Pseudoscalar transition form factors and the muon g-2

Antoine Gérardin

Based on 2305.04570 [hep-lat]

DESY - Lattice Seminar January 29, 2024

$$\vec{u} = g\left(\frac{Qe}{2m}\right)\vec{S}$$

• Corrections to the vertex function : Dirac and Pauli form factors

• Classical result : g = 2 for elementary fermions (Dirac equation)

2

Quantum field theory : $a_{\mu} = \frac{g-2}{2} \neq 0$ \hookrightarrow generated by quantum effects $a_{\mu}^{(1)} = \frac{\alpha}{2\pi}$ [Schwinger '48] "The anomalous magnetic moment of the muon in the Standard Model " [Phys.Rept. 887 (2020) 1-166]

Contribution	$a_{\mu} \times 10^{11}$
- QED ($10^{ ext{th}}$ order)	$116\ 584\ 718.931 \pm 0.104$
- Electroweak	153.6 ± 1.0
- Strong interaction	
HVP (LO)	$6\ 931\pm40$
HVP (NLO)	-98.3 ± 0.7
HVP (NNLO)	12.4 ± 0.1
HLbL	92 ± 18
Total (Standard Model)	116 591 810 ± 43
Experiment	$116\ 592\ 059\pm 22$

► Theory error larger than current experimental precisions

Error budget dominated by hadronic contributions : LO-HVP and HLbL

 \rightarrow HVP : precision of a few permil is needed

- \rightarrow HLbL : precision of 10% would be sufficient
- \rightarrow dominated by low-energy physics where QCD is non-perturbative

- LO-HVP
- NLO HVP and NNLO HVP differ by the QED kernel functions
 - \rightarrow NLO HVP : same order as HLbL
 - \rightarrow not negligible, but error under control

Hadronic light-by-light scattering in the muon g-2

- ▶ both approaches are complementary
- ▶ target precision for HLbL : <10%

Hadronic light-by-light scattering in the muon g-2

Integrand of the "direct lattice calculation"

► Noisy long distance dominated by pion-pole

5

 \blacktriangleright Finite-volume effects \rightarrow long-distance physics : pion-pole

Pseudoscalar-pole plays an important role in the direct calculation

hadronic light-by-light : extrapolation to the physical pion mass

Pion-pole subtraction

- Results obtained with the Mainz group [Eur.Phys.J.C 81 (2021) 7, 651]
- Statistical precision deteriorates rapidly at low pion masses
- Correction : $a_{\mu}^{\text{hlbl,cor}}(a, m_{\pi}) = a_{\mu}^{\text{hlbl,data}}(a, m_{\pi}) + \left(a_{\mu}^{\pi^{0}, \text{phys}(a, m_{\pi})} a_{\mu}^{\pi^{0}}(a, m_{\pi})\right)$

hadronic light-by-light : extrapolation to the physical pion mass

Pion-pole subtraction

• Open symbols : $a_{\mu}^{\text{hlbl,cor}}(a, m_{\pi}) = a_{\mu}^{\text{hlbl,data}}(a, m_{\pi}) + \left(a_{\mu}^{\pi^{0}, \text{phys}(a, m_{\pi})} - a_{\mu}^{\pi^{0}}(a, m_{\pi})\right)$

Chiral extrapolation significantly improved !

Pseudoscalar-pole contribution to Hadronic Light-by-light diagram

$$\begin{aligned} a_{\mu}^{\text{HLbL};\pi^{0}} &= \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{P\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{P\gamma^{*}\gamma^{*}}(-Q_{2}^{2},0) + \\ & w_{2}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{P\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) \ \mathcal{F}_{P\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2},0) \end{aligned}$$

- \rightarrow Product of one single-virtual and one double-virtual transition form factors $\rightarrow w_{1,2}(Q_1, Q_2, \tau)$ are model-independent weight functions
- \rightarrow The weight functions are concentrated at small momenta below 1 ${\rm GeV}$

 \hookrightarrow Hadronic input : TFFs for arbitrary space-like virtualities in the momentum range [0-3] GeV²

- Relative contribution of the pseudoscalar-pole contributions $a_\mu^{\rm hlbl,P}$ as a function of the momentum cutoff $Q_{\rm cut}$

$Q_{\rm cut}$ [GeV]	π^0	η	η'
0.50	71%	50%	38%
1.00	84%	68%	60%
2.00	92%	81%	78%
3.00	94%	86%	85%
5.00	97%	91%	92%

