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Confinement and center symmetry in pure-gauge theories

In Yang-Mills theories with symmetry gauge group G , the deconfinement transition is related to
the breaking of the “center” symmetry

I it is a global symmetry involving transformations z which are part of the center of G

I on the lattice, all the temporal links on a given slice are multiplied by z

I this leaves the action invariant, as for any loop (e.g. plaquette) for every z there is also a z∗

A special case is the Polyakov loop that transforms as

P → zP

and represents the order parameter of the spontaneous breaking of the center symmetry

〈P〉 = 0 in the confined phase and 〈P〉 6= 0 in the deconfined phase

One can think of integrating out all degrees of freedom except the order parameter itself

→ effective field theory with a global symmetry given by the center of G
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The Svetitsky-Yaffe conjecture

The argument of [Svetitsky,Yaffe; 1982] is that at T = Tc , in the case of a continuous (2nd order)
phase transition, there is an equivalence for the critical behaviour of

the theory with gauge symmetry
group G in d + 1 spacetime

dimensions

⇔
a spin model in d dimensions with the

center of G as a global symmetry
group

Example: universality class in

SU(3) in 2+1 dimensions

SU(2) in 3+1 dimensions
⇔

3-state Potts model in 2 dimensions

Ising model in 3 dimensions

Moreover, the phases are “exchanged”: the correct mapping is

“hot” phase ⇔ “ordered” phase

and

“cold” phase ⇔ “disordered” phase
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There is a “special” case:

U(1) gauge theory in 2+1
dimensions

⇔ U(1) spin model in 2 dimensions
XY model

Mermin-Wagner theorem ⇒ no spontaneous symmetry breaking ⇒ Kosterlitz-Thouless transition

phases are characterized by “topological” order

In addition, the low-temperature phase of the XY model

I is scale-invariant

I has a conformal-field-theory description

I can be considered as a line of fixed points

What happens in the corresponding (hot, T > Tc ) phase in the U(1) theory? Can we extend the
conjecture?

Test: conformal-field theory predictions for U(1) observables!

4 Alessandro Nada (DESY) CFT in 3D U(1) gauge theory 25/11/2019



1 U(1) pure gauge theory in 2+1 dimensions
The compact formulation, on the lattice
Observables in the dual formulation

2 The XY model
The KT transition
A conformal description at low-T

3 Numerical results for the hot phase in the U(1) model
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U(1) pure gauge theory in 2+1 dimensions



The model

Our theory: U(1) gauge theory (QED) without matter fields in a three-dimensional spacetime

Action in the continuum:

Scont = −
1

4

∫
d2 x

∫
d t FµνF

µν

where Fµν = ∂µAν − ∂νAµ

Note that in classical electrodynamics in 2 spatial dimensions:

I the Coulombic potential is logarithmic

I the magnetic field is a scalar

Many interesting properties emerge in the compact formulation of this QFT

→ when the gauge field components Aµ are periodic

→ seminal studies by [Polyakov; 1975,1976] in semiclassical calculations
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The model on the lattice

The compact formulation is easy to implement when discretizing the spacetime on a lattice Λ

I Wilson action

SW = −
1

ae2

∑
x∈Λ

∑
1≤µ<ν≤3

ReUµν(x)

with the usual plaquette

Uµν(x) = Uµ(x)Uν(x + aµ̂)U?µ(x + aν̂)U?ν (x)

and the parallel transporter Uµ(x) = exp
[
ieaAµ

(
x + a

2
µ̂
)]

on the links

I the invariance under

Aµ → Aµ +
2πk

ea

is guaranteed → “compact” U(1)

Field configurations admit topological defects (“magnetic monopoles”) [Polyakov; 1975,1976]

I the ground state can be thought as a plasma of (anti)monopoles

I this condensation implies confinement of electric charges for all values of β = 1
ae2 as a dual

Meissner effect

I dual superconductor model [Nambu; 1974],[Mandelstam; 1976],[’t Hooft; 1979]
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How is Maxwell theory recovered?

Analytical proof [Göpfert,Mack; 1982] (in the Villain formulation) of the existence of

I a non-zero mass gap

mDa ' k1

√
β exp(−k2β) for β � 1

I a finite string tension

σa2 ≥
k3√
β

exp(−k2β) for β � 1

the model is confining for any value of β = 1
ae2 !

I in the continuum limit (a→ 0 means β →∞ at fixed e2) the Maxwell theory of
non-interacting photons is recovered!

