec{x})v^{\dagger}(\vec{x}) \mp v(-\vec{x})V^{\dagger}(\delta\vec{x})[\nabla_{\vec{k}}v(\delta\vec{x})]v^{\dagger}(\vec{x}) \\ & \oplus \cdots \quad \bullet^{\dagger} \pm \bullet \cdots \quad \oplus^{\dagger} \qquad | \oplus | \cdots \quad \bullet^{\dagger} \pm \bullet \cdots | \oplus |^{\dagger} \\ & \mathbb{B}_{\vec{k}}v(-\vec{x})v^{\dagger}(\vec{x}) \pm v(-\vec{x})[\mathbb{B}_{\vec{k}}v(\vec{x})]^{\dagger} \qquad (\vec{k} \perp \vec{x}) \\ & \mathbb{D}_{\vec{k}}v(-\vec{x})v^{\dagger}(\vec{x}) \pm v(-\vec{x})[\mathbb{D}_{\vec{k}}v(\vec{x})]^{\dagger} \qquad (\vec{k} \perp \vec{x}) \\ & \mathbb{A}_{\pm} \colon \otimes \cdots \quad \bullet^{\dagger} \pm \bullet \cdots \otimes^{\dagger} \qquad | \otimes | \cdots \quad \bullet^{\dagger} \pm \bullet \cdots | \otimes |^{\dagger} \\ & \mathbb{B}_{\vec{x}}v(-\vec{x})v^{\dagger}(\vec{x}) \pm v(-\vec{x})[\mathbb{B}_{\vec{x}}v(\vec{x})]^{\dagger} \\ & \mathbb{D}_{\vec{x}}v(-\vec{x})v^{\dagger}(\vec{x}) \pm v(-\vec{x})[\mathbb{D}_{\vec{x}}v(\vec{x})]^{\dagger} \end{aligned}$$

MotivationStatic potentialHybrid MesonsDom-OppenheimerVisualizationsStatic-lightConclusionsLaplacian static-hybrid states $\blacktriangleright \Sigma_g^+(R,T) = \sum_{\vec{x},t_0,i,j} \langle \operatorname{tr} \left[U_t(\vec{x};t_0,t_1)\rho(\lambda_j)v_j(\vec{x},t_1)v_j^{\dagger}(\vec{y},t_1)U_t^{\dagger}(\vec{y};t_0,t_1)\rho(\lambda_i)v_i(\vec{y},t_0)v_i^{\dagger}(\vec{x},t_0) \right] \rangle$

•
$$\Sigma_u^+(R,T) = \sum_{\vec{x},t_0,i,j,\vec{k}\mid\mid\vec{r}}$$

 $\left\langle \operatorname{tr} \left[U_t(\vec{x}; t_0, t_1) \rho(\lambda_j) \{ [\nabla_{\vec{k}} v_j](\vec{x}, t_1) v_j^{\dagger}(\vec{y}, t_1) + v_j(\vec{x}, t_1) [\nabla_{\vec{k}} v_j]^{\dagger}(\vec{y}, t_1) \} \right. \\ \left. U_t^{\dagger}(\vec{y}; t_0, t_1) \rho(\lambda_i) \{ [\nabla_{\vec{k}} v_i](\vec{y}, t_0) v_i^{\dagger}(\vec{x}, t_0) + v_i(\vec{y}, t_0) [\nabla_{\vec{k}} v_i]^{\dagger}(\vec{x}, t_0) \} \right] \right\rangle$

$$\begin{split} \bullet \ \Pi_{u/g}(R,T) &= \Pi_{\mp}(R,T) = \sum_{\vec{x},t_0,i,j,\vec{k}\perp\vec{r}} \\ \langle \operatorname{tr} \left[U_t(\vec{x};t_0,t_1)\rho(\lambda_j) \{ [\nabla_{\vec{k}} v_j](\vec{x},t_1) v_j^{\dagger}(\vec{y},t_1) \pm v_j(\vec{x},t_1) [\nabla_{\vec{k}} v_j]^{\dagger}(\vec{y},t_1) \} \right] \\ & U_t^{\dagger}(\vec{y};t_0,t_1)\rho(\lambda_i) \{ [\nabla_{\vec{k}} v_i](\vec{y},t_0) v_i^{\dagger}(\vec{x},t_0) \pm v_i(\vec{y},t_0) [\nabla_{\vec{k}} v_i]^{\dagger}(\vec{x},t_0) \} \end{split}$$

