

<u>Thomas Pöhlsen</u>, Robert Klanner, Sergej Schuwalow, Jörn Schwandt und Jiaguo Zhang

GEFÖRDERT VOM

Universität Hamburg
Institut für Experimentalphysik

DPG Frühjahrstagung, Karlsruhe 2011

Übersicht

- Motivation warum Studium der Oberflächeneffekte?
- Untersuchte Sensoren
- Versuchsdurchführung
- Ladungssammlung und Elektronenverluste
- Übersicht der Ladungsverluste
- Zusammenfassung und Ausblick

Motivation – warum Studium der Oberflächeneffekte?

Elektrische Felder im Detektorinneren recht genau bekannt.

Oberflächendefekte und Oberflächenladungen?

Randbedingungen?

Stabilität des Detektors stark abhängig von Oberflächeneffekten.

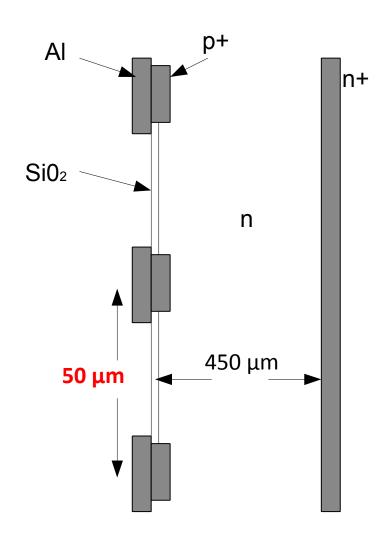
Ladungsverluste an der Oberfläche festgestellt.

Untersuchte Sensoren

Hersteller: HPK / CiS

Kopplung: DC / AC

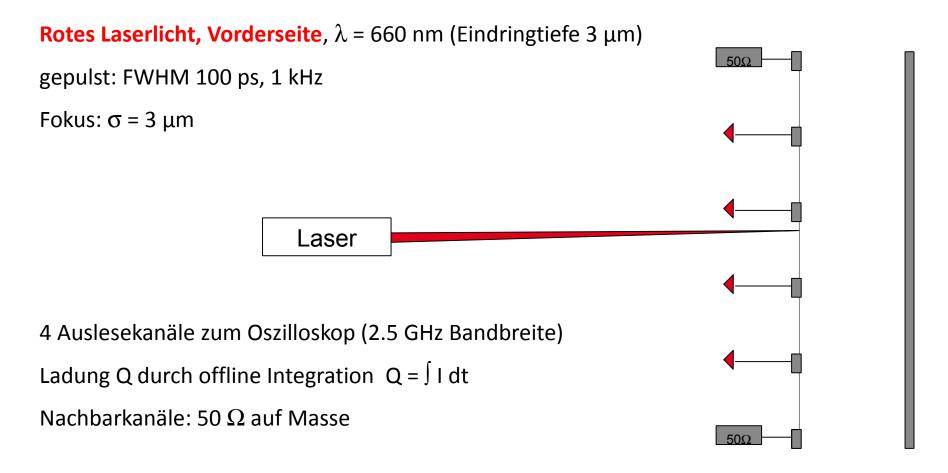
Streifenabstand: 50 μm / 80 μm


Implantationsbreite: $11 \, \mu m^* / 20 \, \mu m$

Anzahl der Streifen: 128 / 98

Länge der Streifen: 8 mm / 7.8 mm

Sensordicke: $450 \, \mu m$ / $285 \, \mu m$


Orientierung: (1 1 1) / (1 0 0)

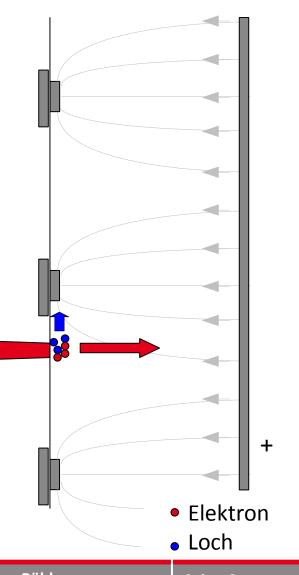
^{* + 2} μm Aluminium Überhang

Versuchsdurchführung (TCT)

