

Sea-Quark Isospin-Breaking Effects

Alessandro Cotellucci

Humboldt Universität zu Berlin & DESY Zeuthen, January 22nd 2024

Isospin

Based on the assumption $m_u = m_d$ Isospin is an internal global symmetry which acts as:

$$\begin{pmatrix} \psi_{u} \\ \psi_{d} \end{pmatrix} \to M \begin{pmatrix} \psi_{u} \\ \psi_{d} \end{pmatrix} \quad M \in \mathsf{SU}(2).$$

Good approximation as long as the target precision is above 1% in fact:

$$egin{pmatrix} \displaystyle rac{m_d-m_u}{\Lambda_{
m QCD}} \end{pmatrix}\sim 0.01 \ e^2\sim 0.01. \end{split}$$

Isospin breaking effects

An important phenomenological isospin-breaking effect is the mass difference for Baryons.

Figure: Effective Baryon mass differences on a $N_f = 1 + 2 + 1$ QCD+QED ensemble^a.

Some observables need isospin-breaking effects to push the precision like $(g - 2)_{\mu}^{b}$.

^aBushnaq et al., "First results on QCD+QED with C* boundary conditions". ^bAoyama et al., "The anomalous magnetic moment of the muon in the Standard Model".

QED in Finite Volume

Due to Gauss law:

$$Q_{\rm tot} = \int_{
m p.b.c.} dec{x} \
abla \cdot ec{E}(ec{x}) = 0.$$

Possible solutions:

- QED_L^c remove spatial zeroth mode removed from the action,
- QED_M^d massive photon,
- QED_{∞}^{e} reconstruction of infinite volume QED,
- QED_C^f modify the boundary conditions.

 $^{\rm c}{\rm Hayakawa}$ and Uno, "QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons".

 $^{\rm d} Endres$ et al., "Massive photons: an infrared regularization scheme for lattice QCD+QED".

^eBlum et al., "Using infinite volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment".

 $^{\rm f}$ Kronfeld and Wiese, "SU(N) gauge theories with C periodic boundary conditions. 1. Topological structure", "SU(N) gauge theories with C periodic boundary conditions. 2. Small volume dynamics".

C-periodic boundary conditions

Change the spatial boundary conditions to remove the photon zeroth mode.

$$\chi(x) = \begin{pmatrix} \psi(x) \\ \psi^{\mathcal{C}}(x) \end{pmatrix}, \quad \chi(x + L\hat{k}) = K\chi(x).$$

The action in this case is:

$$S = -\frac{1}{2} \sum_{x} \chi^{T} K C D \chi, \quad C = i \gamma_{0} \gamma_{2}, \quad K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Reweighting

The observable $\mathcal{O}[U, A, \chi]$ on the full path integral^g:

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{\int dU d\chi dA \ e^{-S_{\rm lso}[U,\chi]} e^{-S_{\rm lB}[U,A,\chi]} e^{-S_{\gamma}[A]} \mathcal{O}[U,A,\chi]}{\int dU d\chi dA \ e^{-S_{\rm lso}[U,\chi]} e^{-S_{\rm lB}[A,\chi,U]} e^{-S_{\gamma}[A]} \\ &= \frac{\langle \int dA \ e^{-S_{\rm lB}[U,A,\chi]} e^{-S_{\gamma}[A]} \mathcal{O}[U,A,\chi] \rangle_{\rm lso}}{\langle \int dA \ e^{-S_{\rm lB}[U,A,\chi]} e^{-S_{\gamma}[A]} \partial_{\rm lso}} \\ &= \langle \mathcal{O} \rangle_{\rm lso} - \langle \underbrace{\langle S_{\rm lB} \mathcal{O} \rangle_{\rm lso\gamma,c}}_{valence-valence} + \underbrace{\langle S_{\rm lB} S_{\rm lB} \mathcal{O} \rangle_{\rm lso\gamma,c}}_{sea-valence} \\ &- \underbrace{\langle S_{\rm lB} \mathcal{O} \rangle_{\rm lso\gamma,c}}_{sea-sea} + o\left(\delta m_{ud}^2, e^4, e^2 \delta m_{ud}\right). \end{split}$$

^gDivitiis et al., "Leading isospin breaking effects on the lattice".