Outline

• pion transition form factor

 \rightarrow first lattice calculation done in collaboration with the Mainz group [Phys.Rev.D 100 (2019) 3]

$$a_{\mu}^{\text{HLbL};\pi^0} = (59.7 \pm 3.6) \times 10^{-11} \quad [6\%]$$

 $\Gamma(\pi^0 \to \gamma \gamma) = 7.17 \pm 0.49 \text{ eV}$

- \rightarrow recently : new result by ETM $\ensuremath{\left[\ensuremath{\,2308.12458\ensuremath{\left[\ensuremath{{}hep-lat\ensuremath{\right]}\ensuremath{\right]}}}$
- \rightarrow this talk : new independent calculation
- \rightarrow warm-up with staggered quarks before moving to η and η' TFFs

• η and η' transition form factors

9

 \rightarrow calculation at the physical point + continuum limit

 \rightarrow estimates from Canterbury approximants [PRD 95, 054026 (2017)] and Dyson-Schwinger equations [Phys. Lett. B 797, 134855 (2019)] [PRD 101, 074021 (2020)]

$$a_{\mu}^{\text{HLbL};\eta} \approx 15 \times 10^{-11}$$
$$a_{\mu}^{\text{HLbL};\eta'} \approx 14 \times 10^{-11}$$

 \rightarrow much more difficult : $\eta-\eta'$ mixing, noisy quark-disconnected contributions

 \rightarrow 25-30% on $a_{\mu}^{\mathrm{HLbL};\eta+\eta'}$ precision would suffice to reach 10%

$$C^{(3)}_{\mu\nu}(\tau, t_{\pi}) = \sum_{\vec{x}, \vec{z}} \left\langle T \left\{ J_{\nu}(\vec{0}, t_f) J_{\mu}(\vec{z}, t_i) P(\vec{x}, t_0) \right\} \right\rangle e^{i\vec{p}\vec{x}} e^{-i\vec{q}_1\vec{z}}$$

- Diagram 1 : contributes to all meson TFFs
- Diagram 2 : contributes to all meson TFFs (only disconnected diagram for π⁰)
 → we work in the isospin limit of QCD ⇒ single pseudoscalar loop vanishes
 → numerically small : O(1%) [Mainz '19, BMW '23]
- Diagram 3 and 4 : contribute to the η and η'

- ightarrow third diagram is large, noisy and enters with an opposite sign
- \rightarrow fourth diagram expected to be small : SU(3)-suppressed vector loops

Calculation based on Budapest-Marseille-Wuppertal (BMW) gauge ensembles

• Goldstone pion/kaon are tuned to their physical pion/kaon masses

 $\rightarrow N_f = 2 + 1 + 1$ dynamical staggered fermions with four steps of stout smearing

- up to 6 lattice spacings from 0.13 fm down to 0.064 fm
- different physical volumes from 3 to 6 fm

11

- \rightarrow pion TFF : based on large 6 fm ensembles only
- \rightarrow smaller boxes also used for the η and η' to boost statistics

More details are given in 2305.04570 [hep-lat]

The pion transition form factor

In Minkowski space-time :

$$M_{\mu\nu}(q_1^2, q_2^2) = i \int d^4x \, e^{iq_1x} \, \langle 0|T\{J_{\mu}(x)J_{\nu}(0)\}|\pi^0(p)\rangle = \epsilon_{\mu\nu\alpha\beta} \, q_1^{\alpha} \, q_2^{\beta} \, \mathcal{F}_{\pi^0\gamma\gamma}(q_1^2, q_2^2)$$

• $J_{\mu}(x)$ hadronic component of the electromagnetic current : $J_{\mu}(x) = \frac{2}{3}\overline{u}(x)\gamma_{\mu}u(x) - \frac{1}{3}\overline{d}(x)\gamma_{\mu}d(x) + \dots$