Ladungssammlung

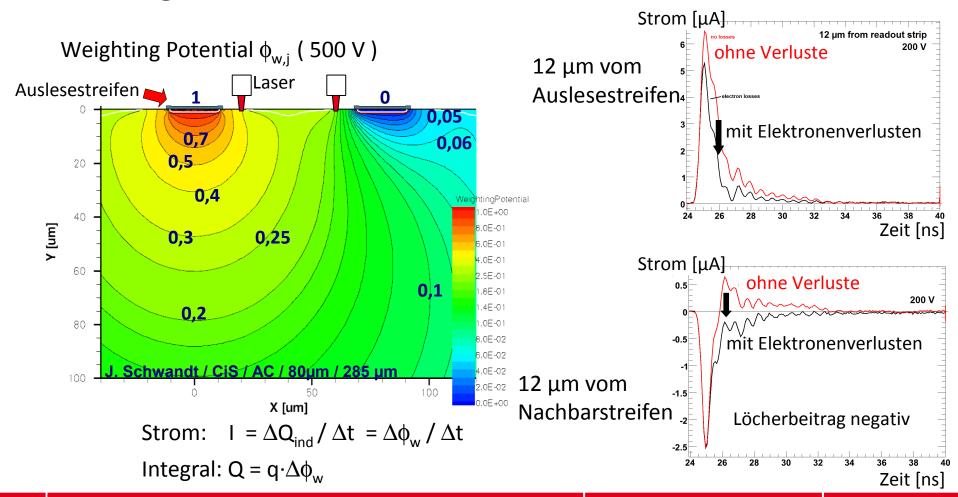
Ladungsträger

- driften im elektrischem Feld: $\overrightarrow{v}_{dr} = \mu \overrightarrow{E}$
- induzieren Ladung auf den Streifen (und der Rückseite)

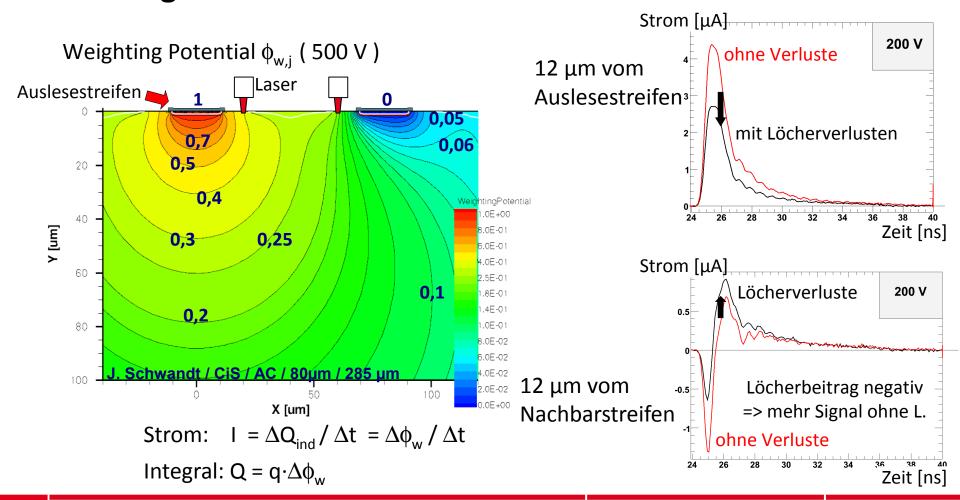

Ind. Ladung auf Streifen j: $Q_{ind, j}(t) = q \cdot \phi_{w, j}(x(t))$

Mit dem Weighting Potential $\phi_{w, j}$

Laser


Ramo: Induzierter Strom $I_j = \Delta Q_{ind, j} / \Delta t = \overrightarrow{\nabla} \phi_{w, j} \cdot \overrightarrow{v}_{dr}$