Perturbative expansion

The isospin-breaking action of $N_f = 2$ can be written as:

$$\begin{split} S_{\text{IB}}[U, A, \chi_f] &= -\frac{1}{2} \sum_{x} \delta m_{ud} \left[\chi_u^T(x) C \mathcal{K} \chi_u(x) - \chi_d^T(x) C \mathcal{K} \chi_d(x) \right] \\ &- \frac{1}{2} \sum_{x} \delta m \left[\chi_u^T(x) C \mathcal{K} \chi_u(x) + \chi_d^T(x) C \mathcal{K} \chi_d(x) \right] \\ &- \frac{1}{8} \sum_{x, \mu\nu, f} \delta c_{\text{SW}}^{\text{SU}(3)f} \chi_f^T(x) C \mathcal{K} \sigma_{\mu\nu} \hat{G}_{\mu\nu}(x) \chi_f(x) \\ &+ \delta \beta S_{\text{gluon}}[U] + S_{\text{QED}}[A, U, \chi_f] \end{split}$$

The RM123 method Lattice QED Action for *O*(*a*) Wilson fermions

$$S_{\text{QED}}[U, A, \chi_f] = \frac{e}{8} \sum_{xy, \mu\nu, f} q_f c_f \chi_f^T(x) C K \sigma_{\mu\nu} \widehat{A}_{\mu\nu}(x) \chi_f(x)$$

$$- \frac{ie}{2} \sum_{x, f} q_f \chi_f^T(x) J(x, y) \chi_f(y)$$

$$+ \frac{e^2}{4} \sum_{xy, f} q_f^2 \chi_f^T(x) T(x, y) \chi_f(y)$$

Photon field

The photon fields are generated starting from the photon path integral:

$$\int dA \ e^{-S_{\gamma}[A]} = \int dA \ e^{-\frac{1}{2}\sum_{k,\mu\nu} \tilde{A}_{\mu}(k)K_{\mu\nu}\tilde{A}_{\nu}(k)}$$

 $K_{\mu\nu}$ Requires gauge fixing \rightarrow Coulomb Gauge (Necessary for the tuning).

 $\tilde{A}_{\mu}(k)$ Gaussian decorrelated variables.

Sea-Sea terms

Considering a pure gluonic observable $\ensuremath{\mathcal{O}}$ the disconnected terms are:

$$\begin{split} \langle \mathcal{O} \rangle = & \langle \mathcal{O} \rangle_{\rm Iso} - \delta \beta \langle S_{gauge} \mathcal{O} \rangle_{\rm Iso,c} + \sum_{f} \delta m_{f} \langle \bigodot^{\rm f} \mathcal{O} \rangle_{\rm Iso,c} \\ & + e^{2} \left[\sum_{f} \hat{q}_{f}^{2} \left(\langle \bigodot^{\rm f}_{\rm Iso} \mathcal{O} \rangle_{\rm Iso,c} + \langle \underbrace{\stackrel{\rm f}{\textcircled{}}}_{\rm Iso,c} \mathcal{O} \rangle_{\rm Iso,c} \right) \\ & + \sum_{fg} \hat{q}_{f} \hat{q}_{g} \langle \bigcirc^{\rm f}_{\rm Iso,c} \overset{\rm g}{\bigcirc} \mathcal{O} \rangle_{\rm Iso,c} \right]. \end{split}$$

