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Topological freezing

In Lattice QCD sectors characterized by different values of the topological charge Q emerge in the continuum limit

For a → 0 the transition between these sectors becomes more and more strongly suppressed

→ very long autocorrelation times characterize topological observables when standard MCMC algorithms are used

Use of open boundary conditions [Lüscher and Schaefer; 2011] in time essentially solves the problem by removing the sectors

Drawback: measurements possible only away from the open boundaries

Methods such as parallel tempering [Hasenbusch; 2017] approach the problem in a similar manner
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Out-of-equilibrium evolutions for a MCMC
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Consider a ”guided” MCMC evolution

q0 ≃ e−Sc(0) → e−Sc(1) → · · · → p ≃ e
−Sc(nstep)

▶ c(n) is a parameter of the action Sc(n) of the model

▶ the evolution starts from a distribution q0 = e−Sc(0)/Z0, the prior, from which we sample ϕ0 at equilibrium

▶ it goes over nstep intermediate steps

▶ at each step the system evolves using some (e.g. one) regular MC updates with a transition probability
Pc(n)(ϕn → ϕn+1)

▶ the transition probability changes along the evolution according to the protocol c(n)

▶ the evolution ends at the target probability distribution p = e
−Sc(nstep)/Znstep ≡ e−S/Z

The probability distribution (in general not at equilibrium) is

q(ϕ) =

∫
[dϕ0 . . . dϕnstep−1]q0[ϕ0]Pf [ϕ0, . . . , ϕ]

with

Pf [ϕ0, . . . , ϕ] =

nstep∏
n=1

Pc(n)(ϕn−1 → ϕn)
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Crooks’ theorem

One can look at the ratio of the forward and reverse evolutions going through the same intermediate configurations

q0(ϕ0)Pf [ϕ0, . . . , ϕnstep ]

p(ϕ)Pr[ϕnstep , . . . , ϕ0]
=

q0(ϕ0)
∏nstep

n=1 Pc(n)(ϕn−1 → ϕn)

p(ϕnstep )
∏nstep

n=1 Pc(n)(ϕn → ϕn−1)

It is easy to derive Crooks’ theorem for MCMC [Crooks; 1999] if the update algorithm satisfies detailed balance

q0(ϕ0)Pf [ϕ0, . . . , ϕnstep ]

p(ϕ)Pr[ϕnstep , . . . , ϕ0]
= exp(W −∆F )

with the generalized work

W =

nstep−1∑
n=0

{
Sc(n+1) [ϕn]− Sc(n) [ϕn]

}
and the free energy difference

exp(−∆F ) =
Z

Z0
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Jarzynski’s equality for MCMC

Integrating over the whole trajectory one gets∫
[dϕ0 . . . dϕnstep ]q0(ϕ0)Pf [ϕ0, . . . , ϕnstep ] exp(−(W −∆F )) = 1

This is the formal derivation of Jarzynski’s equality [Jarzynski; 1997] for MCMC

⟨exp (−W )⟩f = exp(−∆F ) =
Z

Z0

The ratio of the two partition functions is computed directly with an average over ”forward” non-equilibrium evolutions
defined rigorously as

⟨A⟩f =
∫

[dϕ0 . . . dϕ]q0(ϕ0)Pf [ϕ0, . . . , ϕ]A[ϕ0, . . . , ϕ]

Using Jensen’s inequality ⟨exp x⟩ ≥ exp⟨x⟩

exp(−∆F ) = ⟨exp(−W )⟩f ≥ exp (−⟨W ⟩f)

we get the Second Law of Thermodynamics
⟨W ⟩f ≥ ∆F
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Out-of-equilibrium stochastic evolutions

▶ the actual probability distribution at each step is NOT the equilibrium distribution ∼ exp(−Sc(n)): it’s a
non-equilibrium process!