Gesammelte Ladung: $Q_i = \int I_i dt$



Stromsignal ohne und mit Elektronenverlusten

Stromsignal ohne und mit Löcherverlusten

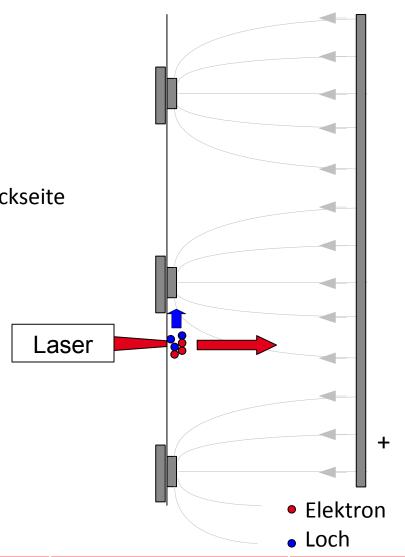
bei Erzeugung dicht am Streifen

Vollständige Ladungssammlung:

Löcher am nächsten Streifen, Elektronen an der Rückseite

Hauptstreifen: $Q_{Haupt} = \# L\"{o}cher \cdot q_o = 3 q_o$

Nachbarn: $Q_{Nachbarn} = 0$


Ladungsverluste: am Ende der Integrationszeit

Ladungen im Volumen:

$$Q_{ind,j} = \pm q \cdot \phi_{w,j}$$
 (Endposition)

Hauptstreifen: Q reduziert

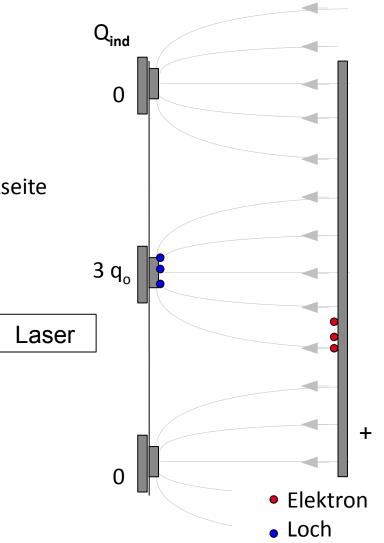
Nachbarstreifen bei Elektronenverlusten: Q < 0

bei Erzeugung dicht am Streifen

Vollständige Ladungssammlung:

Löcher am nächsten Streifen, Elektronen an der Rückseite

Hauptstreifen: $Q_{Haupt} = \# L\"{o}cher \cdot q_o = 3 q_o$


Nachbarn: Q_{Nachbarn} = 0

Ladungsverluste: am Ende der Integrationszeit Ladungen im Volumen:

$$Q_{ind,i} = \pm q \cdot \phi_{w,i}$$
 (Endposition)

Hauptstreifen: Q reduziert

Nachbarstreifen bei Elektronenverlusten: Q < 0

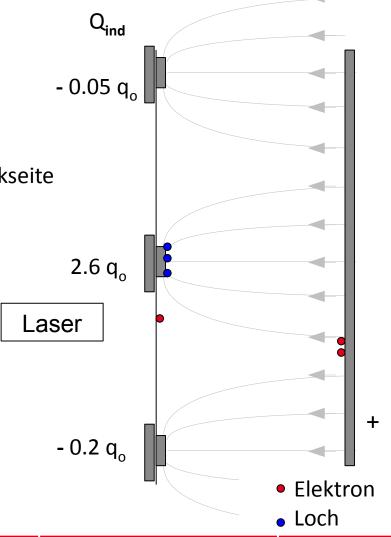
bei Erzeugung dicht am Streifen

Vollständige Ladungssammlung:

Löcher am nächsten Streifen, Elektronen an der Rückseite

Hauptstreifen: $Q_{Haupt} = \# L\"{o}cher \cdot q_o = 3 q_o$

Nachbarn: $Q_{Nachbarn} = 0$


Ladungsverluste: am Ende der Integrationszeit

Ladungen im Volumen:

$$Q_{ind,j} = \pm q \cdot \phi_{w,j}$$
 (Endposition)