Sea-Sea Diagrams

$$\begin{split} I_{mass}^{f} &= \frac{1}{2} \sum_{x} \operatorname{Re} \operatorname{tr} \left[D_{f}^{-1}(x,x) \right] = \bigoplus^{f} \\ I_{tad}^{f} &= -\frac{1}{4} \sum_{xy} \langle \operatorname{Re} \operatorname{tr} \left[D_{f}^{-1}(x,y) T(y,x) \right] \rangle_{\gamma} = \bigoplus^{f} \\ I_{twy}^{fh} \\ I_{cur,bub}^{fg} &= \frac{1}{8} \sum_{xyzw,\mu} \langle \operatorname{Im} \operatorname{tr} \left[J(x,y) D_{f}^{-1}(y,x) \right] \operatorname{Im} \operatorname{tr} \left[J(z,w) D_{g}^{-1}(w,z) \right] \rangle_{\gamma} \\ I_{sw,bub}^{fg} &= \frac{c_{f} c_{s}}{128} \sum_{xy,\mu\nu\rho\sigma} \langle \operatorname{Re} \operatorname{tr} \left[\sigma_{\mu\nu} \hat{A}_{\mu\nu}(x) D_{f}^{-1}(x,x) \right] \operatorname{Re} \operatorname{tr} \left[\sigma_{\rho\sigma} \hat{A}_{\rho\sigma}(y) D_{g}^{-1}(y,y) \right] \rangle_{\gamma} \\ I_{mix,bub}^{fg} &= \frac{c_{f}}{16} \sum_{xyz,\mu\nu} \langle \operatorname{Re} \operatorname{tr} \left[\sigma_{\mu\nu} \hat{A}_{\mu\nu}(x) D_{f}^{-1}(x,x) \right] \operatorname{Im} \operatorname{tr} \left[J(y,z) D_{g}^{-1}(z,y) \right] \rangle_{\gamma} \\ I_{cur,self}^{fg} &= \frac{1}{4} \sum_{xyzw,\mu} \langle \operatorname{Re} \operatorname{tr} \left[J(x,y) D_{f}^{-1}(y,z) J(z,w) D_{f}^{-1}(w,x) \right] \rangle_{\gamma} \\ I_{sw,self}^{f} &= -\frac{c_{f}^{2}}{64} \sum_{xyz,\mu\nu} \langle \operatorname{Im} \operatorname{tr} \left[\sigma_{\mu\nu} \hat{A}_{\mu\nu}(x) D_{f}^{-1}(x,y) \sigma_{\rho\sigma} \hat{A}_{\rho\sigma}(y) D_{f}^{-1}(y,x) \right] \rangle_{\gamma} \\ I_{mix,self}^{fg} &= -\frac{c_{f}}{8} \sum_{xyz,\mu\nu} \langle \operatorname{Im} \operatorname{tr} \left[\sigma_{\mu\nu} \hat{A}_{\mu\nu}(x) D_{f}^{-1}(x,y) J(y,z) D_{f}^{-1}(z,x) \right] \rangle_{\gamma} \end{split}$$

Algorithms

Girard-Hutchinson trace estimator^h

The trace can be approximated with stochastic sources.

$$\sum_{x} \operatorname{tr} \left[D^{-1}(x, x) \right] = \operatorname{Tr} \left[D^{-1} \right] = \operatorname{Tr} \left[D^{-1} \mathbb{1} \right]$$
$$= \lim_{N_{s} \to \infty} \frac{1}{N_{s}} \sum_{i}^{N_{s}} \eta_{i}^{\dagger} D^{-1} \eta_{i}$$

with:

$$\langle \eta \eta^{\dagger}
angle = 1$$
 & $\langle \eta
angle = 0$

^hGirard, "A fast 'Monte-Carlo cross-validation' procedure for large least squares problems with noisy data"; Hutchinson, "A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines".

Algorithms

Hopping Expansion

The Wilson-Dirac operator can be rewritten asⁱ:

This method allows one to write:

$$D^{-1} = \left(1 - D^{-1}H\right)M^{-1}$$

This leads to the general order formula:

$$D^{-1} = M^{-1} \sum_{n=0}^{m} (-H \ M^{-1})^n + D^{-1} (-H \ M^{-1})^{m+1}$$

ⁱThron et al., "Padé-Z₂ estimator of determinants".

Algorithms

Frequency Splitting

Using the relation:

$$D_{m_i}^{-1} - D_{m_j}^{-1} = (m_j - m_i) D_{m_i}^{-1} D_{m_j}^{-1}$$

So one can rewrite^j

$$D_m^{-1} = \sum_{i=0}^{N-1} (m_{i+1} - m_i) D_{m_i}^{-1} D_{m_{i+1}}^{-1} + D_{m_N}^{-1}$$

^jGiusti et al., "Frequency-splitting estimators of single-propagator traces".

Ensembles

lattice	<i>a</i> [fm]	m_{π} [MeV]	m_D [MeV]	no. cnfg	nsrc per lv per cnfg
$64 imes 32^3$	0.05393(24)	398.5(4.7)	1912.7(5.7)	50	400
$80 imes 48^3$	0.05400(14)	401.9(1.4)	1908.5(4.5)	50	100

Table: Configurations used.