In Euclidean space-time : [Ji & Jung '01] [Cohen et al. '08] [Feng et al. '12]

$$M^{E}_{\mu\nu}(q_{1}^{2},q_{2}^{2}) = -\int \mathrm{d}\tau \, e^{\omega_{1}\tau} \int \mathrm{d}^{3}x \, e^{-i\vec{q}_{1}\vec{x}} \, \langle 0|T\left\{J_{\mu}(\vec{x},\tau)J_{\nu}(\vec{0},0)\right\} |\pi^{0}(p)\rangle = \int_{-\infty}^{\infty} \, \mathrm{d}\tau \, \widetilde{A}^{(\pi^{0})}_{\mu\nu}(\tau) \, e^{\omega_{1}\tau} \, d\tau = \int_{-\infty}^{\infty} \, \mathrm{d}\tau \, \widetilde{A}^{(\pi^{0})}_{\mu\nu}(\tau) \, e^{\omega_{1}\tau} \, d\tau = \int_{-\infty}^{\infty} \, \mathrm{d}\tau \, \widetilde{A}^{(\pi^{0})}_{\mu\nu}(\tau) \, e^{\omega_{1}\tau} \, d\tau = \int_{-\infty}^{\infty} \, \mathrm{d}\tau \, \widetilde{A}^{(\pi^{0})}_{\mu\nu}(\tau) \, e^{\omega_{1}\tau} \, d\tau = \int_{-\infty}^{\infty} \, \mathrm{d}\tau \, \widetilde{A}^{(\pi^{0})}_{\mu\nu}(\tau) \, d\tau = \int_{-\infty}^{\infty} \, \mathrm{d$$

- Kinematics : $q_1 = (\omega_1, \vec{q_1})$
- $|\vec{q_1}|^2 = (2\pi/L)^2 |\vec{n}|^2$, $|\vec{n}|^2 = 1, 2, 3, 4, 5, \dots$
- valid below hadronic threshold

Euclidean three-point correlation function :

$$C^{(3)}_{\mu\nu}(\tau, t_{\pi}; \vec{p}, \vec{q}_1, \vec{q}_2) = \sum_{\vec{x}, \vec{z}} \left\langle T \left\{ J_{\nu}(\vec{0}, t_f) J_{\mu}(\vec{z}, t_i) P(\vec{x}, t_0) \right\} \right\rangle e^{i\vec{p}\vec{x}} e^{-i\vec{q}_1\vec{z}}$$

Photons virtualities (pion rest frame) :

$$q_1^2 = \omega_1^2 - |\vec{q}_1|^2$$
$$q_2^2 = (m_\pi - \omega_1)^2 - |\vec{q}_1|^2$$

 $\Rightarrow |\vec{q_1}|^2 = (2\pi/L)^2 |\vec{n}|^2 \quad , \quad |\vec{n}|^2 = 1, 2, 3, 4, 5, \dots$ $\Rightarrow \omega_1 \text{ is a (real) free parameter}$

Shape of the integrand at fixed $|\vec{q_1}|^2$ and $|\vec{q_2}|^2$

$$\left(\mathcal{F}_{\pi^0\gamma\gamma}(q_1^2, q_2^2) \propto \int_{-\infty}^{\infty} \mathrm{d}\tau \, \widetilde{A}_{\mu\nu}(\tau) \, e^{\omega_1 \tau} \qquad \widetilde{A}_{\mu\nu}^{(\pi)}(\tau) = \lim_{t_P \to +\infty} \frac{2E_{\pi}}{Z_{\pi}} e^{E_{\pi}(t_f - t_0)} C_{\mu\nu}^{(3)}(\tau, t_P) \right)$$

• The small contribution $\tau > \tau_{max}$ is evaluated assuming a VMD (or LMD) parametrization

Shape of the integrand at fixed $|\vec{q_1}|^2$ and $|\vec{q_2}|^2$

$$\left(\mathcal{F}_{\pi^{0}\gamma\gamma}(q_{1}^{2},q_{2}^{2}) \propto \int_{-\infty}^{\infty} \mathrm{d}\tau \, \widetilde{A}_{\mu\nu}(\tau) \, e^{\omega_{1}\tau} \qquad \widetilde{A}_{\mu\nu}^{(\pi)}(\tau) = \lim_{t_{P} \to +\infty} \frac{2E_{\pi}}{Z_{\pi}} e^{E_{\pi}(t_{f}-t_{0})} C_{\mu\nu}^{(3)}(\tau,t_{P}) \right)$$

• The small contribution $\tau > \tau_{max}$ is evaluated assuming a VMD (or LMD) parametrization

- \rightarrow Black/blue points : two different pion frames
- \rightarrow Reminder : lattice data are not restricted to these kinematics
- \rightarrow OPE / Brodsky Lepage : TFF decays as $1/Q^2$ for large virtualities

