

Charles also is figuring out how to add these annotations in Unreal Engine

Able to hack together a system that we can present on later.

Compact XML -> GDML -> Hacked pyG4ometry Scripts -> GLTF -> Blender for phi cut away -> Unreal Engine

Location of simulated particles

- n.b. Since this is about SIM, "Tracking" in these slides means G4 particle propagation. (Not to be confused with charged particle tracking.)
- Ben last month: When a jet is forward, the number of post-SIM particles is increased by 3 orders of magnitude
 - Question is are we burning a LOT of CPU (fossil fuels on G4 particle interactions with the nozzle?
 - If that's the cause of this, can we change G4 to stop tracking in the nozzles?
 - Two paths:
 - XML Geometry Description
 - Just artificially change the material of the nozzle in the geometry handed to G4
 - Create a custom stepping action class in G4
 - Would be great but would require some more development and playing

G4 Geometry Hacking

- The 10 TeV Detector description XML (in the "compact" form from dd)
 - Can change nozzle material from Tungsten to custom material with tiny nuclear interaction length (10cm -> micron or something) so that particles come to a stop quickly and stop being [G4-]"tracked"
 - Or change the density? A number of handles to play with. NIL seems like a great start.
- Would only be done on the XML handed to G4 so it won't affect the BIB simulation in any way
- Doesn't need any new code, can implement something today.

Nozzle_10deg_v0.xml

```
112
            <material name="TungstenDens24">
113
                <D value="17.8" unit="g/cm3"/>
114
                <fraction n="0.93" ref="W"/>
                <fraction n="0.061" ref="Ni"/>
115
                <fraction n="0.009" ref="Fe"/>
116
117
            </material>
118
119
            <material formula="W" name="Tungsten" state="solid" >
120
                <RL type="X0" unit="cm" value="0.350418" />
121
                <NIL type="lambda" unit="cm" value="10.3057" />
                <D type="density" unit="g/cm3" value="19.3" />
122
123
                <composite n="1" ref="W" />
124
            </material>
```

materials.xml

Custom Stepping Actions in G4

- G4 doesn't have a "BLACKHOLE" (perfect absorber) material the way FLUKA does
- But in dd, we can assign custom stepping actions to particular volumes
 - Can set SIM.action.mapActions['NozzleW_right'] = CustomNozzleAction
 - Where we create CustomNozzleAction of class G4UserSteppingAction
 - Dd4hep has a plugin structure that could make this not so bad
 - This we could customize however we wanted. We could allow normal simulation into a particular depth into the nozzle, and then kill the tracking. Could be cool to not affect reflections, e.g. but this skin depth would have to be tuned.
 - (For the custom material approach, this could be tuned similarly.)
- This is just a little less trivial to figure out, but probably not more than a post-doc-week or so.

Proposal

- Try handing SIM step a new geometry XML where the nozzles (potentially just the tungsten portions?) are made of a custom material with a tiny nuclear interaction length
- Study the distribution of detector digits throughout the detector with and without this change
 - If the distribution is affected, play with the new material parameters distributions are consistent
- If we're unable to get them to match, then might need to build a custom stepper action
- Will hopefully give significant speed up in SIM step and smaller output files (also 😎🌑)

