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Introduction



General statement of the problem (I)

An hadronic amplitude H(E) can be safely extracted on the lattice
only if energy E smaller than the energies of all the intermediate states
contributing to H(E).

E.g. consider an hadronic amplitude of the form

H(E) = i

∫ ∞

0
dt eiEt C(t), C(t) ≡

〈
0
∣∣T{JA(t)JB(0)

}∣∣P〉 t>0=
∞∑

n=0

Cn e−iEnt

with JA, JB arbitrary currents and
∣∣P〉 an hadronic state.

If E < En safe analytic continuation from Minkowskian to Euclidean space

H(E) =i

∫ ∞

0
dt eiEt C(t) τ=it=

=
∫ ∞

0
dτ eEτ C(−iτ)
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General statement of the problem (II)

On a finite lattice, where non-analiticities are absent, we can access
CE(t) ≡ C(−it) for 0 ≤ t ≤ T .

HT (E) =
∫ T

0
dt eEt CE(t) =

∫ T

0
dt eEt

∞∑
n=0

Cne−Ent =
∞∑

n=0

Cn
1 − e−(En−E)T

En − E

if E < En:

HT (E) →
T →∞

∞∑
n=0

Cn

En − E

✓

if E0 < E:

HT (E) →
T →∞

∞∑
n=0

Cn

En − E
+
En<E∑

n

Cn
e(E−En)T

E − En

✗
• For E0 < E dominant T −divergent part of HT (E) must be subtracted

=⇒ difficult in presence of statistical errors, problem worsens when many
states En below energy E.

• Above threshold hadronic amplitudes become complex (for E = En).
How do we get imaginary parts? 3



Phenomenological relevance of the problem

Many phenomenologically relevant hadronic observables are affected by
problems of analytic continuation, which hinder their lattice determination.

• Electromagnetic pion form factor Fπ(q2) in the time-like region q2 > (2mπ)2 [Maiani &
Testa, 1990].

• . . . and generally hadronic scattering amplitudes above thresholds.

Many strategies have been put forward to circumvent the problem of analytic
continuation

[Barata and Fredenhagen, 1991], [Bulava and Hansen, 2019] , [Bruno and Hansen, 2020]

In this seminar I will discuss the strategy proposed in [Frezzotti et. al, 2023] to
tackle the problem of analytic continuation for observables which involve an
hadron-to-vacuum QCD matrix element of the product of two currents.

Many interesting observables fall in this category, e.g. the Pl4 decays:

P → l̄′l′ l̄νl , P = flavoured and charged pseudoscalar meson.
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Hadronic amplitudes via the spectral representation (I)

The spectral density ρ(E′) of the correlator C(t > 0) is defined as

ρ(E′) = 2π
〈
0
∣∣JA(0) δ(H − E′) JB(0)

∣∣P〉
• H is the QCD Hamiltonian.

• In ρ(E′) the delta function restrict the propagation to those states having
energy E′.

• Its relation to the Minkowskian (C(t)) and Euclidean (CE(t)) correlators
can be easily worked out

C(t) t>0=
∫ ∞

0

dE′

2π
ρ(E′) e−iE′t, CE(t) t>0=

∫ ∞

0

dE′

2π
ρ(E′) e−E′t

Spectral density ρ(E′) related to CE(t) through an inverse Laplace transform.
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Hadronic amplitudes via the spectral representation (II)

• The hadronic amplitude H(E) can be computed as

H(E) =
∫ ∞

0
dt eiEt C(t) = lim

ϵ→0+

∫ ∞

0

dE′

2π
ρ(E′)

∫ ∞

0
dt e−i(E′−E)tf(ϵ, t)

• f(ϵ, t) is any regulator for the time integral, with f(0, t) = 1.

