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Topological freezing

In Lattice QCD sectors characterized by different values of the topological charge Q emerge in the continuum limit
For a — 0 the transition between these sectors becomes more and more strongly suppressed

— very long autocorrelation times characterize topological observables when standard MCMC algorithms are used
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Topological freezing

In Lattice QCD sectors characterized by different values of the topological charge Q emerge in the continuum limit
For a — 0 the transition between these sectors becomes more and more strongly suppressed

— very long autocorrelation times characterize topological observables when standard MCMC algorithms are used

Use of open boundary conditions [Liischer and Schaefer; 2011] in time essentially solves the problem by removing the sectors
Drawback: measurements possible only away from the open boundaries

Methods such as parallel tempering [Hasenbusch; 2017] approach the problem in a similar manner

Alessandro Nada (UniTo) Mitigating topological freezing with out-of-equilibrium simulations



Out-of-equilibrium evolutions for a MCMC
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Consider a "guided” MCMC evolution
qo ~ e 5c(0) —y 7 5(1) 3 ... —y p~ e*SC(nstep)
> c(n) is a parameter of the action Sc(,) of the model

> the evolution starts from a distribution go = efsc(o)/Zo, the prior, from which we sample ¢¢ at equilibrium

> it goes over nstep intermediate steps

> at each step the system evolves using some (e.g. one) regular MC updates with a transition probability
Pc(n)(d)n = ¢nt1)

> the transition probability changes along the evolution according to the protocol c(n)

> the evolution ends at the target probability distribution p = e_sc("steP)/Znstep =e5/Z

The probability distribution (in general not at equilibrium) is

a(6) = [ [460... by slaol00] P b0, .. 9

with .,
Pilpo, - 81 = [ Pen)(n-1 = ¢n)

n=1
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Crooks’ theorem

One can look at the ratio of the forward and reverse evolutions going through the same intermediate configurations

q0(¢0)7)f[¢0$ LERR) ¢nstep] q0(¢0) H”step Pc(n)(¢n—1 — ¢n)

P(¢)Pr [d)"step’ ] ¢0] - p(¢nstep) HnStep P (¢n — ¢n,1)

It is easy to derive Crooks’ theorem for MCMC [Crooks; 1999] if the update algorithm satisfies detailed balance

qo(®0)Pt[b0, - - - Prtep]
P(®)Pr[pnspep s - - - » B0l

=exp(W — AF)

with the generalized work
Nstep —1

Z {Sc(n+l) [¢n] - Sc(n) [¢n]}
n=0

and the free energy difference

exp(—AF) = Zéo
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Jarzynski's equality for MCMC

Integrating over the whole trajectory one gets

1000, Ja0(G0) P0Gy ] exp(—(W = AF)) =1

This is the formal derivation of Jarzynski’'s equality [Jarzynski; 1997] for MCMC

(exp (—W)) = exp(~AF) = Zéo

The ratio of the two partition functions is computed directly with an average over "forward” non-equilibrium evolutions
defined rigorously as

(A)e = /[dm...d¢1qo(¢o)Pf[¢o,...,¢1 Aldo, .. 4]

Using Jensen’s inequality (exp x) > exp(x)
exp(—AF) = (exp(—W)); > exp (—(W);)

we get the Second Law of Thermodynamics
(W)e > AF
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Out-of-equilibrium stochastic evolutions

> the actual probability distribution at each step is NOT the equilibrium distribution ~ exp(—SC(,,)): it's a
non-equilibrium process!

> valid process also without letting the system relax, or far from equilibrium (e.g. nstep is "small™)

> the (A)¢ average is taken over all possible evolutions, so in principle infinite statistics might be needed (more on this
later)

> the idea goes beyond computing free energy differences! The same derivation holds if you want to compute v.e.v. of
an observable for the target distribution p

(O(¢) exp(=W))¢

e = e W)

> this work: rigorously sample PBC by starting from OBC
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A new paradigm to perform MCMC

Out-of-equilibrium
Periodic Boundary Conditions (PBCs)
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Open Boundary Conditions (OBCs)

At equilibrium
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A connection to traditional reweighting

A typical reweighting procedure is meant to sample a distribution p using a (close enough) distribution go. It can be

written as
(O(¢) exp(—AS))q

(O = = o AS)ay

It is just Jarzynski's equality for nstep = 1, see the work

Nstep—1

W= Z {Sc(n+1) [¢n] - Sc(n) [¢"]} = AS(¢0)
n=0
with ¢g sampled from qg

> It's important to note that there is no issue with the fact that AS itself can be large

> The real issue is that the distribution of AS (and in general of W) can lead to an extremely poor estimate of AF —
highly inefficient sampling

» The exponential average can be tricky when very far from equilibrium!
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Applications of Jarzynski’'s equality in Lattice Field Theory

Several applications in the last 8 years!