▶ valid process also without letting the system relax, or far from equilibrium (e.g. nstep is ”small”)

▶ the ⟨A⟩f average is taken over all possible evolutions, so in principle infinite statistics might be needed (more on this
later)

▶ the idea goes beyond computing free energy differences! The same derivation holds if you want to compute v.e.v. of
an observable for the target distribution p

⟨O⟩NE =
⟨O(ϕ) exp(−W )⟩f

⟨exp(−W )⟩f

▶ this work: rigorously sample PBC by starting from OBC
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A new paradigm to perform MCMC

nstep

nrelax

nstep

nrelax

nstep

nrelax

nstep

nrelax

nstep

nrelax

nstep

Open Boundary Conditions (OBCs)

Periodic Boundary Conditions (PBCs)

At equilibrium

Out-of-equilibrium
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A connection to traditional reweighting

A typical reweighting procedure is meant to sample a distribution p using a (close enough) distribution q0. It can be
written as

⟨O⟩RW =
⟨O(ϕ) exp(−∆S)⟩q0

⟨exp(−∆S)⟩q0

It is just Jarzynski’s equality for nstep = 1, see the work

W =

nstep−1∑
n=0

{
Sc(n+1) [ϕn]− Sc(n) [ϕn]

}
= ∆S(ϕ0)

with ϕ0 sampled from q0

▶ It’s important to note that there is no issue with the fact that ∆S itself can be large

▶ The real issue is that the distribution of ∆S (and in general of W ) can lead to an extremely poor estimate of ∆F →
highly inefficient sampling

▶ The exponential average can be tricky when very far from equilibrium!
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Applications of Jarzynski’s equality in Lattice Field Theory

Several applications in the last 8 years!

▶ calculation of the interface free-energy in the Z2 gauge theory [Caselle et al.; 2016]

▶ SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 2018]

▶ renormalized coupling for SU(N) YM theories [Francesconi et al.; 2020]

▶ entanglement entropy [Bulgarelli and Panero; 2023]

▶ connection with Stochastic Normalizing Flows: ϕ4 scalar field theory [Caselle et al.; 2022] and Nambu-Goto effective
string model [Caselle et al.; 2023]
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How far are we from equilibrium?

Ideally we would like

D̃KL(q∥p) =
∫

dϕ q(ϕ) log

(
q(ϕ)

p(ϕ)

)
q(ϕ) =

∫
[dϕ0 . . . dϕnstep−1]q0(ϕ0)Pf [ϕ0, . . . , ϕ]

but the generated distribution q(ϕ) is not tractable!

However we can measure the ”quality” of the out-of-equilibrium evolutions by comparing forward and reverse processes!

D̃KL(q0Pf∥pPr) =

∫
[dϕ0 . . . dϕ] q0(ϕ0)Pf [ϕ0, . . . , ϕ] log

q0(ϕ0)Pf [ϕ0, . . . , ϕ]

p(ϕ)Pr[ϕ, ϕnstep−1, . . . , ϕ0]

Clear ”thermodynamic” interpretation

D̃KL(q0Pf∥pPr) = ⟨W ⟩f + log
Z

Z0
= ⟨W ⟩f −∆F ≥ 0︸ ︷︷ ︸

Second Law of thermodynamics!

→ measure of how reversible the process is!

Interestingly
D̃KL(q∥p) ≤ D̃KL(q0Pf∥pPr)
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The effective sample size

Effective Sample Size: defined in general as the ratio between the ”theoretical” variance and the actual variance of the NE
observable

Var(O)NE

n
=

Var(O)p

nESS

but difficult to compute

We use the approximate estimator

ˆESS =
⟨exp(−W )⟩2f
⟨exp(−2W )⟩f

→ very common metric to evaluate generative models in the deep-learning community

Easy to understand in terms of the variance of exp(−W ):

Var(e−W ) =

(
1

ˆESS
− 1

)
e−2∆F ≥ 0

which leads to the constraint
0 < ˆESS ≤ 1
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Non-equilibrium evolutions for topological observables
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The CPN−1 model with a defect

Improved action

S
(r)
L = −2NβL

∑
x,µ

{
k
(n)
µ (x)c1ℜ

[
Ūµ(x)z̄(x + µ̂)z(x)

]
+ k

(n)
µ (x + µ̂)k

(n)
µ (x)c2ℜ

[
Ūµ(x + µ̂)Ūµ(x)z̄(x + 2µ̂)z(x)

]}
with z(x) a vector of N complex numbers with z̄(x)z(x) = 1 and Uµ(x) ∈ U(1)

c1 = 4/3 and c2 = −1/12 are Symanzik-improvement coefficients

The k
(n)
µ (x) regulate the boundary conditions along a given defect D

k
(n)
µ (x) ≡

{
c(n) x ∈ D ∧ µ = 0 ;