• E.g. f(ϵ, t) = exp(−ϵt), exp(−ϵ2t2/2). Using standard ϵ−prescription:

H(E) = lim
ϵ→0+

∫ ∞

0

dE′

2π

ρ(E′)
E′ − E − iϵ

Note: the lower-end of integration is actually always positive since the
support of the spectral density is [E0, ∞], with E0 > 0.∫ ∞

0
dE′ →

∫ ∞

E0

dE′
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Hadronic amplitudes via the spectral representation (III)

From the knowledge of ρ(E′), the real and imaginary part of H(E) can be
computed:

Re [H(E)] = lim
ϵ→0+

∫ ∞

0

dE′

2π
ρ(E′)

E′ − E

(E − E′)2 + ϵ2 = P.V.

∫ ∞

0

dE′

2π

ρ(E′)
E′ − E

Im [H(E)] = lim
ϵ→0+

∫ ∞

0

dE′

2π
ρ(E′)

ϵ

(E − E′)2 + ϵ2 =
ρ(E)

2

For E < E0, since ρ(E) = 0, Im [H(E)] = 0 and the P.V. can be dropped:

Re [H(E)] =
∫ ∞

E0

dE′

2π
ρ(E′)

∫ ∞

0
dt e−(E′−E)t︸ ︷︷ ︸

=(E′−E)−1 if E′<E

=
∫ ∞

0
dt eEt CE(t) ✓

For E > E0, lim ϵ → 0+ can be taken only after evaluating the energy
integral.
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The smeared amplitude H(E, ε)

We propose to employ for E > E0 the previous representation, evaluate the
smeared amplitude H(E, ϵ) at finite ϵ, and then take lim ϵ → 0+.

H(E, ε) ≡
∫ ∞

E0

dE′

2π
ρ(E′) K(E′ − E, ε) , K(E′ − E, ε) ≡ 1

E′ − E − iε

• Does the smeared H(E, ε) have a physical interpretation? By using

lim
η→0+

1
π

∫ +∞

−∞
dω

ε

(E − ω)2 + ε2
1

E′ − ω − iη
= 1

E′ − E − iε

It follows that

H(E, ε) =
∫ +∞

−∞
dω

1
π

ε

(E − ω)2 + ε2 H(ω)

The smeared amplitude represents, in fact, an energy-smearing of size ε of the
physical amplitude H(E).

8



The smeared amplitude in a simple model

It is useful to look at the smeared amplitude in a simple one-resonance model
for the spectral density ρ(E′)

ρ(E′) = A Γ
(E − M)2 + ( Γ

2 )2
θ(E) =⇒ H(E) ≃ A

M − E − i Γ
2

The effect of the smearing is to simply shift Γ → Γ + 2ε

H(E, ε) ≃ A

M − E − i ( Γ
2 + ε)
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The vanishing ε extrapolation (I)

As we will see later, H(E, ε) can be computed from CE(t) only. The smallest
ε that can be actually determined depends mainly on the stat. errors of CE(t).

Starting from H(E, ε) at finite ε can we make contact with H(E)?

• It can be shown that in general

Re[H(E, ε)] = Re[H(E)] + O(ε) , Im[H(E, ε)] = Im[H(E)] + O(ε)

• For which values of ε does the linear regime set in? Answer strongly
depends on ρ(E′) structure.

• Let’s employ again the one-resonance model to get some understanding

H(E, ε) ≃ A

M − E − i ( Γ
2 + ε)

=⇒ H(E, ε)
H(E) =

[
1 + iε

∆(E)e−iϕ(E)
]−1

∆(E) =
√

(E − M)2 + (Γ/2)2 , tan ϕ(E) = Γ/2
E − M
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The vanishing ε extrapolation (II)

The Breit-Wigner model shows that the condition for onset of linear regime is

ε ≪ ∆(E) =
√

(E − M)2 + (Γ/2)2

• For general H(E), ε should be smaller than the typical size ∆(E) of the
interval around E over which H(E) is significantly varying

1
∆(E) ≡

∣∣∣∣ 1
H(E)

∂H(E)
∂E

∣∣∣∣
• In E ± ∆(E), H(E) varies by O(100%).