> calculation of the interface free-energy in the Z, gauge theory [Caselle et al.; 2016]
> SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 2018]
> renormalized coupling for SU(N) YM theories [Francesconi et al.; 2020]

> entanglement entropy [Bulgarelli and Panero; 2023]

> connection with Stochastic Normalizing Flows: ¢* scalar field theory [Caselle et al.; 2022] and Nambu-Goto effective
string model [Caselle et al.; 2023]

Alessandro Nada (UniTo) Mitigating topological freezing with out-of-equilibrium simulations



How far are we from equilibrium?

Ideally we would like

B (alle) = [ 46 a(0) |og("gg) a(6) = [0 dbu.sep11a0(60)Pelbos - 0

but the generated distribution g(¢) is not tractable!

However we can measure the "quality” of the out-of-equilibrium evolutions by comparing forward and reverse processes!

qo(b0)Px[do, - - -, ¢]
( )Pr[¢7 ¢nstep ¢0]

Bic(anPrlloPs) = [ lddn .. dé] a(éo)Plon. .. 6] og

Clear "thermodynamic” interpretation
- V4
Dir(qoPellpPr) = (W)s +log —— = (W)s —AF >0
0
Second Law of thermodynamics!
— measure of how reversible the process is!

Interestingly . -
Dxw(qllp) < Dkr(qoPtllpPr)
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The effective sample size

Effective Sample Size: defined in general as the ratio between the "theoretical” variance and the actual variance of the NE

observable
Var(O)NE _ Var(O)p

n nESS

but difficult to compute

We use the approximate estimator
i L (ew(=W))?
(exp(—2W));

— very common metric to evaluate generative models in the deep-learning community

Easy to understand in terms of the variance of exp(—W):

Var(e™W) = ( L 1) e”2AF >0
ESS

which leads to the constraint R
0<ESS<1
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Non-equilibrium evolutions for topological observables
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The CPN=1 model with a defect

Improved action

s = —2n > { KPR [Ou(x)20x + W)z(x)] + K (x + KT (x)eaR [T (x + 2) O ()2(x + 22)2(x)] }
X,

with z(x) a vector of N complex numbers with Z(x)z(x) = 1 and U,(x) € U(1)

c1 =4/3 and ¢ = —1/12 are Symanzik-improvement coefficients
ot ‘ e The kﬁ")(x) regulate the boundary conditions along a given defect D
—
— DAp=0;
o k‘(‘n)(X) = {i(”) zt:erwis:
.. .:_>—’ . where the changing value c(n) will be clear in the following
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Topological observables

Geometric definition of the topological charge Q
1
Qeeo[U] = o > S {log Mo (x)]} € 2,
with My (x) = Up(x)Up (x + 3) O (x + 20, (x)

We look at the topological susceptibility

X = (Qgeo>

v
after applying a few steps of cooling
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Topology freezing in the CPV~1 model

From [Bonanno et al.; 2018]

iy N:i5 | A
v N=2 #*} {

00 4 N9 g .
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fLNl'z

We will study (N = 21,8 = 0.7) with 7(Q?) ~ 6 x 10* and (N = 41, 8 = 0.65) with 7(Q?) ~ 5 x 10°
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" Slower” evolutions allow for better (but more expensive) sampling

N =21
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Results for N =21, 8 = 0.7, V = 1142
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Slower” evolutions allow for better (but more expensive) sampling
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Results for N =21, 8 = 0.7, V = 1142
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Larger defects require larger nstep
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Results for N =21, 3 =0.7, V = 1142
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Larger defects require larger nstep

N =21
1.0
A
A
0.8 1 A
R A v [
0.6 1 A v
<% t“ M =
2ol &7 * e = 100
: "y - Hetep = 200
AV ] B g, =500
™ step PY
0.2 1 - Y naep = 1000
. =~ R A nge = 2000
0.0 T T T . . :
0.025 0.050 0.075 0.100 0.125 0.150
1/Lq

Results for N =21, 3 =0.7, V = 1142
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Simple description: the efficiency of the reweighting depends uniquely on ngtep /Ly

N=21,L,=6 N =41,L; =10
N=21,L;=12 —— N=41,L,=15
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Nstep / L d

Results for N =21, 3 =10.7, V = 1142 and N =41, 3 = 0.65, V = 1322
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Simple description: the efficiency of the reweighting depends uniquely on ngtep /Ly
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Results for N =21, 3 =10.7, V = 1142 and N =41, 3 = 0.65, V = 1322
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Far- and not-so-far from equilibrium: the distribution of the work W and its variance
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Variance of the work distribution and the Dy, divergence are tightly related!