▶ Model independent double *z*-expansion for space-like momenta [Mainz '19]

$$\mathcal{F}_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) = \sum_{n,m=0}^N c_{nm} \, z_1^n \, z_2^n \quad , \qquad z_i = \frac{\sqrt{t_c + Q_i^2} - \sqrt{t_c - t_0}}{\sqrt{t_c + Q_i^2} + \sqrt{t_c - t_0}}$$

 $\rightarrow t_c = 4m_\pi^2$

 $t \to t_0$ chosen to reduce the maximum value of $|z_i|$ in the range $[0, Q^2_{\text{max}}]$

 \rightarrow truncation of the sum (finite N)

▶ Model independent double *z*-expansion for space-like momenta [Mainz '19]

$$\mathcal{F}_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) = \sum_{n,m=0}^N c_{nm} \, z_1^n \, z_2^n \quad , \qquad z_i = \frac{\sqrt{t_c + Q_i^2} - \sqrt{t_c - t_0}}{\sqrt{t_c + Q_i^2} + \sqrt{t_c - t_0}}$$

 $\rightarrow t_c = 4m_\pi^2$

- $\rightarrow t_0$ chosen to reduce the maximum value of $|z_i|$ in the range $[0, Q^2_{\max}]$
- \rightarrow truncation of the sum (finite N)
- ► Analytical + short-distance constraints (Brodsky-Lepage behavior and OPE) [Mainz '19]

$$\begin{split} P(Q_1^2, Q_2^2) \ \mathcal{F}_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) &= \sum_{n,m=0}^{N-1} c_{nm} \left(z_1^n - \frac{(-1)^{N+n} n \, z_1^N}{N} \right) \left(z_2^m - \frac{(-1)^{N+m} m \, z_2^N}{N} \right) \\ \text{with} \qquad P(Q_1^2, Q_2^2) &= 1 + \frac{Q_1^2 + Q_2^2}{M_V^2} \qquad \Rightarrow \qquad \mathcal{F}_{\pi^0\gamma^*\gamma} \sim \frac{1}{Q^2} \end{split}$$

- Discretization effects : $\tilde{c}_{mn}(a) = c_{mn} + \gamma_{mn}^{(1)} a^2 + \gamma_{mn}^{(2)} a^4$
- \blacktriangleright Uncorrelated fits. Systematic error by varying N

$$\Gamma(\pi^0 \to \gamma\gamma) = 7.11(0.44)_{\text{stat}}(0.21)_{\text{syst}} \text{ eV}$$
$$a_{\mu}^{\text{HLbL};\pi^0} = 57.8(1.8)_{\text{stat}}(0.9)_{\text{syst}} \times 10^{-11}$$

► two-photon decay width :

$$\Gamma(\pi^0 \to \gamma\gamma) = \frac{\pi \alpha^2 m_{\pi^0}^3}{4} \mathcal{F}^2_{\pi^0 \gamma\gamma}(0,0)$$

- lattice results tend to be smaller than exp. value ... but compatible within 1 - 1.5 σ \rightarrow error dominated by statistics

• $\Gamma(\pi^0 \to \gamma \gamma)$ and $a_{\mu}^{\pi^0}$ are correlated : low- Q^2 region dominates in $a_{\mu}^{\pi^0}$

The η and η' transition form factors

 \bullet In principle, the same techniques work for η

$$C^{(i)}_{\mu\nu}(\tau, t_P) = \sum_{\vec{x}, \vec{z}} \langle J_{\mu}(\vec{z}, t_i) J_{\nu}(\vec{0}, t_f) \mathcal{O}_i(\vec{x}, t_0) \rangle e^{i\vec{p}\cdot\vec{x}} e^{-i\vec{q}_1\cdot\vec{z}}$$

with the η_8 and η_0 interpolating operators :

$$\mathcal{O}_8(x) = \frac{1}{\sqrt{6}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) - 2\overline{s} \gamma_5 s(x) \right),$$

$$\mathcal{O}_0(x) = \frac{1}{\sqrt{3}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) + \overline{s} \gamma_5 s(x) \right).$$