• If E is close to a narrow-resonance peak, very small values of ε are
needed to observe the onset of linear regime!.

• However, at the price of introducing some model dependence, useful
information can be extracted also in this region. We will come back to
this point later. 11



Finite volume effects

Lattice calculations are always performed in a finite volume V = L3.

• Spectrum of the finite-volume Hamiltonian HL is discrete.

• Finite-volume ρ(E′, L) is always a sum of isolated δ-peaks

ρ(E′, L) =
∑

n

cn(L) δ(E′ − En(L))

[Taken from N. Tantalo talk]

• ρ(E′, L) cannot be directly associated to any infinite-volume quantity.

• The ε-smeared amplitude H(E, ε) has instead a well-defined
infinite-volume limit. . .
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One-resonance model in finite volume

• In the finite volume, multi-particles part of the spectrum is always discrete.

• Multi-particles decays of a resonance, e.g. ϕ → K+K−(kn) allowed only if
relative momentum kn satisfies quantization conditions.

• Let’s take a look to ρ(E′, L) for a 2-particle resonance decay:

ρ
(E

′,L
)

E′

ρ
(E

′ ,
L
′ >

L
)

E′

• The smeared amplitude has instead small FVEs if εL ≫ 1 [Bulava et al, 2021].

Im
[H

(E
,ε
,L

)]

E

ε/M ∼ 0.9, εL ∼ 18

ε/M ∼ 0.65, εL ∼ 13

ε/M ∼ 0.39, εL ∼ 7.5

ε/M ∼ 0.12, εL ∼ 2.5

Im
[H

(E
,ε
,L

′ >
L
)]

E

ε/M ∼ 0.9, εL ∼ 32

ε/M ∼ 0.65, εL ∼ 23

ε/M ∼ 0.39, εL ∼ 13

ε/M ∼ 0.12, εL ∼ 4.5
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Summary of the theoretical part

• We have seen that to overcome the problem of analytic continuation, the
smeared amplitude H(E, ε) must be introduced.

• H(E, ε) admits a polynomial expansion of the form

H(E, ε) = H(E) +
∞∑

n=1

an

(
ε

∆(E)

)n

• The condition for the onset of linear regime is ε ≪ ∆(E).

• To evaluate H(E) from finite-volume simulations the correct double-limit
to be taken is

H(E) = lim
ε→0+

lim
L→∞

H(E, ε, L)

• Finite-ε and finite-volume effects small if

1/L ≪ ε ≪ ∆(E)
14



The HLT method to reconstruct
smeared hadronic amplitudes



Evaluating H(E, ε) from our lattice input, CE(t)

• Let us try to evaluate H(E, ε) from the knowledge of CE(t) at a discrete
set of time t = a, . . . , Na.

• To do so, it is sufficient to find an approximation of the kernel functions
of the type (I = {Re, Im})

KI(E′ − E, ε) ≃
N∑

n=1

gI
n(E)e−aE′n

• Indeed, from the knowledge of gI
n(E) one gets:

N∑
n=1

gRe
n (E) CE(na) =

∫ ∞

0

dE′

2π

(
N∑

n=1

gRe
n (E) e−naE′

)
ρ(E′) ≃ Re[H(E, ε)]

N∑
n=1

gIm
n (E) CE(na) =

∫ ∞

0

dE′

2π

(
N∑

n=1

gIm
n (E) e−naE′

)
ρ(E′) ≃ Im[H(E, ε)]
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Finding the coefficients gI
n