Elegant result from [Nicoli; 2020]:

=~ 1
Dy, ~ EVar( W)

------ 1/2 Var(W)
® N=21,L,=6
& N=21,L;=12
N=21,L;=18
& N=21,L,=24
® N=21,L,=60
P
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Far- and not-so-far from equilibrium: the distribution of exp(—W) and rare events
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Topological susceptibility for various protocols for N = 21, 8; = 0.7, V = 1142 (roughly similar numerical effort)

x10~*

3.5

3.0 1 +
% R R

20 N=21,L; =6 Y N=21,L;=24
¢ N=21, Ly = 12 Y N=21,L;=60
1.5 N=21, Ly =18 ¥ N=21, Ly=114
0.0 0.2 04 06 0.8 1.0
ESS

Black band is from parallel tempering [Bonanno et al.; 2019]
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Topological susceptibility for various protocols for N = 41, § = 0.65, V = 1322 (roughly similar numerical effort)
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Black band is from parallel tempering [Bonanno et al.; 2019]
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Autocorrelation times

A quick view of the scaling of autocorrelations times with Ly

® N =21, n=50 A
1 ® N =21n0u=
4 Mrelax=100 N .
BN =21, =250
A N =41, nyeax=100 L
31 VN =41, nea=250
= v
k|
=9 °
| |
v
N IR |
1 " 2
S
0 . . . .
0.00 0.05 0.10 0.15 0.20
1/Lq

Since each non-equilibrium evolution has a sizable cost (nstep MC updates), we keep nyejax large to avoid large
autocorrelations
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Unfreezing x

Periodic Boundary Conditions
For (N =21, = 0.7) — Tint(x) ~ 6 x 10*
For (N = 41,8 = 0.65) — Tint(x) ~ 5 x 10°

Non-equilibrium evolutions
Autocorrelations depend on the choice of (nstep, Nrelax; Ld)
Tint (x) ~ 0.5 —5

How to compare these values with the autocorrelations obtained with this method?
Multiply them by the cost of each measurement in terms of Monte Carlo updates, i.e. nstep + Nrelax
The "effective” autocorrelation times range between 160 and 5000 both for N = 21 and N = 41 depending on the protocol

A proper analysis of the error must take into account the fact that we are out-of-equilibrium!
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Assessing the efficiency of the non-equilibrium evolutions

The effect on the variance of the protocols used in out-of-equilibrium evolutions can be decomposed into two distinct
contributions

> the ESS, that takes into account the effect of the reweighting procedure. It depends only on nstep and Ly

> 7., that takes into account the effect of the autocorrelations (as in a normal MC chain). It depends on nyejax, Ly
and (mildly) on ngtep

The figure that we will use to assess the efficiency of the method is

2Tinl

ESS

Var(X)NE X (nstep + nrelax) =~ Var(X)p X (nstep + nrelax)
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Efficiency comparison

Comparison of variance X cost of one measurement with PTBC
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1 measurement with NE costs nstep + Nrelax While 1 measurement with PTBC costs npeplicas
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Efficiency comparison

Comparison of variance X cost of one measurement with PTBC
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1 measurement with NE costs nstep + Nrelax While 1 measurement with PTBC costs npeplicas
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Conclusions and future outlook
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Conclusions

> Qut-of-equilibrium simulations are a realistic and effective approach to mitigate critical slowing down

» The features of "well-behaved” probability distributions can be exploited by moving to more complicated target
distributions within the same simulation

» Sampling of observables during such evolutions is possible with a particular reweighting

» The effect on the error can be understood quantitatively with the use of specific metrics and its efficiency can be
studied rigorously

» New paradigm for MCMC with large 7in¢: giving up equilibrium in favour of " guided” non-equilibrium simulations

» Generalizations connect with the framework of Normalizing Flows in a non-trivial manner
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Natural extension: SNFs

Stochastic Normalizing Flows alternate MC updates with coupling layers [Wu et al.; 2020],[Caselle et al.; 2022]

Pea Pe2 Pe(nggep)
¢o — g1(©0) $) b1 — gg(@l) $> . it}ep )

