EASYy SIM
T ST IMPROVEMENT
e PROPOSAL..

LAWRENCE LEE

THE UNIVERSITY OF -

R R RRRRRRRREEEEERERERRRRRREERRRERERRRREERRRRRRRRERRRRNSSSSSDuunn

Aside: Visualization

Charles also is figuring out how to add these
annotations in Unreal Engine

Able to hack together a system that we can present on later.

Compact XML -> GDML -> Hacked pyG4ometry Scripts -> GLTF
-> Blender for phi cut away -> Unreal Engine

Aside: Visualization

Renderings direct from Blender

Aside: Visualization

Renderings direct from Blender

Outer Tracker Missing.
Fixed since.
‘_______-——_"\'\"\ \\\1\ { .\\ "“

NN V)

Aside: Visualization

Renderings direct from Blender

Aside: Visualization

Renderings direct from Blender

Location of simulated particles

e n.b. Since this is about SIM, “Tracking” in these
slides means G4 particle propagation. (Not to be
confused with charged particle tracking.)

e Ben last month: When a jet is forward, the number Slides from Ben Johnson [Aug 31]
of post-SIM particles is increased by 3 orders of = 10f U 2
magnitude 3 of :

e Question is — are we burning a LOT of CPU g 85_ ° "g
(fossil fuels Ue) on G4 particle interactions 8’9 : e ‘§
with the nozzle? s <

o If that's the cause of this, can we change G4 to G_E Sy
stop tracking in the nozzles? 5Ea P!

e Two paths: 45_ 3

e XML Geometry Description -
e Just artificially change the material of 35_ 2
the nozzle in the geometry handed to 21
G4 hd 1
e Create a custom stepping action class in 05,.,.|.l,,|H..|....|....|....|...l|..l, 0
G4 4 -3 -2 -1 0 1 2 3 4

n of inital u
» Would be great but would require

some more development and playing

https://indico.desy.de/event/41028/contributions/151951/attachments/84616/112156/bj_8-25_update.pdf

G4 Geometry Hacking

Nozzle_10deqg_vO.xml

<detectors>
<comment>Nozzle</comment>

<detector name="NozzleW_right" type="DD4hep_PolyconeSupport" vis="NozzleWVis"

e The 10 TeV Detector description XML (in the e oy (orzier Tunostensicaments
“(I()rT1[)Ei(It” f()rrT] fr{)rT] (j(j) <zplane z="Nozzle_zm%n" rmin="1xcm" rmax="1xcm" />
<zplane z="15%cm" rmin="0.6xcm" rmax="2.59223xcm" />
° Can Change nozzle material from Tungsten -to <zplane z="Nozzle_k:i.nk_z" rm%n="0.3*cm" rmax="17.63%cm" />
<zplane z="Nozzle_kink_z" rmin="0.3%cm" rmax="15%cm" />
custom matenrial with tiny nuclear interaction eplene z=ra0asen’ xnin=o.seren’ mar=razent />
. . <zplane z="600%cm" rmin="1.78%cm" rmax="50xcm" />
length (10cm -> micron or something) so that </detector>

particles come to a stop quickly and stop being
[G4-]“tracked”

e Or change the density? A number of handles to <D value="17.8" unit="g/cm3"/>
play with. NIL seems like a great start. pELI CURE B L i R

<fraction n="0.061" ref="Ni"/>
<fraction n="0.009"| ref="Fe"/>

</material>

<material name="TungstenDens24">

e Would only be done on the XML handed to G4 so it

won't affect the BIB simulation in any way <material formula="W" name="Tungsten" state="solid" >

<RL type="X0" unit="cm" value="0.350418" />
. <NIL type="lambda" unit="cm" value="10.3057" />
Someth]ng tOday- <D type="density" unit="g/cm3" value="19.3" />

e Doesn’t need any new code, can implement

<composite n="1" ref="w" />

</material>

materials.xml

https://github.com/madbaron/detector-simulation/blob/KITP_10TeV/geometries/MuColl_10TeV_v0A/materials.xml#L112-L124
https://github.com/madbaron/detector-simulation/blob/KITP_10TeV/geometries/MuColl_10TeV_v0A/Nozzle_10deg_v0.xml

Custom Stepping Actions in G4

e G4 doesn’t have a “BLACKHOLE” (perfect absorber) material the way FLUKA does
e But in dd, we can assign custom stepping actions to particular volumes

e Can set SIM.action.mapActions['NozzleW_right'] = CustomNozzleAction

e Where we create CustomNozzleAction of class G4UserSteppingAction

e Dd4hep has a plugin structure that could make this not so bad

e This we could customize however we wanted. We could allow normal simulation into a particular
depth into the nozzle, and then Kill the tracking. Could be cool to not affect reflections, e.g. but this

skin depth would have to be tuned.

e (For the custom material approach, this could be tuned similarly.)

e This is just a little less trivial to figure out, but probably not more than a post-doc-week or so.

SIM Steering File

B A A A R A T e e e e
Action holding sensitive detector actions

#i#
##
#H#
##
##
##
##
##
##

##

The

>>>
>>>

>>>

default tracker and calorimeter actions can be set with

SIM = DD4hepSimulation()
SIM.action.tracker = "Geant4TrackerAction"

SIM.action.calo = "Geant4CalorimeterAction"

specific subdetectors specific sensitive detectors can be set based on pattern matching

SIM = DD4hepSimulation()
SIM.action.mapActions['tpc'] = "TPCSDAction"

https://github.com/MuonColliderSoft/mucoll-benchmarks/blob/tutorial_20230705/simulation/ilcsoft/steer_baseline.py

Proposal

e Try handing SIM step a new geometry XML where the nozzles (potentially just the tungsten portions?) are
made of a custom material with a tiny nuclear interaction length

e Study the distribution of detector digits throughout the detector with and without this change
o If the distribution is affected, play with the new material parameters distributions are consistent

o If we're unable to get them to match, then might need to build a custom stepper action

 Will hopefully give significant speed up in SIM step and smaller output files (also €))

That’s all.

11

