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Confinement and center symmetry in pure-gauge theories

In Yang-Mills theories with symmetry gauge group G, the deconfinement transition is related to
the breaking of the “center” symmetry

> it is a global symmetry involving transformations z which are part of the center of G
> on the lattice, all the temporal links on a given slice are multiplied by z

> this leaves the action invariant, as for any loop (e.g. plaquette) for every z there is also a z*
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Confinement and center symmetry in pure-gauge theories

In Yang-Mills theories with symmetry gauge group G, the deconfinement transition is related to
the breaking of the “center” symmetry

> it is a global symmetry involving transformations z which are part of the center of G
> on the lattice, all the temporal links on a given slice are multiplied by z

> this leaves the action invariant, as for any loop (e.g. plaquette) for every z there is also a z*

A special case is the Polyakov loop that transforms as
P — zP

and represents the order parameter of the spontaneous breaking of the center symmetry

(P) = 0 in the confined phase and (P) # 0 in the deconfined phase
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Confinement and center symmetry in pure-gauge theories

In Yang-Mills theories with symmetry gauge group G, the deconfinement transition is related to
the breaking of the “center” symmetry

> it is a global symmetry involving transformations z which are part of the center of G
> on the lattice, all the temporal links on a given slice are multiplied by z

> this leaves the action invariant, as for any loop (e.g. plaquette) for every z there is also a z*

A special case is the Polyakov loop that transforms as
P — zP

and represents the order parameter of the spontaneous breaking of the center symmetry

(P) = 0 in the confined phase and (P) # 0 in the deconfined phase

One can think of integrating out all degrees of freedom except the order parameter itself

— effective field theory with a global symmetry given by the center of G
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The Svetitsky-Yaffe conjecture

The argument of [Svetitsky, Yaffe; 1982] is that at T = T, in the case of a continuous (2nd order)
phase transition, there is an equivalence for the critical behaviour of

the theory with gauge symmetry a spin model in d dimensions with the
group G in d + 1 spacetime & center of G as a global symmetry
dimensions group
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The Svetitsky-Yaffe conjecture

The argument of [Svetitsky, Yaffe; 1982] is that at T = T, in the case of a continuous (2nd order)
phase transition, there is an equivalence for the critical behaviour of

the theory with gauge symmetry a spin model in d dimensions with the
group G in d + 1 spacetime & center of G as a global symmetry
dimensions group

Example: universality class in
SU(3) in 241 dimensions 3-state Potts model in 2 dimensions
SU(2) in 341 dimensions Ising model in 3 dimensions
Moreover, the phases are “exchanged”: the correct mapping is
“hot" phase & “ordered” phase
and

“cold” phase & “disordered” phase
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There is a “special” case:
U(1) gauge theory in 2+1 U(1) spin model in 2 dimensions
. . <~
dimensions XY model
Mermin-Wagner theorem => no spontaneous symmetry breaking = Kosterlitz-Thouless transition

phases are characterized by “topological” order

In addition, the low-temperature phase of the XY model
> is scale-invariant
> has a conformal-field-theory description

» can be considered as a line of fixed points

What happens in the corresponding (hot, T > T.) phase in the U(1) theory? Can we extend the
conjecture?

Test: conformal-field theory predictions for U(1) observables!
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@ U(1) pure gauge theory in 241 dimensions
@ The compact formulation, on the lattice
@ Observables in the dual formulation

© The XY model
@ The KT transition
@ A conformal description at low-T

© Numerical results for the hot phase in the U(1) model
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U(1) pure gauge theory in 2+1 dimensions




Our theory: U(1) gauge theory (QED) without matter fields in a three-dimensional spacetime

1
Seomt = —Z/dzx/thWF’“’

Note that in classical electrodynamics in 2 spatial dimensions:

Action in the continuum:

where Fp, = 0 Ay — O AL

> the Coulombic potential is logarithmic

> the magnetic field is a scalar
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The model

Our theory: U(1) gauge theory (QED) without matter fields in a three-dimensional spacetime

1
Seomt = —Z/dzx/thWF’“’

Note that in classical electrodynamics in 2 spatial dimensions:

Action in the continuum:
where Fp, = 0 Ay — O AL
> the Coulombic potential is logarithmic