For the η , the spectral decomposition reads

$$\begin{split} C^{(i)}_{\mu\nu}(\tau,t_P) &= \sum_{\vec{z}} \langle 0|J_{\mu}(\vec{z},\tau)J_{\nu}(\vec{0},0)|\eta(\vec{p})\rangle e^{-i\vec{q}_{1}\cdot\vec{z}} \times \frac{1}{2E_{\eta}} \langle \eta(\vec{p})|\mathcal{O}_{i}|0\rangle e^{E_{\eta}(t_{0}-t_{f})} \\ &+ \sum_{\vec{z}} \langle 0|J_{\mu}(\vec{z},\tau)J_{\nu}(\vec{0},0)|\eta'(\vec{p})\rangle e^{-i\vec{q}_{1}\cdot\vec{z}} \times \frac{1}{2E_{\eta'}} \langle \eta'(\vec{p})|\mathcal{O}_{i}|0\rangle e^{E'_{\eta}(t_{0}-t_{f})} \\ &+ \text{higher excited states} \end{split}$$

 $\rightarrow \eta'$ is just an excited state : contribution vanishes exponentially with t_P \rightarrow but the mass gap $\Delta E = E_{\eta'} - E_{\eta} \approx 400$ MeV is not so large

- $\Delta E = E_{\eta'} E_{\eta} \approx 400$ MeV not so large
- Large excited state contribution : large statistical error at large t_P

• Large time separations t_P are needed

23

 \bullet Does not work for the $\eta'~\to~{\rm excited}$ state

Solution : Generalized eigenvalue problem to deal with excited states.

Spectral decomposition :

$$C_{\mu\nu}^{(i)}(\tau, t_P) = \sum_{\vec{z}} \langle 0|J_{\mu}(\vec{z}, \tau)J_{\nu}(\vec{0}, 0)|\eta(\vec{p})\rangle e^{-i\vec{q}_1 \cdot \vec{z}} \times \frac{1}{2E_{\eta}} \langle \eta(\vec{p})|\mathcal{O}_i|0\rangle e^{E_{\eta}(t_0 - t_f)} + \sum_{\vec{z}} \langle 0|J_{\mu}(\vec{z}, \tau)J_{\nu}(\vec{0}, 0)|\eta'(\vec{p})\rangle e^{-i\vec{q}_1 \cdot \vec{z}} \times \frac{1}{2E_{\eta'}} \langle \eta'(\vec{p})|\mathcal{O}_i|0\rangle e^{E_{\eta}(t_0 - t_f)} + \cdots$$

Matrix notation :

$$\begin{pmatrix} C_{\mu\nu}^{(8)} \\ C_{\mu\nu}^{(0)} \end{pmatrix} = \begin{pmatrix} T_{\eta}^{(8)} & T_{\eta'}^{(8)} \\ T_{\eta}^{(0)} & T_{\eta'}^{(0)} \end{pmatrix} \begin{pmatrix} \widetilde{A}_{\mu\nu}^{(\eta)} \\ \widetilde{A}_{\mu\nu}^{(\eta')} \end{pmatrix} ,$$

with

$$T_n^{(i)} = \frac{Z_n^{(i)}}{2E_n} e^{-E_n(t_f - t_0)}, \quad \widetilde{A}_{\mu\nu}^{(n)}(\tau) = \sum_{\vec{z}} \langle 0 | J_\mu(\vec{z}, \tau) J_\nu(\vec{0}, 0) | n(\vec{p}) \rangle e^{-i\vec{q}_1 \cdot \vec{z}}$$

Inverting the system :

$$\widetilde{A}_{\mu\nu}^{(\eta)} = \cos^2 \phi_I \, \frac{C_{\mu\nu}^{(8)}}{T_{\eta}^{(8)}} + \sin^2 \phi_I \, \frac{C_{\mu\nu}^{(0)}}{T_{\eta}^{(0)}}$$
$$\widetilde{A}_{\mu\nu}^{(\eta')} = \sin^2 \phi_I \, \frac{C_{\mu\nu}^{(8)}}{T_{\eta'}^{(8)}} + \cos^2 \phi_I \, \frac{C_{\mu\nu}^{(0)}}{T_{\eta'}^{(0)}}$$

with $\tan^2\phi_I=-(Z_{\eta'}^{(8)}Z_{\eta}^{(0)})/(Z_{\eta}^{(8)}Z_{\eta'}^{(0)})$ (mixing angle)