otential Hybrid

ons Born-Op

er Visualizatio

Static-light Co

Conclusions

Laplacian static-hybrid states

- check the relevant symmetries to characterize hybrid mesons listed above using the following operations, starting with a counter-clockwise 90° rotation *R* in the μν-plane:
 - $\begin{aligned} \mathcal{R}: & x'_{\mu} = -x_{\nu} & x'_{\nu} = x_{\mu} \\ & U_{\mu}(x) \to U_{\nu}(x') & U_{\nu}(x) \to U^{\dagger}_{\mu}(x' \hat{\mu}) \\ \mathcal{C}: & U_{k}(x) \to U^{*}_{k}(x) & v(x) \to v^{*}(x) \\ \mathcal{P}: & U_{k}(x_{0}, \vec{x}) \to U^{\dagger}_{k}(x_{0}, -\vec{x} \hat{k}) & v(x_{0}, \vec{x}) \to v(x_{0}, -\vec{x}), \\ \mathcal{P}_{x}: & \nabla_{\vec{k} \perp \vec{r}} v \to -\nabla_{\vec{k} \perp \vec{r}} v & \nabla_{\vec{k} \mid |\vec{r}} v \to \nabla_{\vec{k} \mid |\vec{r}} v, \end{aligned}$
- For on-axis separations the potential in the continuum Π_∓ repr. can be obtained from the E₁[∓] representation of D_{4h}
- ▶ for off-axis separations we technically do not have D_{4h}
- we seem to be fine for off-axis separations in a 2D plane (rather than the 3d volume)
- on-axis only for derivatives along the separation axis

Laplacian static-hybrid states

Born-Oppenhei

Visualizations

pht Conclusion

Optimal trial state profiles

Born-Oppenheimer Approximation

► solve the radial Schrödinger equation: $E_{\Lambda_{\eta}^{\epsilon};L,n}\Psi_{\Lambda_{\eta}^{\epsilon};L,n}(r) =$

$$\left(-\frac{1}{2\mu}\frac{d^2}{dr^2} + \frac{L(L+1) - 2\Lambda^2 + J_{\Lambda^{\epsilon}_{\eta}}(J_{\Lambda^{\epsilon}_{\eta}}+1)}{2\mu r^2} + V_{\Lambda^{\epsilon}_{\eta}}(r)\right)\Psi_{\Lambda^{\epsilon}_{\eta};L,n}(r)$$

 $\mu=m_Q m_{\bar{Q}}/(m_Q+m_{\bar{Q}}),$ for $m_c=1628~{\rm MeV}$ or $m_b=4977~{\rm MeV}$

- ► parametrization of potentials $V_{\Lambda_{\eta}^{\epsilon}}(r)$ from Capitani et al. (2019) $V_{\Sigma_{g}^{+}}(r) = V_{0} - \alpha/r + \sigma r$ $V_{\Pi_{u}}(r) = A_{1}/r + A_{2} + A_{3}r^{2}$
- $E_{\Lambda_n^{\epsilon};L,n}$ contain the self-energies of the static quarks

$$\Rightarrow m_{\Lambda_{\eta}^{\epsilon};L,n} = E_{\Lambda_{\eta}^{\epsilon};L,n} - E_{\Sigma_{q}^{+};L=0,n=1} + \overline{m}$$

with \overline{m} the spin averaged mass Workman et al. [PDG] (2022) $\overline{m}_c = (m_{\eta_c(1S), \exp} + 3m_{J/\Psi(1S), \exp})/4 = 3069(1) \text{ MeV}$ $\overline{m}_b = (m_{\eta_b(1S), \exp} + 3m_{\Upsilon(1S), \exp})/4 = 9445(1) \text{ MeV}$

Conclusion

Born-Oppenheimer Approximation

$L = 0, \ m_Q =$	$m_c = 1628$ Me	Braaten et al. (2014)	
state	n=1	n=2	
Σ_g^+	\bar{m}_c	4333(19)	
$m_{J/\Psi}(nS)$	3096.900(6)	3674(1)	
Π_u	4692(15)		

L = 0,	m_Q	$= m_b$	=	4977	MeV:
--------	-------	---------	---	------	------

state	n=1	n=2	n=3	n=4
$\begin{array}{c} \Sigma_g^+ \\ \Upsilon(nS) \end{array}$	<i>m_b</i> 9460.4(1)	10381(17) 10023.4(5)	11103(20) 10355.1(5)	11707(19) 10579.4(1.2)
Π_u	11417(15)			

$$m_{ps}^* - m_{ps} = 932(20) \Leftrightarrow B_c^{\pm}(2S) - B_c^{+}(1S) = 2397(1) \text{ MeV}$$