> the magnetic field is a scalar

Many interesting properties emerge in the compact formulation of this QFT

— when the gauge field components A, are periodic

— seminal studies by [Polyakov; 1975,1976] in semiclassical calculations
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The model on the lattice

The compact formulation is easy to implement when discretizing the spacetime on a lattice A

» Wilson action

Sw = *i > > ReUuw(x)

xeEN1<pu<v<3

with the usual plaquette
Up () = Un() Us (x + i) U (x + a9) U (x)

and the parallel transporter U, (x) = exp [ieaAu (x + gﬂ)] on the links

> the invariance under ok
Ay — A, + 22

ea

is guaranteed — “compact” U(1)
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The model on the lattice

The compact formulation is easy to implement when discretizing the spacetime on a lattice A

» Wilson action 1
Sw=- 5 Y Rl
€% N 1<p<v<3

with the usual plaquette
Up () = Un() Us (x + i) U (x + a9) U (x)

and the parallel transporter U, (x) = exp [ieaAu (x + %ﬂ)] on the links

> the invariance under ok
T
Ay — A+ —

w W P

is guaranteed — “compact” U(1)

Field configurations admit topological defects (“magnetic monopoles”) [Polyakov; 1975,1976]

> the ground state can be thought as a plasma of (anti)monopoles

1

> this condensation implies confinement of electric charges for all values of 8 = —

Meissner effect

as a dual

> dual superconductor model [Nambu; 1974],[Mandelstam; 1976],['t Hooft; 1979]
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How is Maxwell theory recovered?

Analytical proof [Gopfert,Mack; 1982] (in the Villain formulation) of the existence of

> a non-zero mass gap

mpa =~ kiv/Bexp(—kB) for > 1

> a finite string tension

0a® > % exp(—koB) for f>1

the model is confining for any value of 8 = ig!

> in the continuum limit (a — 0 means 8 — oo at fixed e?) the Maxwell theory of
non-interacting photons is recovered!
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How is Maxwell theory recovered?

Analytical proof [Gopfert,Mack; 1982] (in the Villain formulation) of the existence of

> a non-zero mass gap

mpa =~ kiv/Bexp(—kB) for > 1

> a finite string tension

0a® > % exp(—koB) for f>1

the model is confining for any value of 8 = ig!

> in the continuum limit (a — 0 means 8 — oo at fixed e?) the Maxwell theory of
non-interacting photons is recovered!

Interesting note: the ratio behaves differently with respect to other confining gauge theories
(where it is fixed up to a effects)

m2
7D o /B3 exp(—ka3)

— one can also take the continuum limit on a “line of constant physics” (i.e. keeping mp or o
fixed) ...
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A phase transition at finite T

Non-zero temperature setup, temporal direction compactified with

Similarly to SU(N) gauge models, a phase transition takes place at a critical temperature T

> in the low-temperature phase, the theory is linearly confining
> in the high-temperature region no mass scale (or Debye screening) is present

> " logarithmic confinement” is expected
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A phase transition at finite T

Non-zero temperature setup, temporal direction compactified with

Similarly to SU(N) gauge models, a phase transition takes place at a critical temperature T

> in the low-temperature phase, the theory is linearly confining
> in the high-temperature region no mass scale (or Debye screening) is present

> " logarithmic confinement” is expected

Interpretation: monopole-antimonopole confining plasma turns into a dipole plasma at T,
[Chernodub et al.; 2001]

Recent results confirm the “XY nature” of the transition [Borisenko et al.; 2015]

infinite-order nature of the transition (exponentially-diverging correlation length) makes it difficult
to study the theory close to T (huge finite-size effects)
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A different formulation

The usual partition function/path integral
Z = /Hd Uu(x) exp[—Sw]
X,
can be formulated in terms of a spin model with global Z symmetry
— integer-valued variables s placed on the sites of the dual lattice

2= [T hst)—straon(®

{s} y,v

» |, = modified Bessel function of 1st kind of order «
> s(y) — s(y + ap) difference of Z variables at the ends of each bond
> [T taken on bonds of the dual lattice

— expectation values of interesting quantities can be rewritten in terms of ratios of partition
functions!
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Observables - Static potential

The Polyakov-loop correlation function can be rewritten as

(P*(rYP(0)) = S

with
Znex, = 0 ] T sty —sty-a9)n0 )1 (B)