O

O

O

O

O

O

| | [ [ [ [

e g e T [ Teter T [ P T [ Meer T [ Meen T g Trer
| | [ [ [ [
O——77— 00— O0—O0—0——0

essentially share the same loss Dk1, and same simulation structure
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Encouraging results from SNFs in a toy model

1.0
Excellent results in ¢* theory in 2d 0.8
[Caselle et al.; 2022]
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Idea: systematically improve out-of-equilibrium evolutions using SNFs
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Thank you for your attention!
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Looking again at the variance

Var()p = ((820)) ~ (0 = Var(xp o
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Checking the estimator for the ESS

; ~ 1+ Var(W), Var(W) <« 1
ESS
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Benchmark: Parallel Tempering for Boundary Conditions

Efficiency-wise Parallel Tempering is our benchmark (mainly results from [Bonanno et al.; 2019])

> proposed for 2d CPV=1 [Hasenbusch; 2017], recently implemented for 4d SU(N) pure-gauge [Bonanno et al.; 2021, 2022]
> consider a collection of N, lattice replicas that differ for the value of ¢(r), each updated with standard methods

> after updates, propose swaps among configurations via Metropolis test

> other ingredients: hierarchic updates + translation of periodic replica

> decorrelation of topological charge improved thanks to OBC replica

> observable computed on PBC replica
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The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

Q<ns
TS

If we use

FE E_sT

{Q = AE— W (First Law)
the Second Law becomes

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that actually
(W)r > AF = Fg — Fa

for a given "forward” process f from A to B
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Normalizing flows: structure and training

NFs are a deterministic mapping
go(do) = (gn o+ 0 g1)(¢o) b0 ~ do

composed of N invertible transformations — the coupling layers g,

The generated distribution for ¢y is

an(én) = qolgy “(¢n)) ] [ Idet Jn(n)l

gn chosen to be invertible and with an easy-to-compute Jacobian

Training procedure minimizes the Kullback-Leibler divergence: measure of the “similarity” between two distributions

an(9)
p(¢)

Brcr.(anp) = / dé a(4) log
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Sampling with Normalizing flows

Sampling (not the only possibility: see independent MH)

©) = 5 [w0o@an@ 20 = 2 [ a0 an(s) 0te)ite) - —“”55’;’(2)‘;‘2 re
N~ ~an

sample measure

with a weight

i(9) = exp (— { S16] - Sole *(¢)] — log J } )

Get Z directly by sampling from gy [Nicoli et al.; 2020]

z-= / do exp(—S[4]) = Zo / 46 an(6)W(8) = Zo(W(6)) gy

Train minimizing

. V4
Dkr(anllp) = —(log W(#)) g~qy + log Z
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A common framework: Stochastic Normalizing Flows

Jarzynski's equality is the same formula used to extract Z in NFs

250 = ((6)) ey = (exp(— W)

The exponent of the weight is always of the form (note that for NFs (... ) gngy = (- -)f)

W(go, ... én) = S(on) — So(do) — Q(¢1,-- -, dn)

Normalizing Flows stochastic non-equilibrium evolutions
#o — ¢1 = g1(¢o) = -+ = én ¢0P‘$¢1P3...P@’¢>N
N—1 N_1
"Q" =logJ = Z; log |det Jn(n)] Q=" Sps(éni1) — Sopr ()
n= n=0

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

Py Py Py
B0 — g1(¢0) = ¢1— g2(¢1) = ... = on

N—-1

Q=2 Sn.1(9nt1) = Sns(8n(9n)) + log [det Jn(¢n)]

n=0
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SNFs for ¢* at various volumes

Training length: 10* epochs for all volumes. Slowly-improving regime reached fast
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Interesting behaviour for all volumes: a peak for ng, = ngp?
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SNFs for ¢* at various volumes

SNFs with ng, = n,p as a possible recipe for efficient scaling
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Taking cues from the SU(3) e.o.s.

Large-scale application: computation of the SU(3) equation of state [Caselle et al.; 2018]

Goal: extract the pressure with Jarzynski's equality

p(T)  p(To) Ne } — W,
_ [ | SU(N¢)

evolution in B¢ (inverse coupling) — changes lattice spacing a — changes temperature T = 1/(aN;)

Prior: thermalized Markov chain at a certain ,Béo)

For systems with many d.o.f. (i.e. large volumes), JE works when N is large, i.e. evolution is slow (and expensive)
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SU(3) e.o.s. with Jarzynski's equality
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Large volumes (up to 160> x 10) and very fine lattice spacings 3 ~ 7
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