Motivation Sta

Spatial distribution of Laplace trial states

- trivial plaquette scans color field in Wilson loop
- 'test-charge' $v^{\dagger}v$ in Laplace trial state

$$\psi^{(n)}(\vec{z},R) = \left\langle \sum_{\vec{x},t} \left| \left| \sum_{ij}^{N_v} \tilde{\rho}_R^{(n)}(\lambda_i,\lambda_j) v_i(\vec{x},t) v_i^{\dagger}(\vec{z},t) v_j(\vec{z},t) v_j^{\dagger}(\vec{x}+R,t) \right| \right|_2 \right\rangle$$

with optimal profiles $\tilde{\rho}_R^{(n)}(\lambda_i,\lambda_j) = \sum_{k,l} \nu_k^{(n)} u_{k,l} e^{-\lambda_i^2/4\sigma_l^2} e^{-\lambda_j^2/4\sigma_l^2}$

Born-Oppenhein

Visualizations

tatic-light Conc

Conclusions

Spatial distribution of Laplace trial states (R = 10a)

ualizations 🗧 🗧

Conclusions

Spatial distribution of hybrid states

$$\begin{split} \psi_{\Sigma_{u}}^{(n)}(\vec{z},R) &= \left\langle \sum_{\vec{x},t,\vec{k}\mid|\vec{r}|} \left\| \sum_{i,j}^{N_{v}} \tilde{\rho}_{\Sigma_{u},R}^{(n)}(\lambda_{i},\lambda_{j}) \right. \\ &\left. \left[\nabla_{\vec{k}} v_{i}(\vec{x},t) v_{i}^{\dagger}(\vec{z},t) v_{j}(\vec{z},t) v_{j}^{\dagger}(\vec{x}+\vec{r},t) \right. \\ &\left. \pm v_{i}(\vec{x},t) v_{i}^{\dagger}(\vec{z},t) v_{j}(\vec{z},t) [\nabla_{\vec{k}} v_{j}]^{\dagger}(\vec{x}+\vec{r},t) \right] \right\|_{2} \right\rangle \\ \psi_{\Pi_{u/g}}^{(n)}(\vec{z},R) &= \left\langle \sum_{\vec{x},t,\vec{k}\perp\vec{r}} \left\| \left| \sum_{i,j}^{N_{v}} \tilde{\rho}_{\Pi_{u/g},R}^{(n)}(\lambda_{i},\lambda_{j}) \right. \\ &\left. \left[\nabla_{\vec{k}} v_{i}(\vec{x},t) v_{i}^{\dagger}(\vec{z},t) v_{j}(\vec{z},t) v_{j}^{\dagger}(\vec{x}+\vec{r},t) \right. \\ &\left. \pm v_{i}(\vec{x},t) v_{i}^{\dagger}(\vec{z},t) v_{j}(\vec{z},t) [\nabla_{\vec{k}} v_{j}]^{\dagger}(\vec{x}+\vec{r},t) \right] \right\|_{2} \right\rangle \end{split}$$

Spatial distribution of hybrid states (R = 10a)

R. Höllwieser, Hybrid static potentials from Laplacian eigenmodes

Spatial distribution of hybrid states (R = 10a)

R. Höllwieser, Hybrid static potentials from Laplacian eigenmodes

ns Born-Opp

Visualizations

Static-light meson operators

$$\begin{split} C_{\mathcal{O}}^{sl}(t) &= \frac{1}{N_{f}} \sum_{\vec{x},t_{0},i} \left\langle \bar{Q}(\vec{x},t_{0}+t)\mathcal{O}q^{i}(\vec{x},t_{0}+t)\bar{q}^{i}(\vec{x},t_{0})\gamma_{4}\mathcal{O}Q(\vec{x},t_{0}) \right\rangle \\ &= -\sum_{\vec{x},t_{0}} \left\langle \operatorname{tr}_{c,d} \left(\mathcal{O}\underbrace{\mathcal{D}(\vec{x},t_{0}+t;\vec{x},t_{0})\gamma_{4}}_{\text{light propagator}} \mathcal{O}\underbrace{U_{t}(\vec{x};t_{0},t_{0}+t)P_{-}}_{\text{static propagator}} \right) \right\rangle \\ \hline \\ \hline \\ \hline \\ \frac{\mathcal{O}}{1} \frac{\mathcal$$

n-Oppenheimer

Visualizations

Static-light meson operators

$$C^{sl}_{S/P_{-}}(t) = -\sum_{t_{0},i,j} \left\langle \rho(\lambda_{i})\rho(\lambda_{j}) \operatorname{Tr}_{d}\{[v_{i}^{\dagger}D^{-1}\gamma_{4}v_{j}](t_{0}+t,t_{0})P_{\pm}\}\right.$$
$$\sum_{\vec{x}} v_{j}^{\dagger}(\vec{x},t_{0})U_{t}(\vec{x};t_{0},t_{0}+t)v_{i}(\vec{x},t_{0}+t) \left\langle \right\rangle$$

- ► light perambulators v[†]_i(t₁)D⁻¹_{αβ}γ₄v_j(t₀) from distillation framework Peardon et al. (2009), Knechtli et al (2022)
- ► static perambulators $v^{\dagger}(\vec{x}, t_0)U_t(\vec{x}; t_0, t_0 + t)v(\vec{x}, t_0 + t)$
- Gaussian profiles ρ , SVD, GEVP \Rightarrow optimal profiles...