To obtain the coefficients gI
n(E) we can minimize the L2-distance between target and

reconstructed function

AI[g] ≡
∫ ∞

0

dE′

2π

∣∣∣KI(E′ − E, ε) −
N∑

n=1

gne−naE′
∣∣∣2

• Minimization of AI[g] gives the coefficients gI
n(E) as

gI
n(E) =

N∑
m=1

(
H−1

N

)
nm

f I
m, f I

n ≡
∫ ∞

0
dE′ KI(E′ − E, ε) e−naE′

• HN is the N × N Hilbert matrix, textbook example of ill-conditioned matrix

(HN )nm =
1

n + m − 1
, det HN ≈ N−1/4(2π)N 4−N2

• E.g. det H10 ≃ O(10−53) , det H20 ≃ O(10−226). Let’s take a look at some
results. . . 16



The reconstruction at work in a toy-model without errors

Two-resonances model:

ρ(E) = 1
π

∑
n=1,2

Γn/2
(E − En)2 + (Γn/2)2 , E1 = 0.10, Γ1 = 10−2

E2 = 0.15, Γ2 = 2 · 10−2

• We computed CE(t) with extended machine precision for t = 1, . . . , 200.

• H(E, ϵ) reconstructed from CE(t) using A[g]-minimization method.

−80
−60
−40
−20

0
20
40
60
80
100

0 0.5 1 1.5 2

→ Exact, ϵ = 0
0

20

40

60

80

100

120

140

→ Exact, ϵ = 0

R
e
[H

(E
,ϵ
)]

E/E1

Im
[H

(E
,ϵ
)]

Exact ϵ = 0.0100

Exact ϵ = 0.0050

Exact ϵ = 0.0025

A-min, ϵ = 0.0100

A-min, ϵ = 0.0050

A-min, ϵ = 0.0025
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The coefficients gI
n

While the A[g]-minimization leads to a perfect reconstruction of H(E, ε), the
resulting coefficients gI

n are strongly oscillating

−3 · 10151

−2 · 10151

−1 · 10151

0

1 · 10151

2 · 10151

3 · 10151

0 50 100 150 200

E = 1.4E1

|gIn(E)| grow exponentially as ϵ → 0

strong sign fluctuations

g
I n
(E

)

n

gRe
n ϵ = 0.0100

gRe
n ϵ = 0.0050

gRe
n ϵ = 0.0025

gIm
200−n ϵ = 0.0100

gIm
200−n ϵ = 0.0050

gIm
200−n ϵ = 0.0025

• If CE(t) is known with some uncertainty δCE(t), the resulting error on
the smeared hadronic amplitude BLOWS UP!!

∆H(E, ε) =
√∑

n

[gRe
n (E) δCE(na)]2 + i

√∑
n

[gIm
n (E) δCE(na)]2

18



The smeared amplitude from a Backus-Gilbert-like approach

We need a regularization mechanism to tame the oscillations of the gI coefficients.

The Hansen-Lupo-Tantalo (HLT) method provides the coefficients gI(E) minimizing
a functional W I[g] which balances syst. and stat. errors of reconstructed H(E, ε)

W I[g] =
AI[g]
AI[0]

+ λB[g] ,
∂W I[g]

∂g

∣∣∣
g=gI

= 0

A
I[g] =

∫ ∞

Emin

dE′

2π

∣∣∣KI(E
′ − E, ε) −

N∑
n=1

gne
−naE′

∣∣∣2 ⇐= (syst.)2 error due to reconstruction

B[g] ∝
N∑

n1,n2=1

gn1 gn2 Cov (CE(an1), CE(an2)) ⇐= (stat.)2 error of reconstructed H(E, ε)

• λ is trade-off parameter =⇒ tuned for optimal balance of syst. and stat.
errors.

• Emin should only satisfy the condition Emin < E0.
19



Testing the spectral
reconstruction method in a
physical QCD case: the
Ds → l̄′l′lνl decay



The P → l̄′l′lνl decay

To test the effectiveness of the smeared-amplitude method, we considered
a phenomenological interesting electroweak amplitude which features the
problem of the analytic continuation.

• This is the electroweak decay of a flavoured and charged pseudoscalar
meson P into a dilepton (l̄′l′) and a lepton pair (lνl).