Hauptstreifen: Q reduziert

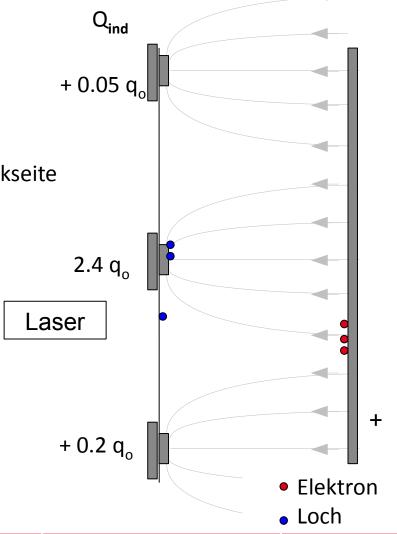
Nachbarstreifen bei Elektronenverlusten: Q < 0

bei Erzeugung dicht am Streifen

Vollständige Ladungssammlung:

Löcher am nächsten Streifen, Elektronen an der Rückseite

Hauptstreifen: $Q_{Haupt} = \# L\"{o}cher \cdot q_o = 3 q_o$


Nachbarn: $Q_{Nachbarn} = 0$

Ladungsverluste: am Ende der Integrationszeit Ladungen im Volumen:

$$Q_{ind,j} = \pm q \cdot \phi_{w,j}$$
 (Endposition)

Hauptstreifen: Q reduziert

Nachbarstreifen bei Elektronenverlusten: Q < 0

Q an verschiedenen Orten bekannt => Elektronen- und Löcherverluste berechenbar

1 Auslesestreifen, verschiede Laserpositionen

Ladungssammlung

bei Erzeugung dicht am Streifen

Vollständige Ladungssammlung:

Löcher am nächsten Streifen, Elektronen an der Rückseite

Hauptstreifen: $Q_{Haupt} = \# L\"{o}cher \cdot q_o = 3 q_o$

Nachbarn: $Q_{Nachbarn} = 0$

Ladungsverluste: am Ende der Integrationszeit Ladungen im Volumen:

$$Q_{ind,i} = \pm q \cdot \phi_{w,i}$$
 (Endposition)

Hauptstreifen: Q reduziert

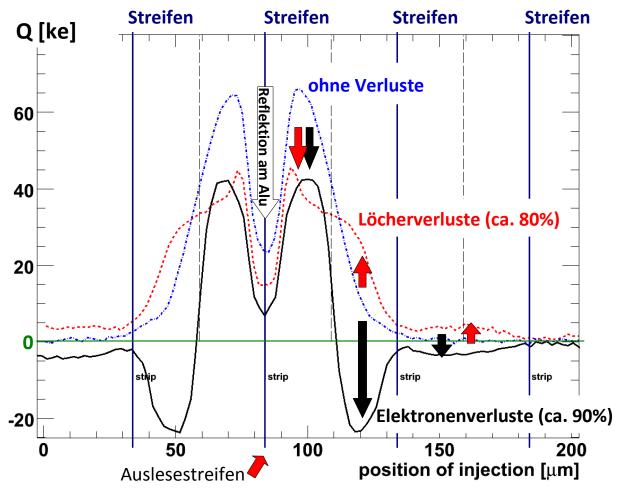
Nachbarstreifen bei Elektronenverlusten: Q < 0

Ladung gegen Position - Verluste im Vergleich

Verluste dicht am Auslesestreifen:

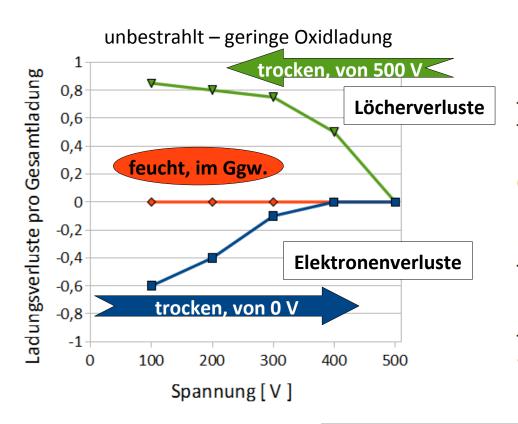
=> Q kleiner

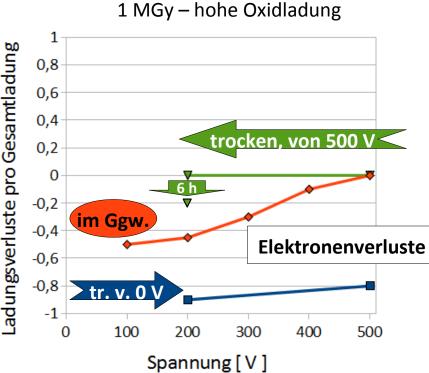
Verluste entfernt vom


Auslesestreifen:

Elektronen induizieren

Q < 0


Löcher induzieren


Q > 0

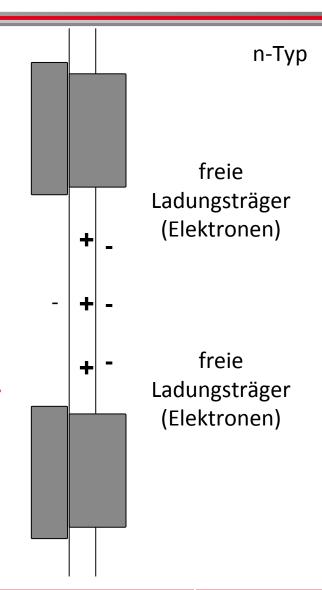
Übersicht der Ladungsverluste

Je nach Vorgeschichte bis zu 90% Verluste

im E-XFEL hohe Elektronenverluste

Wieso Elektronenverluste?

Messablauf:


Sensor getrocknet bei 0 V

→ 200 V

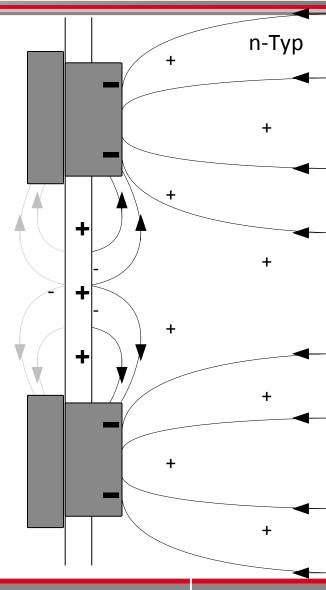
Was passiert im Detektor?

0 V : Oxidladungen kompensiert durch freie Ladungsträger

200 V : Oxidladungen unzureichend kompensiert

Wieso Elektronenverluste?

Messablauf:


Sensor getrocknet bei 0 V

→ 200 V

Was passiert im Detektor?

0 V: Oxidladungen kompensiert durch freie Ladungsträger

200 V : Oxidladungen unzureichend kompensiert

Zusammenfassung und Ausblick

Löcher- und Elektronverluste festgestellt.

Je nach Vorgeschichte, Oxidladungen und angelegter Spannung bis zu ca. 90 %.

E-XFEL: Hohe, möglicherweise instabile, Elektronenverluste bei hohen Oxidladungen. Kalibrieren?

Ausblick:

Sensordesign: leitende Sensoroberflächen?

Wieviel Ladung kann maximal verloren gehen? Wann wird sie gesammelt?

Zusammenfassung und Ausblick

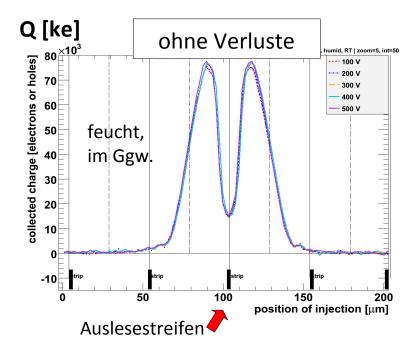
Löcher- und Elektronverluste festgestellt.