Parameters used:

$$\begin{split} \delta\beta &= \delta c_{\mathsf{SW}}^{\mathsf{SU}(3)f} = 0\\ c_{\mathsf{SW}}^{\mathsf{U}(1)f} &= 1\\ e &= e_{\mathsf{phys}}\\ \delta m_f \text{ from QCD+QED simulation.} \end{split}$$

From QCD $N_f = 3 + 1$ to QCD+QED $N_f = 1 + 2 + 1$.

Scale-Setting

The scale is set using the auxiliary Wilson-flow observable t_0 :

$$t_0^2 \langle E(t) \rangle \big|_{t=t_0} = 0.3$$

Observable	Value [lattice units]
t ₀ QCD	7.36 ± 0.04
δt_0^{Mass}	$\textbf{0.28} \pm \textbf{0.21}$
δt_0^{Tad}	-0.49 ± 0.27
$\delta t_0^{Bubbles}$	-0.01 ± 0.06
δt_0^{Self}	0.12 ± 0.13
δt_0^{Tot}	-0.11 ± 0.13
$t_0^{\text{QCD}+\text{QED}_{\text{RM123}}}$	$\textbf{7.26} \pm \textbf{0.14}$
$t_0^{\text{QCD}+\text{QED}}$	7.54 ± 0.05

Table: IBE effects on *t*⁰ for A400a00b324 (preliminary).

t_0 error on A400a00b324

Function of the number of sources

Sea-sea IBE effect to t₀/a² for A400a00b324

*t*⁰ error on B400a00b324

Function of the number of sources

Sea-sea IBE effect to t₀/a² for B400a00b324

Volume Scaling of the Variance

For a gluonic quantity like E(t) the scaling of the error is $a^{-1}\sqrt{V}$ for strong isospin-breaking effects and $a^{/2}\sqrt{V}$ for electro-magnetic isospin-breaking effects.

Scaling of the error for light quarks

Volume Scaling of the Variance

Scaling of the error for charm quark

Pion mass

Observable	Value [MeV]
$m_{\pi^{\pm}}^{ extsf{QCD}}$	408 ± 7
$\delta m_{\pi^\pm}^{Mass}$	-63 ± 41
$\delta m_{\pi^\pm}^{Tad}$	50 ± 60
$\delta m_{\pi^{\pm}}^{Bubbles}$	7 ± 9
$\delta m^{Self}_{\pi^\pm}$	-27 ± 25
$\delta m_{\pi^\pm}^{\sf Tot}$	-32 ± 20
$m_{\pi^{\pm}}^{ extsf{QCD}+ extsf{QED}_{ extsf{RM123}}}$	375 ± 21
$m_{\pi^{\pm}}^{ extsf{QCD+QED}}$	401 ± 7

Sea-sea contribution to the pion mass.

Table: Sea-Sea IBE effects on $m_{\pi^{\pm}}$ on A400a00b324 (preliminary).

$m_{\pi^{\pm}}$ error on A400a00b324

Function of the number of sources

Sea-sea IBE effect to mn[±] for A400a00b324

$m_{\pi^{\pm}}$ error on B400a00b324

Function of the number of sources

Sea-sea IBE effect to mn[±] for B400a00b324

Conclusion and Outlook

Conclusions:

- ✓ The gauge noise can be achieved for the sea-sea diagrams;
- \checkmark The O(a) improvement term reach faster the gauge noise;
- The precision in the RM123 method is worse than the full simulations for the same number of gauge configurations;

To do:

- To include the valence-valence and sea-valence to analyse the meson masses;
- To study the scale of the error in $a o 0, \ V o \infty$ and $m_\pi o m_{\pi^{\rm phys.}}$;
- To evaluate the sea-sea contributions isolating the short and long distance;

Thank you for your attention!

Acknowledgments

The work was supported by the North-German Supercomputing Alliance (HLRN) with the project bep00102.

References I

- T. Aoyama et al. "The anomalous magnetic moment of the muon in the Standard Model". In: *Physics Reports* 887 (2020). The anomalous magnetic moment of the muon in the Standard Model, pp. 1–166. ISSN: 0370-1573. DOI: https://doi.org/10.1016/j.physrep.2020.07.006.
- Thomas Blum et al. "Using infinite volume, continuum QED and lattice QCD for the hadronic light-by-light contribution to the muon anomalous magnetic moment". In: *Phys. Rev. D* 96.3 (2017), p. 034515. DOI: 10.1103/PhysRevD.96.034515. arXiv: 1705.01067 [hep-lat].
- [3] Lucius Bushnaq et al. "First results on QCD+QED with C* boundary conditions". In: JHEP 03 (2023), p. 012. DOI: 10.1007/JHEP03(2023)012. arXiv: 2209.13183 [hep-lat].