1 otherwise.

where the changing value c(n) will be clear in the following
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Topological observables

Geometric definition of the topological charge Q

Qgeo[U] =
1

2π

∑
x

ℑ{log [Π01(x)]} ∈ Z,

with Πµν(x) ≡ Uµ(x)Uν(x + µ̂)Ūµ(x + ν̂Ūν(x)

We look at the topological susceptibility

χ =
1

V
⟨Q2

geo⟩

after applying a few steps of cooling
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Topology freezing in the CPN−1 model

From [Bonanno et al.; 2018]

We will study (N = 21, β = 0.7) with τ(Q2) ∼ 6× 104 and (N = 41, β = 0.65) with τ(Q2) ∼ 5× 105
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”Slower” evolutions allow for better (but more expensive) sampling
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Larger defects require larger nstep
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Simple description: the efficiency of the reweighting depends uniquely on nstep/Ld

0 100 200 300
nstep/Ld

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D̃
K

L

N = 21, Ld = 6

N = 21, Ld = 12

N = 21, Ld = 18

N = 21, Ld = 24

N = 21, Ld = 60

N = 21, Ld = 114

N = 41, Ld = 10

N = 41, Ld = 15

N = 41, Ld = 20

N = 41, Ld = 25

N = 41, Ld = 30

Results for N = 21, β = 0.7, V = 1142 and N = 41, β = 0.65, V = 1322

Alessandro Nada (UniTo) Mitigating topological freezing with out-of-equilibrium simulations 12/2/2024 19



Simple description: the efficiency of the reweighting depends uniquely on nstep/Ld

0 100 200 300
nstep/Ld

0.0

0.2

0.4

0.6

0.8

1.0

ˆ
E

S
S

N = 21, Ld = 6

N = 21, Ld = 12

N = 21, Ld = 18

N = 21, Ld = 24

N = 21, Ld = 60

N = 21, Ld = 114

N = 41, Ld = 10

N = 41, Ld = 15

N = 41, Ld = 20

N = 41, Ld = 25

N = 41, Ld = 30

Results for N = 21, β = 0.7, V = 1142 and N = 41, β = 0.65, V = 1322

Alessandro Nada (UniTo) Mitigating topological freezing with out-of-equilibrium simulations 12/2/2024 19



Far- and not-so-far from equilibrium: the distribution of the work W and its variance
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Variance of the work distribution and the D̃KL divergence are tightly related!

Elegant result from [Nicoli; 2020]:

D̃KL ≃
1

2
Var(W )

0 1 2 3 4 5 6
Var(W )

0

1

2

3

4

5

D̃
K

L

1/2 Var(W )

N = 21, Ld = 6

N = 21, Ld = 12

N = 21, Ld = 18

N = 21, Ld = 24

N = 21, Ld = 60

N = 21, Ld = 114

N = 41, Ld = 10

N = 41, Ld = 15

N = 41, Ld = 20

N = 41, Ld = 25

N = 41, Ld = 30

Alessandro Nada (UniTo) Mitigating topological freezing with out-of-equilibrium simulations 12/2/2024 21



Far- and not-so-far from equilibrium: the distribution of exp(−W ) and rare events
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Topological susceptibility for various protocols for N = 21, βL = 0.7, V = 1142 (roughly similar numerical effort)
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Topological susceptibility for various protocols for N = 41, β = 0.65, V = 1322 (roughly similar numerical effort)
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Autocorrelation times

A quick view of the scaling of autocorrelations times with Ld
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Since each non-equilibrium evolution has a sizable cost (nstep MC updates), we keep nrelax large to avoid large
autocorrelations
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Unfreezing χ

Periodic Boundary Conditions

For (N = 21, β = 0.7) → τint(χ) ∼ 6× 104

For (N = 41, β = 0.65) → τint(χ) ∼ 5× 105

Non-equilibrium evolutions

Autocorrelations depend on the choice of (nstep, nrelax, Ld )

τint(χ) ∼ 0.5− 5

How to compare these values with the autocorrelations obtained with this method?