Je nach Vorgeschichte, Oxidladungen und angelegter Spannung bis zu ca. 90 %.

E-XFEL: Hohe, möglicherweise instabile, Elektronenverluste bei hohen Oxidladungen. Kalibrieren?

Ausblick:

Sensordesign: leitende Sensoroberflächen?


Wieviel Ladung kann maximal verloren gehen? Wann wird sie gesammelt?

Backup

Spannungsabhängigkeit

ohne Verluste: Q spannungsunabhängig sonst: mehr Verluste für kleine Spannungen mit Elektronen => induzieren negative Ladung Löcher => induzieren positive Ladungen

Messablauf (Elektronenverluste)

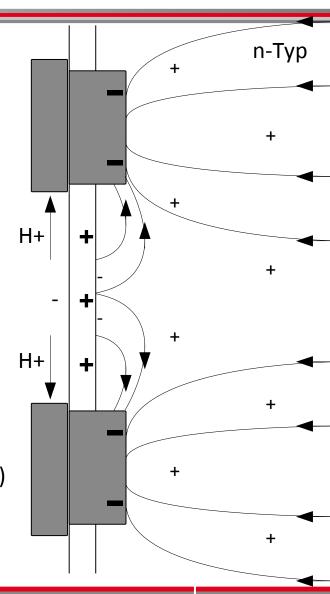
Sensor getrocknet bei 0 V

→ 200 V → Elektronenverluste

Messung 1, trocken

Was passiert im Detektor?

0 V: Oxidladungen kompensiert (freie Ladungsträger)


200 V: Oxidladungen unzureichend kompensiert

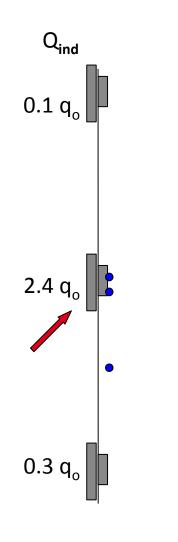
Gleichgewicht (schnell erreicht, falls hohe Luftfeuchte)

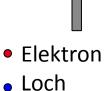
200 V: Kompensation durch OH- auf der Oberfläche (außen)

=> weniger (keine) Verluste

Messung 2, feucht

Unvollständige Ladungssammlung


Am Ende der Integrationszeit:

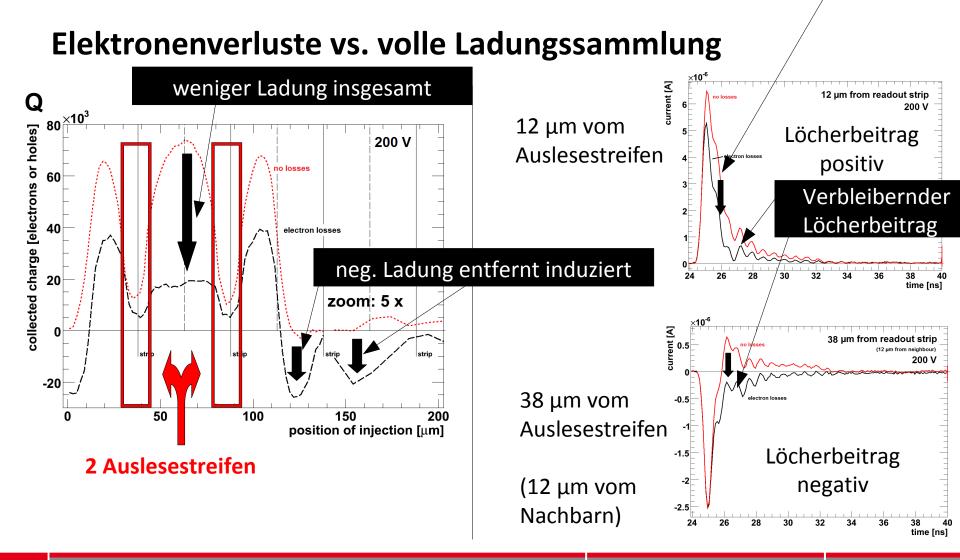

Einige Ladungsträger im Detektorvolumen

Dadurch induzierte Ladung am Auslesetreifen:

$$Q_{ind} = q_o \cdot \phi_w$$
 (Position_{Loch})
= 0.4 q_o

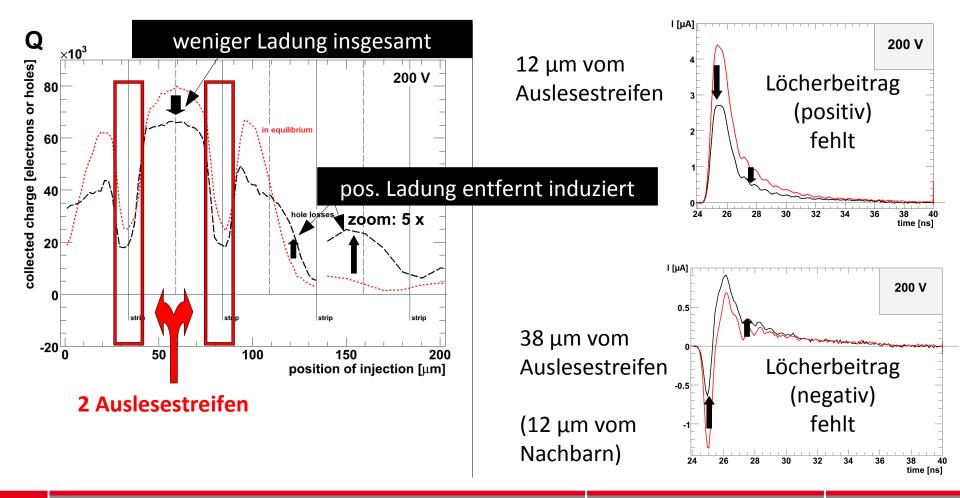
Ladung am nächsten Streifen reduziert, sonst erhöht

Messergebnisse

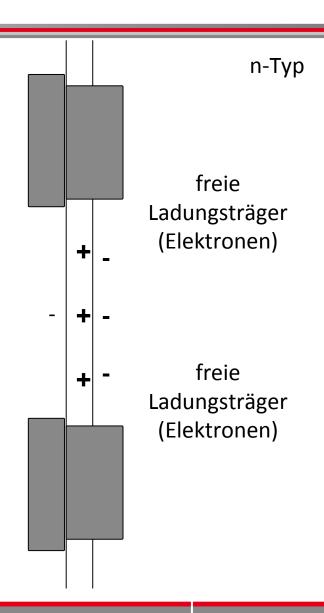

bei 200 V

- a) Elektronenverluste: hohe Oxidladung (1 MGy), von 0 V, trocken
- b) Löcherverluste: geringe Oxidladung (0 Gy), von 500 V, trocken

jeweils Vergleich mit voller Ladungssammlung: z.B. 0 Gy, feucht


ZustandQeffVerluste200 V (v. 0 V)+Elektronen200 V (v. 500 V)-Löcher

Löcherverluste vs. volle Ladungssammlung



0 V

(Gleichgewichtszustand)

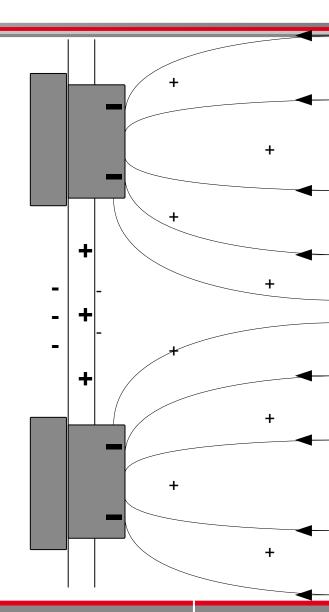
Oxidladungen und Raumladungen

durch freie Ladungsträger kompensiert

200 V

(Gleichgewichtzustand)