Static-light S-wave meson states

Visualizations

Conclusions

Static-light meson states

ensemble	$N_s^3 \times N_t$	N_f	m_{π}	$m_s~(P)$ - $m_{ps}~(S)~[{\sf MeV}]$
Em1	$24^3 \times 48$	2	2.2GeV	2393.5 - 1764.9 = 628.6(2.1)
A0 heavy	$72^3 \times 24$	3+1	1GeV	1821 - 1350.4 = 470.6(5.8)
A1 heavy	$96^3 \times 32$	3+1	1GeV	1815.2 - 1347.2 = 468.0(3.3)
A1 light	$96^3 \times 32$	3+1	420MeV	1412 - 1122.7 = 289.3(5.2)

String breaking and tetra-quark operators

- combine static and light(charm)-quark perambulators
- building blocks for observation of string breaking

$$|=v^{\dagger}(0)U_tv(t) \rightarrow \mathcal{P}, \bullet \cdots \bullet = v^{\dagger}(t)D_{\alpha\beta}^{-1}\gamma_4v(0) \rightarrow \mathcal{D}$$

$$\begin{split} C_{11}(t) &\to \mathcal{P}(\vec{x})\mathcal{P}^{\dagger}(\vec{y}) \qquad \hat{r} = |\vec{y} - \vec{x}|, P_{\pm} = (1 \pm \gamma_4)/2 \\ C_{12}(t) &\to \sqrt{N_f} \mathrm{Tr}_{c,d} \mathcal{P}(\vec{x}) P_- \gamma \hat{r} \mathcal{D}(\vec{x}, \vec{y}, t) \mathcal{P}^{\dagger}(\vec{y}) \\ C_{21}(t) &\to -\sqrt{N_f} \mathrm{Tr}_{c,d} \mathcal{P}(\vec{x}) \mathcal{P}^{\dagger}(\vec{y}) P_+ \gamma \hat{r} \mathcal{D}^{\dagger}(\vec{x}, \vec{y}, 0) \\ C_{22}(t) &\to N_f \mathrm{Tr}_{c,d} \mathcal{P}(\vec{x}) P_+ \mathcal{D}(\vec{x}, \vec{y}, t) \mathcal{P}^{\dagger}(\vec{y}) P_- \mathcal{D}^{\dagger}(\vec{x}, \vec{y}, 0) \\ &- \delta_{ij} \mathrm{Tr}_{c,d} [\mathcal{P}(\vec{x}) P_+ \mathcal{D}_i^{\dagger}(\vec{x}, 0, t)] \mathrm{Tr}_{c,d} [\mathcal{P}^{\dagger}(\vec{y}) P_- \mathcal{D}_j(\vec{y}, 0, t)] \\ \end{split}$$

Visualizations

Conclusions

Conclusions & Outlook

- ✓ alternative operator for a static quark-anti-quark potentials based on Laplacian eigenmodes, replacing Wilson loop
- ✓ improved Laplace trial states (optimal profiles) give earlier effective mass plateaus and better signal
- computational advantage for high resolution of the potential energy as off-axis distances basically come "for free"
- $\checkmark\,$ hybrid static potentials (hybrid meson masses), instead of "gluonic handles" (excitations) use derivatives of v
- ✓ implementation of static-light (charm) correlator using "perambulators" $v(t_1)D^{-1}v(t_2)$ from distillation framework
- putting together building blocks for string breaking in QCD (mixing matrix of static and light quark propagators)
- more (hybrid) static(-light) and multi-quark potentials
- ? questions, discussion, many possible applications...

Acknowledgements

THANK YOU

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Glueballs

Charmonium spectrum on Em1

Glueball spectrum on Em1, $m_G = 1955(75)$ MeV

Glueball spectrum on Em1, $m_G = 1919(63)$ MeV

R. Höllwieser, Hybrid static potentials from Laplacian eigenmodes

30/31

Glueballs

Acknowledgements

THANK YOU

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

R. Höllwieser, Hybrid static potentials from Laplacian eigenmodes