- $\Delta E = E_{\eta'} E_\eta \approx 400~{\rm MeV}$ not so large
- Large excited state contribution : large statistical error at large t_P

 $\widetilde{A}^{(1)}(\tau=0)$

• Black point : new estimator

25

We obtain a plateau for short time separation t_P

Masses of the η ans η' meson : taste-singlet operators

Two staggered operators with correct quantum numbers (taste-singlet pseudoscalar) [Altmeyer et al. '93]

$$O_{3}(x) = \frac{1}{6} \sum_{i,j,k} \epsilon_{ijk} \,\overline{\chi}(x) [\eta_{i} \Delta_{i} [\eta_{j} \Delta_{j} [\eta_{k} \Delta_{k}]]] \chi(x) \qquad (\gamma_{4} \gamma_{5} \otimes 1)$$
$$O_{4}(x) = \frac{1}{2} \eta_{4}(x) \left[\overline{\chi}(x) \hat{O}_{3} \chi_{+}(x) + \overline{\chi}_{+}(x) \hat{O}_{3} \chi(x) \right] \qquad (\gamma_{5} \otimes 1)$$

• Symmetric shift operator : $\Delta_{\mu}\chi(x) = \frac{1}{2}[U_{\mu}(x)\chi(x+a\hat{\mu}) + U^{\dagger}_{\mu}(x-a\hat{\mu})\chi(x-a\hat{\mu})]$

- Time shifted fields : $\chi_+(x) = U_4(x)\chi(x+a\hat{t})$ and $\overline{\chi}_+(x) = \overline{\chi}(x+a\hat{t})U_4^{\dagger}(x)$
- Staggered quark operators : parity is not a "good quantum number " :

 $C(t;\vec{p}) = A \cosh\left(E_1(\vec{p})[T/2 - t]\right) + (-1)^{t/a} B \cosh\left(E_2(\vec{p})[T/2 - t]\right) ,$

Antoine Gérardin

Masses of the η ans η' meson : taste-singlet operators

Two staggered operators with correct quantum numbers (taste-singlet pseudoscalar) [Altmeyer et al. '93]

$$O_{3}(x) = \frac{1}{6} \sum_{i,j,k} \epsilon_{ijk} \overline{\chi}(x) [\eta_{i} \Delta_{i} [\eta_{j} \Delta_{j} [\eta_{k} \Delta_{k}]]] \chi(x) \qquad (\gamma_{4} \gamma_{5} \otimes 1)$$
$$O_{4}(x) = \frac{1}{2} \eta_{4}(x) \left[\overline{\chi}(x) \hat{O}_{3} \chi_{+}(x) + \overline{\chi}_{+}(x) \hat{O}_{3} \chi(x) \right] \qquad (\gamma_{5} \otimes 1)$$

• Staggered quark operators : parity is not a "good quantum number " :

$$C(t;\vec{p}) = A \cosh\left(E_1(\vec{p})[T/2 - t]\right) + (-1)^{t/a} B \cosh\left(E_2(\vec{p})[T/2 - t]\right) \,,$$

 \rightarrow 4-link operators : efficient methods to compute the the disconnected loops [Venkataraman & Kilcup '97] \rightarrow we only use the 4-link operator for the TFFs

Pion mass splitting at our coarsest lattice spacing

• Pion spectrum with staggered quarks (16 tastes)

• Staggered ChiPT : $(m_\pi^X)^2 = \mu \left(m_u + m_d \right) + a^2 \Delta_X$ [Lee & Sharpe '99]

• from rS χ PT is [Bernard 2007] :

27

$$m_{\eta_8,I}^2 = \frac{1}{3}m_{uu,I}^2 + \frac{2}{3}m_{ss,I}^2$$

- expect discretization effects $\sim 140~{\rm MeV}$ for the η meson mass at our coarsest lattice spacing

Consider two operators that interpolate the η and η' mesons :

$$\mathcal{O}_8(x) = \frac{1}{\sqrt{6}} \left(\overline{u}\gamma_5 u(x) + \overline{d}\gamma_5 d(x) - 2\overline{s}\gamma_5 s(x) \right)$$
$$\mathcal{O}_0(x) = \frac{1}{\sqrt{3}} \left(\overline{u}\gamma_5 u(x) + \overline{d}\gamma_5 d(x) + \overline{s}\gamma_5 s(x) \right)$$

and build the correlation matrix

$$C_{I}(t) = \begin{pmatrix} \langle O_{8}(t)O_{8}^{\dagger}(0) \rangle & \langle O_{8}(x)O_{0}^{\dagger}(0) \rangle \\ \langle O_{0}(t)O_{8}^{\dagger}(0) \rangle & \langle O_{0}(x)O_{0}^{\dagger}(0) \rangle \end{pmatrix}$$