Oxidladungen durch Akk.-Schicht und

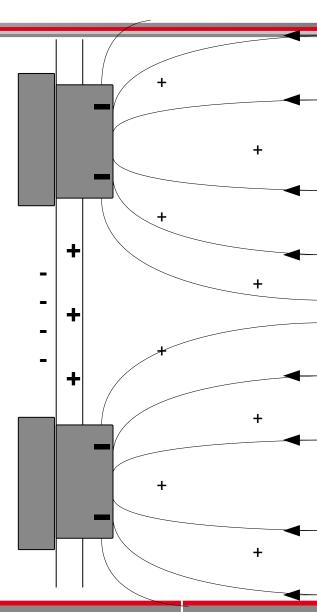

Oberflächenladungen (t.w.) kompensiert

=> keine (oder geringe) Verluste?

Zustand 200 V (v. 0 V) 200 V Ggw. Qeff Verluste

Elektronen

0/+ keine?

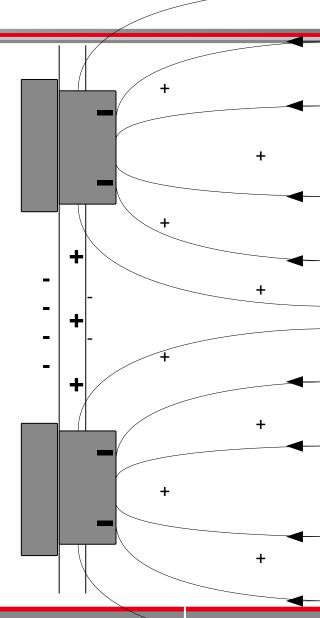

500 V

(Gleichgewichtzustand)

Keine Akkumulationsschicht, Oxidladungen durch erhöte Oberflächenladungen (t.w.) kompensiert

=> keine (oder geringe) Verluste?

<u>Zustand</u> 200 V (v. 0 V)	<u>Qeff</u> +	<u>Verluste</u> Elektronen
200 V Ggw.	0/+	keine ?
500 V Ggw.	0/+	keine?


200 V

(von 500 V)

Hohe Oberflächenladungen + Akkumulationsschicht Oxidladungen ggf. überkompensiert

=> Löcherverluste?

<u>Zustand</u> 200 V (v. 0 V)	<u>Q</u> eff +	<u>Verluste</u> Elektronen
200 V Ggw.	0/+	keine ?
500 V Ggw.	0/+	keine ?
200 V (v. 500 V)	0/ -	Löcher?

X-FEL

Event Rate: ... MHz einzelne Photonen sollen detektiert werden

=> geringes Rauschen, schnelle Ladungssammlung

Detektoren im Vakuum

Röntgenstrahlung

Strahlenbelastung (ca. 1 MGy)

Erhöhte Oxidladung ($\sim 2 \cdot 10^{12} \text{ e/cm}^2$)

Übersicht über Ladungsverluste

geringe Oxidladung (0 Gy)

U	Ggw.	von 0 V	von 500 V
100 V	keine	~ 60 % Elektronen	~ 85 % Löcher
200 V	keine	~ 40 % Elektronen	~ 80 % Löcher
300 V	keine	~ 10 % Elektronen	~ 75 % Löcher
400 V	keine	keine	~ 50 % Löcher
500 V	keine	keine	keine

hohe Oxidladung (1 MGy)

U	Ggw.	von 0 V	v. 500 V
100 V	~ 50% Elektronen		
200 V	~ 45 % Elektronen	~ 90 % Elektronen	keine
300 V	~ 30 % Elektronen		
400 V	~ 10 % Elektronen		
500 V	keine	~ 80 % Elektronen	keine