{s} y,v

the variables n, (y)
> are zero on the oriented bonds of the dual lattice

> but not on the bonds dual to the surface N; x N, bounded by the two Polyakov loops: in
that case n,(y) = 1 — frustration or “‘defect”

Note that (P*(r)P(0)) can be rewritten in order to use error-reduction techniques (snake
algorithm [De Forcrand et al.; 2001])
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Observables - Static potential

The Polyakov-loop correlation function can be rewritten as
Z
(P*(r)P(0)) = =Fo
with
Znex, = D [ T sty —styrao)enu )1 (B)
{s} yv
the variables n, (y)
> are zero on the oriented bonds of the dual lattice

> but not on the bonds dual to the surface N; x N, bounded by the two Polyakov loops: in
that case n,(y) = 1 — frustration or “‘defect”

Note that (P*(r)P(0)) can be rewritten in order to use error-reduction techniques (snake
algorithm [De Forcrand et al.; 2001])

In particular we look at

(P*(r+2)P(0)) _ N Z e 4it _ N g —s(xran)+11 (B)
(P*(r)P(0)) 0 Z(Nex N+ 2o\ Nsta=se+a0) (B) [ ooy

where each factor in the r.h.s. can be computed using hierarchical updates [Caselle et al.; 2003]
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Observables - Flux tube profile

Another crucial observable: the profile of the flux tube between a pair of static eletric sources

Connected correlator of the field-strength E(x¢) in a
background of two Polyakov lines (sources)

(P*(r)P(0)E(xt))

W(rx) = = (o))

— (E(xt))

where E(x;) is placed at a transverse distance x; from the
temporal plane of the sources

In the dual formulation it becomes simply

(s(x) = s(x + a?) + nu (X)) N x N, Image from [EPJ Web Conf. 175

W(r,x) = /B (2018) 12006]

> at T = 0 the profile is exponential [Caselle et al.; 2016]

> in agreement with the dual superconductor model
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The XY model



The XY model in two dimensions

The well-known Hamiltonian of the XY model is

H=—J38(x)-50) = —J 3 coslti(x) - 6(y)]

(x,y) (x,y)

where 5(x) are two-component real vectors of unit length and 6 is the angle with a respect to a
predefined direction

It has an O(2) internal global symmetry and is ferromagnetic for J > 0
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The XY model in two dimensions

The well-known Hamiltonian of the XY model is

H=—J38(x)-50) = —J 3 coslti(x) - 6(y)]

(x,y) (x,y)

where 5(x) are two-component real vectors of unit length and 6 is the angle with a respect to a
predefined direction

It has an O(2) internal global symmetry and is ferromagnetic for J > 0

> for T > 0 the system is in a disordered phase, for which (5) =0
— Mermin-Wagner theorem

systems with continuous symmetries are always disordered by thermal fluctuations in 2D
> “conventional” long-range order not allowed at low-T

> however, for T — 0 a non-conventional “quasi-long-range” order emerges, where the
lowest-energy states are spin-waves

> signal of a phase transition at T = Tk
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The Kosterlitz-Thouless transition

One can distinguish two different phases by analyzing the behaviour of the spin-spin correlation
function

G(r) = (8(x)-5(y)),  with r=|x—y]
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The Kosterlitz-Thouless transition

One can distinguish two different phases by analyzing the behaviour of the spin-spin correlation
function
G(r) =(5(x) - 8(y)),  withr=|x—y]

> in the high-T phase we have
p
G(r) ~ exp (—7)
3
where £ is a temperature-dependent correlation length that for T — Tkt

I3 b> T 1
2 ~exp|l — |, T=— —
a P \/7T Tkt

— infinite-order phase transition!
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The Kosterlitz-Thouless transition

One can distinguish two different phases by analyzing the behaviour of the spin-spin correlation

function
G6(r) = () -5(y)),  with r=|x—y]|

> in the high-T phase we have

co-en()

where £ is a temperature-dependent correlation length that for T — Tkt

I3 b> T 1
2 ~exp|l — |, T=— —
a P \/7T Tkt

— infinite-order phase transition!

> while in the low-T phase

where 1) depends on T as well

WT) =5 =5 0lTir) = 1/4
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The Kosterlitz-Thouless transition

Where does this behaviour come from?