• It proceeds via

P → γ∗lνl → l̄′l′lνl

• The intermediate virtual photon γ∗ can be either emitted from the
final-state lepton l (so-called Bremsstrahlung contribution) or from a
quark (so-called structure-dependent contribution).

• They are rare decays with decay rates of order O(G2
F α2

em), which can
thus be interesting probe of NP beyond the SM.

20



Relevant Feynman diagrams for the process

To lowest-order in αem and GF the relevant Feynman diagrams are

• Diagram (b) is perturbative, only QCD input is decay constant fP .

• Diagram (a) is non-perturbative. Virtual photon γ∗ emitted from one of
the two valence quarks.

Non-perturbative QCD contribution encoded in the hadronic tensor

Hµν
W (k, p) = i

∫
dt eiEt T

〈
0
∣∣Jµ

em(t, k)Jν
W (0)

∣∣P (p)
〉
, W = V, A

• k = (E, k) is photon 4-momentum, p is P -meson 3-momentum (from
now on we set p = 0). 21



First and second time-ordering contributions

To understand why/where there are problems of analytic continuation let us
consider the two time-orderings separately

Hµν
W (k, 0) = i

∫ ∞

−∞
dt eiEt T

〈
0
∣∣Jµ

em(t, k)Jν
W (0)

∣∣P (0)
〉

=

= i

∫ 0

−∞
dt eiEt

〈
0
∣∣Jν

W (0)Jµ
em(t, k)

∣∣P (0)
〉

︸ ︷︷ ︸
H

µν
W,1(k)

+i

∫ ∞

0
dt eiEt

〈
0
∣∣Jµ

em(t, k)Jν
W (0)

∣∣P (0)
〉

︸ ︷︷ ︸
H

µν
W,2(k)

We now make use of

Jµ
em(t, k) = ei(H−iε)t Jµ

em(0, k) e−i(H−iε)t

and performing the time-integral one gets

Hµν
W,1(k) = ⟨0|Jν

W (0)
1

H + E − MP − iε
Jµ

em(0, k)|P (0)⟩

Hµν
W,2(k) = ⟨0|Jµ

em(0, k)
1

H − E − iε
Jν

W (0)|P (0)⟩
22



Threshold problems at large virtualities k2

We now insert a complete set of states between the two currents:

Hµν
W,1(k) =

∑
r

⟨0|Jν
W (0)|r⟩⟨r|Jµ

em(0, k)|P (0)⟩
Er + E − MP − iϵ

, pr = −k ,

Hµν
W,2(k) =

∑
n

⟨0|Jµ
em(0, k)|n⟩⟨n|Jν

W (0)|P (0)⟩
En − E − iϵ

, pn = +k ,

• |r⟩ states have same flavour content as P meson. Their masses (Mr) are
larger than MP which implies

Er =
√

M2
r + |k|2 > MP − E ✓

• |n⟩ states are unflavoured and have JP = 1−. Threshold at

En =
√

M2
n + |k|2 = E =⇒

√
k2 ≡

√
E2 − |k|2 = Mn

• In the second TO we have problems of analytic continuation! For
P = Ds this occurs at

√
k2

th = Mϕ. ✗ 23



Lattice calculation for P = Ds

We compute on the lattice the Euclidean correlation function

Cµν
W (t, k) ≡ T ⟨0|Jµ

em(t, k) Jν
W (0)|Ds(0)⟩ ,

• For this proof-of-principle calculation we used a single Nf = 2 + 1 + 1
Wilson-clover twisted-mass ETMC gauge ensemble at the physical point

Ensemble a [fm] L/a T/a Nconfs Nsources

cB211.072.64 0.079 64 128 302 4

• Calculation restricted to a single momentum k along z-axis, with
xγ = 2|k|/MDs = 0.2.