In this isospin basis, the correlators are given by

$$\langle O_8(t)O_8^{\dagger}(0)\rangle = \frac{1}{3} \left(\mathcal{C}_l + 2\mathcal{C}_s + 2\mathcal{D}_{ll} + 2\mathcal{D}_{ss} - 2\mathcal{D}_{ls} - 2\mathcal{D}_{sl} \right)$$

$$\langle O_8(t)O_0^{\dagger}(0)\rangle = \frac{\sqrt{2}}{3} \left(\mathcal{C}_l - \mathcal{C}_s + 2\mathcal{D}_{ll} - \mathcal{D}_{ss} + \mathcal{D}_{ls} - 2\mathcal{D}_{sl} \right)$$

$$\langle O_0(t)O_8^{\dagger}(0)\rangle = \frac{\sqrt{2}}{3} \left(\mathcal{C}_l - \mathcal{C}_s + 2\mathcal{D}_{ll} - \mathcal{D}_{ss} + \mathcal{D}_{sl} - 2\mathcal{D}_{ls} \right)$$

$$\langle O_0(x)O_0^{\dagger}(0)\rangle = \frac{1}{3} \left(2\mathcal{C}_l + \mathcal{C}_s + 4\mathcal{D}_{ll} + \mathcal{D}_{ss} + 2\mathcal{D}_{ls} + 2\mathcal{D}_{sl} \right)$$

$$\langle O_a(t)O_b^{\dagger}(0)\rangle = \frac{Z_{\eta}^{(a)}Z_{\eta}^{(b)*}}{2E_{\eta}}e^{-E_{\eta}t} + \frac{Z_{\eta'}^{(a)}Z_{\eta'}^{(b)*}}{2E_{\eta'}}e^{-E_{\eta'}t} + \cdots$$

• Extraction of the π^0 , η and η' masses from two-point correlation functions

→ signal deteriorates rapidly for the η and η' → need to study the mixing between the η and η' → noisy disconnected diagrams

• Preliminary - no systematic error

 \rightarrow We reproduce the experimental values in the continuum limit

- \rightarrow Blue points are obtained using large volume ensembles (L = 6 fm)
- \rightarrow Orange points correspond to smaller volumes (L = 3/4 fm) (not included in the fit)

 \bullet 3-point correlation functions for the η and η'

$$C^{(i)}_{\mu\nu}(\tau, t_P) = \sum_{\vec{x}, \vec{z}} \langle J_{\mu}(\vec{z}, t_i) J_{\nu}(\vec{0}, t_f) \mathcal{O}_i(\vec{x}, t_0) \rangle \, e^{i\vec{p}\cdot\vec{x}} e^{-i\vec{q}_1\cdot\vec{z}}$$

with the η_8 and η_0 interpolating operators :

$$\mathcal{O}_8(x) = \frac{1}{\sqrt{6}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) - 2\overline{s} \gamma_5 s(x) \right),$$

$$\mathcal{O}_0(x) = \frac{1}{\sqrt{3}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) + \overline{s} \gamma_5 s(x) \right).$$

For the η , the spectral decomposition reads

$$\begin{split} C^{(i)}_{\mu\nu}(\tau,t_P) &= \sum_{\vec{z}} \langle 0|J_{\mu}(\vec{z},\tau)J_{\nu}(\vec{0},0)|\eta(\vec{p})\rangle e^{-i\vec{q}_{1}\cdot\vec{z}} \times \frac{1}{2E_{\eta}} \langle \eta(\vec{p})|\mathcal{O}_{i}|0\rangle e^{E_{\eta}(t_{0}-t_{f})} \\ &+ \sum_{\vec{z}} \langle 0|J_{\mu}(\vec{z},\tau)J_{\nu}(\vec{0},0)|\eta'(\vec{p})\rangle e^{-i\vec{q}_{1}\cdot\vec{z}} \times \frac{1}{2E_{\eta'}} \langle \eta'(\vec{p})|\mathcal{O}_{i}|0\rangle e^{E'_{\eta}(t_{0}-t_{f})} \\ &+ \text{higher excited states} \end{split}$$