— “vortex" solutions: when the 6 field winds around

a point (vortex center) n times ¥ F +« «+« - %X X
?{ V6.-dl=2rn ~3 v
T
and to each vortex we associate

- 44

5 L
energy ~ mn“Jin | — N W > > > A A

a
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The Kosterlitz-Thouless transition

Where does this behaviour come from?

— “vortex" solutions: when the 6 field winds around

a point (vortex center) n times ¥ F +« «+« - %X X
?{ VO -dl=2mn ~—% v
T
and to each vortex we associate

- 44

5 L
energy ~ n“JlIn | — N N> > > A A

a

If the entropy goes just like S ~ In ((L/a)2) then the free energy for an isolated vortex is

L

F, ~ (7 —=2T)In (7)

a

and so the creation of a free vortex becomes possible when

TKT s

J 2

more complicated with more than one vortex: the actual value is

% = 0.89294(8)
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A conformal description for the low-T phase of the XY model

We know that for T < Tkr
r\-m
G(r) ~ (Z)

— the correlation function is scale-invariant!

for any length x, the system is invariant under global dilatation transformations

X = Ax

For classical systems with local interactions: invariance under global dilatations + translations +
rotations = conformal invariance
x = A(x)x

a simple way of understanding conformal transformations: they leave invariant the relative angle
between vectors
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A conformal description for the low-T phase of the XY model

We know that for T < Tkr
r\-m
G(r) ~ (Z)

— the correlation function is scale-invariant!

for any length x, the system is invariant under global dilatation transformations

X = Ax

For classical systems with local interactions: invariance under global dilatations + translations +
rotations = conformal invariance
x = A(x)x

a simple way of understanding conformal transformations: they leave invariant the relative angle
between vectors

> a conformal field theory (CFT) description of the XY model in the low-T phase is possible
> it is the theory of a free, massless compact bosonic field with central charge c =1
> the field is identified with the 0 phase

Note that conformal invariance implies the lack of a mass gap or of Debye screening: consistent
with hot phase of U(1)
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A conformal description for the U(1) hot phase - P correlator

Crucial feature of conformal invariance — constraints on correlation functions
We consider quasi-primary fields Q; that transform under general conformal mapping as

714:/D
Ox Qi(x)

Qi(x) = E

A; = "scaling dimension”

For the two-point function conformal invariance tells us

(@s(3) Qolxa)) = —22

|X1 _ X2|2Aa
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A conformal description for the U(1) hot phase - P correlator

Crucial feature of conformal invariance — constraints on correlation functions
We consider quasi-primary fields Q; that transform under general conformal mapping as

714:/D
Ox Qi(x)

Qi(x) = E

A; = "scaling dimension”

For the two-point function conformal invariance tells us

(@s(3) Qolxa)) = —22

|X1 _ X2|2Aa

For the spin field §

(5(r) - 5(0)) ~
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A conformal description for the U(1) hot phase - P correlator

Crucial feature of conformal invariance — constraints on correlation functions
We consider quasi-primary fields Q; that transform under general conformal mapping as

714:/D
Ox Qi(x)

Qi(x) = E

A; = "scaling dimension”

For the two-point function conformal invariance tells us

(@s(3) Qolxa)) = —22

Ix1 — xo| 2B
For the spin field §

(5(r) - 5(0)) ~ -

We identify the spins § with the Polyakov loop P and we investigate the ratio

(P +a)PO) [, 1\7"
P (NP(O) ‘(”r/a)

(where a is the lattice spacing) so that the normalization does not enter the analysis

H(r) =
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A conformal description for the hot phase - flux tube

For the three point-function conformal invariance tells us that

o Cabc
(Qa(x1) Qp(x2) Qe(x3)) = OV Vi SV .Y
12 13 23

Cabe = structure constant of the algebra of the fields
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A conformal description for the hot phase - flux tube

For the three point-function conformal invariance tells us that

o Cabc
(Qa(x1) Qp(x2) Qe(x3)) = OV Vi SV .Y
12 13 23

Cabe = structure constant of the algebra of the fields

For the flux-tube profile we have that

3(r)3 X o 2\ "¢ X2\ e
W(r,x) = SDSQCD ) oo (1+%) = (+%)

where
> A is the scaling dimension of the operator ¢ that corresponds to the field-strength

> ¢(x) is placed in the perpendicular line that goes through the midpoint between the two
charges

> (¢) = 0 due to scale invariance

> any dependence on 2As = 7 has disappeared
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Numerical results for the hot phase in the U(1) model