• Since problem of an. cont. occurs only in 2nd TO and for emission of γ∗

from a strange quark, we concentrate only on this contribution.
• We show results for W = V and from now on set CE(t) = C12

V (t, k).

H(E, ε) =
∫ ∞

0

dE′

2π
ρ(E′) K(E′ − E, ε) , CE(t) =

∫ ∞

0

dE′

2π
e−E′t ρ(E′)

24



Stability analysis

To evaluate the smeared amplitude H(E, ε) via the HLT method we perform
the so-called stability analysis
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• We monitor the evolution of H(E, ε) as a function of the trade-off
parameter λ (results plotted in terms of corresponding A[g]/A[0]).

• When λ sufficiently small, H(E, ε) is stable under variations of λ.

• In this region, where syst.err. < stat.err, we can determine H(E, ε). 25



The smeared amplitude H(E, ε)
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√
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Extrapolation of the results to vanishing ε

The condition for the onset of the linear regime and for small FVEs is
1/L ≪ ε ≪ ∆(E)

We distinguish three energy regions:

• E < Eϕ: no problems of analytic continuation, we could directly set ε = 0 and
evaluate H(E) (which is purely real) as

H(E) =
∫ ∞

0
dt eEt CE(t) [1]

we however evaluate also H(E, ε) to check that limε→0 H(E, ε) reproduces [1].

• E ∼ Eϕ: ∆(E) very small due to narrow ϕ-resonance. Large FVEs expected, on
currently available L, ϕ → K+K− is forbidden (Γϕ = 0). Not everything is lost,
we employ in this region a Breit-Wigner model for ϕ−resonance contribution
(Γϕ from PDG, A is a fit parameter)

ρϕ(E′) =
AΓϕ

(Eϕ − E′)2 + ( Γϕ

2 )2
=⇒ Hϕ(E, ε) =

A

Eϕ − E − i( Γϕ

2 + ε)

• E ≫ Eϕ: ∆(E) is larger, and in this region we attempt a polynomial
extrapolation in ε. Noise of the data however increases (smallest ε for which
errors are still under control, increases with E). 27



Extrapolation to vanishing ε for E < Eϕ
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• As expected, through a polynomial extrapolation in ε we are able to
recover in this energy region the results of the ”standard approach”

H(E) =
∫ ∞

0
dt eEt CE(t)

• limε→0+ Im[H(E, ε)] = 0. 28



Extrapolation to vanishing ε for E ∼ Eϕ and E ≫ Eϕ
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The amplitude H(E)

Combining the ε → 0+ extrapolations at the different values of E we get
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• Orange band represents the area around Eϕ where the ε → 0+ extrapolation
has been carried using Hϕ(E, ε).

• Data obtained through model-independent polynomial extrapolation are
smoothly connected with the ones obtained using Hϕ(E, ε). 30



Conclusions

• We propose a new method to extract complex electroweak amplitudes involving
two EW-currents and an hadronic state or the vacuum in the external states.

• In our approach, the problem of analytic continuation which is present above
hadronic threshold is bypassed by evaluating, via spectral reconstruction,
hadronic amplitudes H(E, ϵ) smeared over a finite-energy interval ϵ around E,
and then taking lim ϵ → 0+.

• We performed a pilot-study on a single ETMC ensemble, computing the
hadronic amplitude relative to Ds → l̄′l′lνl decays (below and above
threshold(s)) for ϵ ∈ [100 − 600] MeV, using the HLT method.

• Vanishing-ε extrapolation performed through a polynomial fit of H(E, ε), except
for the energy region E ∼ Eϕ, where H(E) is non-smooth due to the narrow
ϕ-resonance. In this energy-region we employed a Breit-Wigner model to
describe the ε−dependence of the lattice data.

Work in progress
• Full calculation for K → l̄′l′lνℓ, where no narrow resonances are present.

• Application of the method to FCNC processes where similar problems arise, e.g.
Bs → µ+µ−γ. 31



Thank you

Thank you for your attention!
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