 $\rightarrow \eta'$ is just an excited states, its contribution vanishes exponentially with t_P \rightarrow but the mass gap $\Delta E = E_{\eta'} - E_{\eta} \approx 400$ MeV is not so large

Amplitudes for the η and η'

$$\mathcal{F}_{P\gamma\gamma}(q_1^2, q_2^2) \propto \int_{-\infty}^{\infty} \mathrm{d} au \, \widetilde{A}_{\mu
u}(au) \, e^{\omega_1 au}$$

Double-virtual TFFs

• Next step : continuum extrapolation

33

 \rightarrow same strategy as for the pion : z-expansion parametrization

$$\rightarrow \tilde{c}_{mn}(a) = c_{mn} + \gamma_{mn}^{(1)} a^2$$

Model-independent extrapolation to the physical point

Decay rates

 $\Gamma(\pi^0 \to \gamma \gamma) = \frac{\pi \alpha^2 m_{\pi^0}^3}{4} \mathcal{F}_{\pi^0 \gamma \gamma}^2(0,0)$ ► two-photon decay width : $F_{\eta'\gamma\gamma}(0,0)$ $F_{\eta\gamma\gamma}(0,0)$ 0.6 0.350.50.30.40.25 $[GeV^{-1}]$ $[GeV^{-1}]$ 0.30.20.20.15L = 3 fm $L = 3 \mathrm{fm}$ $L = 6 \mathrm{fm}$ $L = 6 \mathrm{fm}$ 0.10.1Extrapolation — Extrapolation \vdash Global fit Global fit ------0.050 0.0050.005 0 0.010.015 0.020 0.01 0.0150.02 $a^2 \, [fm^2]$ $a^2 \, [fm^2]$ \rightarrow PDG : $\Gamma(\eta \rightarrow \gamma \gamma) = 516(18)$ eV $\Gamma(\eta \rightarrow \gamma \gamma) = 338(94)_{\text{stat}}(35)_{\text{syst}} \text{ eV}$ $\Gamma(\eta' \to \gamma \gamma) = 3.4(1.0)_{\text{stat}}(0.4)_{\text{syst}} \text{ keV}$ \rightarrow PDG : $\Gamma(\eta' \rightarrow \gamma \gamma) = 4.28(19)$ keV Contribution g-2 HLbL

 $a_{\mu}^{\text{HLbL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1}, Q_{2}, \tau) \ \mathcal{F}_{P\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{P\gamma^{*}\gamma^{*}}(-Q_{2}^{2}, 0) + w_{2}(Q_{1}, Q_{2}, \tau) \ \mathcal{F}_{P\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -Q_{2}^{2}) \ \mathcal{F}_{P\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2}, 0)$

$$a_{\mu}^{\text{HLbL};\eta} = 11.6(1.6)_{\text{stat}}(0.5)_{\text{syst}}(1.1)_{\text{FSE}} \times 10^{-11}$$
$$a_{\mu}^{\text{HLbL};\eta'} = 15.7(3.9)_{\text{stat}}(1.1)_{\text{syst}}(1.3)_{\text{FSE}} \times 10^{-11}$$

36

Canterbury approximants [PRD 95, 054026 (2017)]

• Our final estimate

$$a_{\mu}^{\text{HLbL;ps-poles}} = (85.1 \pm 4.7_{\text{stat}} \pm 2.3) \times 10^{-11}$$

- Pion transition form factor
 - ightarrow good agreement with Mainz'19, ETM'23 and with exp. data for $\mathcal{F}_{\pi^0\gamma\gamma}(Q^2,0)$
 - \rightarrow calculation of $\mathcal{F}_{\pi^0\gamma\gamma}(0,0)$ might help to reduce the error (+ comparison with PrimEx)
- $\eta \eta'$ transition form factors
 - ightarrow first ab-initio calculation error dominated by statistics
 - \rightarrow some tensions for the η TFF at very low virtualities
- Spectroscopy of the η/η' with rooted staggered fermions

Thank you!

Status

Status after runs 1-3 at Fermilab (August 2023)

- ► Can be measured with very high precision (~0.2 ppm !)
- ► Can be computed with similar precision within the Standard Model of particle physics

Good probe to test the SM and to look for possible new physics