Multiply them by the cost of each measurement in terms of Monte Carlo updates, i.e. nstep + nrelax

The ”effective” autocorrelation times range between 160 and 5000 both for N = 21 and N = 41 depending on the protocol

A proper analysis of the error must take into account the fact that we are out-of-equilibrium!
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Assessing the efficiency of the non-equilibrium evolutions

The effect on the variance of the protocols used in out-of-equilibrium evolutions can be decomposed into two distinct
contributions

▶ the ˆESS, that takes into account the effect of the reweighting procedure. It depends only on nstep and Ld

▶ τint, that takes into account the effect of the autocorrelations (as in a normal MC chain). It depends on nrelax, Ld
and (mildly) on nstep

The figure that we will use to assess the efficiency of the method is

Var(χ)NE × (nstep + nrelax) ≃ Var(χ)p
2τint
ˆESS

× (nstep + nrelax)
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Efficiency comparison

Comparison of variance × cost of one measurement with PTBC

0 5000 10000 15000 20000

(nstep + nrelax)/ ˆESS

0.0

0.5

1.0

1.5

2.0

2.5

V
ar

(χ
)
×

(n
st

ep
+
n

re
la

x
)

×10−3

Ld = 6, nrelax=50

Ld = 6, nrelax=100

Ld = 6, nrelax=250

Ld = 12, nrelax=50

Ld = 12, nrelax=100

Ld = 12, nrelax=250

Ld = 18, nrelax=50

Ld = 18, nrelax=100

Ld = 18, nrelax=250

Ld = 24, nrelax=100

Ld = 60, nrelax=100

Ld = 114, nrelax=100

1 measurement with NE costs nstep + nrelax while 1 measurement with PTBC costs nreplicas

Alessandro Nada (UniTo) Mitigating topological freezing with out-of-equilibrium simulations 12/2/2024 28



Efficiency comparison

Comparison of variance × cost of one measurement with PTBC
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Conclusions and future outlook
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Conclusions

▶ Out-of-equilibrium simulations are a realistic and effective approach to mitigate critical slowing down

▶ The features of ”well-behaved” probability distributions can be exploited by moving to more complicated target
distributions within the same simulation

▶ Sampling of observables during such evolutions is possible with a particular reweighting

▶ The effect on the error can be understood quantitatively with the use of specific metrics and its efficiency can be
studied rigorously

▶ New paradigm for MCMC with large τint: giving up equilibrium in favour of ”guided” non-equilibrium simulations

▶ Generalizations connect with the framework of Normalizing Flows in a non-trivial manner
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Natural extension: SNFs

Stochastic Normalizing Flows alternate MC updates with coupling layers [Wu et al.; 2020],[Caselle et al.; 2022]

ϕ0 → g1(ϕ0)
Pc(1)→ ϕ1 → g2(ϕ1)

Pc(2)→ . . .
Pc(nstep)

→ ϕ

nstepncl

nrelax

nstepncl

nrelax

nstepncl

nrelax

nstepncl

nrelax

nstepncl

nrelax

nstepncl

essentially share the same loss D̃KL and same simulation structure
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Encouraging results from SNFs in a toy model

Excellent results in ϕ4 theory in 2d
[Caselle et al.; 2022]

With a proper NN+MC architecture
same efficiency as non-equilibrium
evolutions with ∼ 1/10 of MC
updates
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Idea: systematically improve out-of-equilibrium evolutions using SNFs
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Thank you for your attention!
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Looking again at the variance

Var(χ)p = ⟨(a2χ)2⟩ − ⟨a2χ⟩2 ≃ Var(χ)NE
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Checking the estimator for the ESS

1

ˆESS
≃ 1 + Var(W ), Var(W ) ≪ 1
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Benchmark: Parallel Tempering for Boundary Conditions

Efficiency-wise Parallel Tempering is our benchmark (mainly results from [Bonanno et al.; 2019])

▶ proposed for 2d CPN−1 [Hasenbusch; 2017], recently implemented for 4d SU(N) pure-gauge [Bonanno et al.; 2021, 2022]

▶ consider a collection of Nr lattice replicas that differ for the value of c(r), each updated with standard methods

▶ after updates, propose swaps among configurations via Metropolis test

▶ other ingredients: hierarchic updates + translation of periodic replica

▶ decorrelation of topological charge improved thanks to OBC replica

▶ observable computed on PBC replica
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The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