References II

- [4] G. M. de Divitiis et al. "Leading isospin breaking effects on the lattice". In: *Phys. Rev. D* 87 (11 2013), p. 114505. DOI: 10.1103/PhysRevD.87.114505. URL: https: //link.aps.org/doi/10.1103/PhysRevD.87.114505.
- [5] Michael G. Endres et al. "Massive photons: an infrared regularization scheme for lattice QCD+QED". In: *Phys. Rev. Lett.* 117.7 (2016), p. 072002. DOI: 10.1103/PhysRevLett.117.072002. arXiv: 1507.08916 [hep-lat].
- [6] A. Girard. "A fast 'Monte-Carlo cross-validation' procedure for large least squares problems with noisy data". In: *Numerische Mathematik* 56.1 (1989), pp. 1–23. ISSN: 0945-3245. DOI: 10.1007/BF01395775. URL: https://doi.org/10.1007/BF01395775.

References III

- [7] Leonardo Giusti et al. "Frequency-splitting estimators of single-propagator traces". In: *Eur. Phys. J. C* 79.7 (2019), p. 586. DOI: 10.1140/epjc/s10052-019-7049-0. arXiv: 1903.10447 [hep-lat].
- [8] Masashi Hayakawa and Shunpei Uno. "QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons". In: *Prog. Theor. Phys.* 120 (2008), pp. 413–441. DOI: 10.1143/PTP.120.413. arXiv: 0804.2044 [hep-ph].
- [9] M.F. Hutchinson. "A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines". In: Communications in Statistics - Simulation and Computation 19.2 (1990), pp. 433–450. DOI: 10.1080/03610919008812866. eprint: https://doi.org/10.1080/03610919008812866. URL: https://doi.org/10.1080/03610919008812866.

References IV

- [10] Andreas S. Kronfeld and U. J. Wiese. "SU(N) gauge theories with C periodic boundary conditions. 1. Topological structure". In: *Nucl. Phys. B* 357 (1991), pp. 521–533. DOI: 10.1016/0550-3213(91)90479-H.
- [11] Andreas S. Kronfeld and U. J. Wiese. "SU(N) gauge theories with C periodic boundary conditions. 2. Small volume dynamics". In: Nucl. Phys. B 401 (1993), pp. 190–205. DOI: 10.1016/0550-3213(93)90302-6. arXiv: hep-lat/9210008.
- [12] C. Thron et al. "Padé-Z₂ estimator of determinants". In: *Physical Review D* 57.3 (Feb. 1998), 1642–1653. ISSN: 1089-4918. DOI: 10.1103/physrevd.57.1642. URL: http://dx.doi.org/10.1103/PhysRevD.57.1642.

Backup Mass Term Estimator

The mass term has been estimated using the following method:

$$\begin{aligned} \operatorname{Tr}\left[D_{m_{u}}^{-1}\right] &\sim \left(m_{c}-m_{u}\right) \frac{1}{N_{s}} \sum_{i}^{N_{s}} \left(D_{m_{c}}^{\dagger} \eta_{i}\right)^{\dagger} D_{m_{u}} \eta_{i} \\ &+ \sum_{i}^{N_{pr}} s_{i}^{\dagger} S W^{-1} \sum_{n=0}^{3} \left(-H S W^{-1}\right)^{n} s_{i} \\ &+ \frac{1}{N_{s}} \sum_{i}^{N_{s}} \xi_{i}^{\dagger} \left(-S W^{-1} H\right)^{4} D_{m_{c}}^{-1} \xi_{i} \end{aligned}$$

Backup Tadpole Term Estimator

-

The tadpole term has been estimated using the following method:

$$\operatorname{Tr}\left[TD_{m_{u}}^{-1}\right] \sim (m_{c} - m_{u}) \frac{1}{N_{s}} \sum_{i}^{N_{s}} \left(D_{m_{c}}^{\dagger} \eta_{i}\right)^{\dagger} TD_{m_{u}} \eta_{i}$$
$$+ \sum_{i}^{N_{pr}} s_{i}^{\dagger} TSW^{-1} \sum_{n=0}^{2} \left(-HSW^{-1}\right)^{n} s_{i}$$
$$+ \frac{1}{N_{s}} \sum_{i}^{N_{s}} \xi_{i}^{\dagger} T \left(-SW^{-1}H\right)^{3} D_{m_{c}}^{-1} \xi_{i}$$