Numerical simulations

GOAL: describe quantities in the high-T region of the U(1) pure gauge theory using functional
forms dictated by conformal invariance

» Ns > N; to avoid finite-size effects
> values of g for each N; chosen considering the 3. from [Borisenko et al.; 2015]
> e.g. Bc =3.005 for N; =4 — 8 € [3.01,4]

We start with the Polyakov loop correlator ratio

P+ aPO) [, 1)
H) = st (0)) (1 * r/a)
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Fits of H(r)

1 T T T T T T T
0.95 .
0.9 .
0.85 0.85[- 0.851 .
S L - L 4
S r . p=325 i ]
osk osf osk E
0751 075 0751 .
071 07f 071 .
P N I I I B N S I
0 25 50 0 25 50 0 25 50
rla
n = 0.2469(12) n = 0.2299(10) n = 0.1750(9)
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Behaviour of 7

We recall that

A (very) crude ansatz for n(T)

works surprisingly well

0.29 — T

028 025 ——7 7 =
0271 r 1
026 r 1
025F F 1

[ L ]
024 b 1A

=023 . 0.15 | L B
0221 ' B /B ' -
021}~ . B

02

T
|
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Now we look at the profile of the flux-tube (8 = 4.0, N; = 4)

4x2 By
W(r,x) = C(r) (1 + %2) with C(r) and Ay as free parameters

0.012 : : : :
- « Lla=128 1
001} . relze
= 0008 .
‘E |
:‘% 0.006 -
; i
= 0.004 _
0.002 SETNL Y .

L

) | T b

0 20 40 60 100

x/a

fit for fixed r/a = 32 in the 2 < x/a < 40 range
Ay = 0.933(7) coming from weighted average at several r
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Field-strength correlator

2-parameter fits of W(x, r) not very precise at large r

There is a direct way of getting Ay: looking at the field-strength correlator
Y(x) = (E(x)E(0))
which we fit with

1 1
Y(X):bO' m'ﬁ‘

X

» we include contributions from

> the operator ¢ (scaling dimension Ay)
> the marginal operator associated to action density (exact scaling dimension A, = 2)

> finite spatial size L contribution included
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B =4.0, Ns =192, Ny = 4

T T T T T T T T T T T T T T T Ty

|

Y(x)

|

0.001 h

T
T

L
1

0.0001

T
T

L
1

Y- INRTRTRTI FRRTTRTRT] FNRTTRTNT] INNTTRTNTE INNRTRRNTA ANRRTUNNTE FNRTARATE ARNRRRTRTE FRNUTRRRTE RRUTANET
fe 050 10 20 30 40 50 60 70 80 90 100
x/la

the fit for Y/(x) yields Ay = 0.946(5)
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Fitting W(x) again

> fix Ay = 0.946(5) from the field-strength correlator

> study again the flux-tube profile W(x, r) with a one-parameter fit

W(r,x) = C(r) (1 N 4%2)—%

> extract C(r) for several values of r

> fit it again in Ay and cgy knowing that

_ _ Css¢
= s

> the fit yields Ay, = 0.948(6): self-consistent result!
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Conclusions

> ‘“expanding” the Svetitsky-Yaffe conjecture: the whole hot phase of the U(1) pure gauge
theory in 3D can be mapped to the low-T phase of the XY model in 2D

> numerical study of the behaviour of

> the Polyakov loop (static charges) correlator
> the flux-tube profile (field strength in a background of static charges)

> they are effectively described by the same functional forms used for the XY model

v

directly descend from constraints obtained in conformal field theory!
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Conclusions

> ‘“expanding” the Svetitsky-Yaffe conjecture: the whole hot phase of the U(1) pure gauge
theory in 3D can be mapped to the low-T phase of the XY model in 2D

> numerical study of the behaviour of

> the Polyakov loop (static charges) correlator
> the flux-tube profile (field strength in a background of static charges)

> they are effectively described by the same functional forms used for the XY model

v

directly descend from constraints obtained in conformal field theory!

Moreover
> the critical index 1 behaves roughly as expected when the moving away from the critical
point at T > T.

> the scaling dimension A4 can be extracted independently from the flux-tube profile and from
the field-strength correlator: good agreement

> not only: they can be used together to draw a consistent picture over different observables
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Thank you for the attention!
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