Q

T
≤ ∆S

If we use {
Q = ∆E − W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that actually

⟨W ⟩f ≥ ∆F = FB − FA

for a given ”forward” process f from A to B
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Normalizing flows: structure and training

NFs are a deterministic mapping
gθ(ϕ0) = (gN ◦ · · · ◦ g1)(ϕ0) ϕ0 ∼ q0

composed of N invertible transformations → the coupling layers gn

The generated distribution for ϕN is

qN(ϕN) = q0(g
−1
θ (ϕN))

∏
n

|det Jn(ϕn)|−1

gn chosen to be invertible and with an easy-to-compute Jacobian

Training procedure minimizes the Kullback-Leibler divergence: measure of the “similarity” between two distributions

D̃KL(qN∥p) =
∫

dϕ qN(ϕ) log
qN(ϕ)

p(ϕ)
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Sampling with Normalizing flows

Sampling (not the only possibility: see independent MH)

⟨O⟩ =
1

Z

∫
dϕO(ϕ)qN(ϕ)

p(ϕ)

qN(ϕ)
=

Z0

Z

∫
dϕ qN(ϕ)︸ ︷︷ ︸

sample

O(ϕ)w̃(ϕ)︸ ︷︷ ︸
measure

=
⟨O(ϕ)w̃(ϕ)⟩ϕ∼qN

⟨w̃(ϕ)⟩ϕ∼qN

with a weight

w̃(ϕ) = exp
(
−

{
S[ϕ]− S0[g

−1
θ (ϕ)]− log J

})

Get Z directly by sampling from qN [Nicoli et al.; 2020]

Z =

∫
dϕ exp(−S[ϕ]) = Z0

∫
dϕ qN(ϕ)w̃(ϕ) = Z0⟨w̃(ϕ)⟩ϕ∼qN

Train minimizing

D̃KL(qN∥p) = −⟨log w̃(ϕ)⟩ϕ∼qN + log
Z

Z0
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A common framework: Stochastic Normalizing Flows

Jarzynski’s equality is the same formula used to extract Z in NFs

Z

Z0
= ⟨w̃(ϕ)⟩ϕ∼qN = ⟨exp(−W )⟩f

The exponent of the weight is always of the form (note that for NFs ⟨. . . ⟩ϕ∼qN
= ⟨. . . ⟩f)

W (ϕ0, . . . , ϕN) = S(ϕN)− S0(ϕ0)− Q(ϕ1, . . . , ϕN)

Normalizing Flows

ϕ0 → ϕ1 = g1(ϕ0) → · · · → ϕN

”Q” = log J =

N−1∑
n=0

log |det Jn(ϕn)|

stochastic non-equilibrium evolutions

ϕ0

Pη1→ ϕ1

Pη2→ . . .
PηN→ ϕN

Q =

N−1∑
n=0

Sηn+1 (ϕn+1)− Sηn+1 (ϕn)

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

ϕ0 → g1(ϕ0)
Pη1→ ϕ1 → g2(ϕ1)

Pη2→ . . .
PηN→ ϕN

Q =

N−1∑
n=0

Sηn+1 (ϕn+1)− Sηn+1 (gn(ϕn)) + log |det Jn(ϕn)|
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SNFs for ϕ4 at various volumes

Training length: 104 epochs for all volumes. Slowly-improving regime reached fast
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Interesting behaviour for all volumes: a peak for nsb = nab?
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SNFs for ϕ4 at various volumes

SNFs with nsb = nab as a possible recipe for efficient scaling
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Taking cues from the SU(3) e.o.s.

Large-scale application: computation of the SU(3) equation of state [Caselle et al.; 2018]

Goal: extract the pressure with Jarzynski’s equality

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log⟨e−WSU(Nc ) ⟩f

evolution in βg (inverse coupling) → changes lattice spacing a → changes temperature T = 1/(aNt)

Prior: thermalized Markov chain at a certain β
(0)
g

For systems with many d.o.f. (i.e. large volumes), JE works when N is large, i.e. evolution is slow (and expensive)
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SU(3) e.o.s. with Jarzynski’s equality
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Large volumes (up to 1603 × 10) and very fine lattice spacings β ≃ 7
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