Backup

Bubbles Estimator

Due to SU(3) flavour symmetry, the only bubbles contributing are the charm bubbles:

$$\begin{bmatrix} JD_{m_{c}}^{-1} \end{bmatrix}_{i}^{a} = \sum_{j}^{N_{pr}} s_{j}^{\dagger} J^{a} SW^{-1} \sum_{n=0}^{2} \left(-HSW^{-1}\right)^{n} s_{j} + \xi_{i}^{\dagger} J^{a} \left(-SW^{-1}H\right)^{3} D_{m_{c}}^{-1} \xi_{i} \begin{bmatrix} \sigma_{\mu\nu} \hat{A}_{\mu\nu} D_{m_{c}}^{-1} \end{bmatrix}_{i}^{a} = \sum_{j}^{N_{pr}} s_{j}^{\dagger} \sigma_{\mu\nu} \hat{A}_{\mu\nu}^{a} SW^{-1} \sum_{n=0}^{3} \left(-HSW^{-1}\right)^{n} s_{j} + \xi_{i}^{\dagger} \sigma_{\mu\nu} \hat{A}_{\mu\nu}^{a} \left(-SW^{-1}H\right)^{4} D_{m_{c}}^{-1} \xi_{i}$$

The stochastic estimator will be:

$$\operatorname{Tr}\left[JD_{m_{c}}^{-1}\right]\operatorname{Tr}\left[JD_{m_{c}}^{-1}\right] \sim \frac{2}{N_{s}\left(N_{s}-1\right)}\sum_{i\neq j}^{N_{s}}\frac{1}{N_{A}}\sum_{a}^{N_{A}}\left[JD_{m_{c}}^{-1}\right]_{i}^{a}\left[JD_{m_{c}}^{-1}\right]_{j}^{a}$$

Backup Self-Energy Estimator

The tadpole term has been estimated using the following method:

$$\mathsf{Tr} \left[J D_{m_u}^{-1} J D_{m_u}^{-1} \right] \sim (m_c - m_u) \frac{1}{N_s} \sum_{i}^{N_s} \left(D_{m_c}^{\dagger} \eta_i \right)^{\dagger} J D_{m_u}^{-1} J D_{m_u} \eta_i \\ + \frac{1}{N_s} \sum_{i}^{N_s} \xi_i^{\dagger} J D_{m_u}^{-1} J D_{m_c}^{-1} \xi_i$$

Backup

Gauge Choice

Considering the Gauge-invariant interpolating operator:

$$\Psi^{c}(x) = \exp\left\{-i\int d^{3}y\Phi\left(\vec{x}-\vec{y}\right)\partial_{k}A_{k}\left(x_{0},\vec{y}\right)\right\}\psi(x)$$

with $\partial_k \partial_k \Phi(\vec{x}) = \delta^3(\vec{x})$ In Coulomb gauge, it is just $\psi(x)$. Considering the Gauge-invariant interpolating operator:

$$\Psi^{\prime}(x) = \exp\left\{-i\int d^{4}y\Phi\left(x-y
ight)\partial_{\mu}A_{\mu}\left(y
ight)
ight\}\psi(x)$$

with $\partial_{\mu}\partial_{\mu}\Phi(x) = \delta^{4}(x)$ In Landau gauge it is just $\psi(x)$. If one is interested in extracting the mass from the gauge fixed operator:

$$\sum_{\vec{x}} \langle \psi(t,\vec{x})\bar{\psi}(0)\rangle = \sum_{\vec{x}} \langle \psi(0,\vec{x})e^{-tH}\bar{\psi}(0)\rangle \sim Ae^{-tm_{\psi}}$$

In Landau gauge, this is equivalent to extracting the mass from:

$$\sum_{ec x} \langle \Psi'(t,ec x) ar \Psi'(0)
angle$$

In Coulomb gauge from:

$$\sum_{ec x} \langle \Psi^c(t,ec x) ar \Psi^c(0)
angle$$