Interesting note: the ratio behaves differently with respect to other confining gauge theories
(where it is fixed up to a effects)

m2
D

σ
∝
√
β3 exp(−k2β)

→ one can also take the continuum limit on a “line of constant physics” (i.e. keeping mD or σ
fixed) ...
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A phase transition at finite T

Non-zero temperature setup, temporal direction compactified with

T =
1

Nta

Similarly to SU(N) gauge models, a phase transition takes place at a critical temperature Tc

I in the low-temperature phase, the theory is linearly confining

I in the high-temperature region no mass scale (or Debye screening) is present

I “ logarithmic confinement” is expected

Interpretation: monopole-antimonopole confining plasma turns into a dipole plasma at Tc

[Chernodub et al.; 2001]

Recent results confirm the “XY nature” of the transition [Borisenko et al.; 2015]

infinite-order nature of the transition (exponentially-diverging correlation length) makes it difficult
to study the theory close to Tc (huge finite-size effects)
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A different formulation

The usual partition function/path integral

Z =

∫ ∏
x,µ

dUµ(x) exp[−SW ]

can be formulated in terms of a spin model with global Z symmetry

→ integer-valued variables s placed on the sites of the dual lattice

Z =
∑
{s}

∏
y,ν

I|s(y)−s(y+aν̂)|(β)

I Iα = modified Bessel function of 1st kind of order α

I s(y)− s(y + aν̂) difference of Z variables at the ends of each bond

I
∏

taken on bonds of the dual lattice

→ expectation values of interesting quantities can be rewritten in terms of ratios of partition
functions!
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Observables - Static potential

The Polyakov-loop correlation function can be rewritten as

〈P?(r)P(0)〉 =
ZNt×Nr

Z

with
ZNt×Nr =

∑
{s}

∏
y,ν

I|s(y)−s(y+aν̂)+nν (y)|(β)

the variables nν(y)

I are zero on the oriented bonds of the dual lattice

I but not on the bonds dual to the surface Nt × Nr bounded by the two Polyakov loops: in
that case nν(y) = 1 → frustration or ‘‘defect”

Note that 〈P?(r)P(0)〉 can be rewritten in order to use error-reduction techniques (snake
algorithm [De Forcrand et al.; 2001])

In particular we look at

〈P?(r + a)P(0)〉
〈P?(r)P(0)〉

=

Nt−1∏
i=0

Z(Nt×Nr )+i+1

Z(Nt×Nr )+i

=

Nt−1∏
i=0

〈
I|s(x)−s(x+aν̂)+1|(β)

I|s(x)−s(x+aν̂)|(β)

〉
(Nt×Nr )+i

where each factor in the r.h.s. can be computed using hierarchical updates [Caselle et al.; 2003]
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Observables - Flux tube profile

Another crucial observable: the profile of the flux tube between a pair of static eletric sources

Connected correlator of the field-strength E(xt) in a
background of two Polyakov lines (sources)

W (r , xt) =
〈P?(r)P(0)E(xt)〉
〈P?(r)P(0)〉

− 〈E(xt)〉

where E(xt) is placed at a transverse distance xt from the
temporal plane of the sources

In the dual formulation it becomes simply

W (r , x) =
〈s(x)− s(x + aν̂) + nν(x)〉Nt×Nr√

β

d

P(x) P(y)

Up

xtL

Image from [EPJ Web Conf. 175
(2018) 12006]

I at T = 0 the profile is exponential [Caselle et al.; 2016]

I in agreement with the dual superconductor model
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The XY model



The XY model in two dimensions

The well-known Hamiltonian of the XY model is

H = −J
∑
〈x,y〉

~s(x) ·~s(y) = −J
∑
〈x,y〉

cos[θ(x)− θ(y)]

where ~s(x) are two-component real vectors of unit length and θ is the angle with a respect to a
predefined direction

It has an O(2) internal global symmetry and is ferromagnetic for J > 0

I for T > 0 the system is in a disordered phase, for which 〈~s〉 = 0

→ Mermin-Wagner theorem

systems with continuous symmetries are always disordered by thermal fluctuations in 2D

I “conventional” long-range order not allowed at low-T

I however, for T → 0 a non-conventional “quasi-long-range” order emerges, where the
lowest-energy states are spin-waves

I signal of a phase transition at T = TKT
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The Kosterlitz-Thouless transition

One can distinguish two different phases by analyzing the behaviour of the spin-spin correlation
function

G(r) = 〈~s(x) ·~s(y)〉, with r = |x − y |

I in the high-T phase we have

G(r) ∼ exp

(
−
r

ξ

)
where ξ is a temperature-dependent correlation length that for T → TKT

ξ

a
∼ exp

(
b
√
τ

)
, τ =

T

TKT
− 1

→ infinite-order phase transition!

I while in the low-T phase

G(r) ∼
( r

L

)−η
where η depends on T as well

η(T ) =
T

2πJ
=

1

2πK
η(TKT ) = 1/4
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The Kosterlitz-Thouless transition

Where does this behaviour come from?

→ “vortex” solutions: when the θ field winds around
a point (vortex center) n times∮

∇θ · d l = 2πn

and to each vortex we associate

energy ∼ πn2J ln

(
L

a

)
If the entropy goes just like S ∼ ln

(
(L/a)2

)
then the free energy for an isolated vortex is

Fv ∼ (πJ − 2T ) ln

(
L

a

)
and so the creation of a free vortex becomes possible when

TKT

J
=
π

2

more complicated with more than one vortex: the actual value is

TKT

J
= 0.89294(8)
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The Kosterlitz-Thouless transition

Image from [J Phys Condens Matter 25, 065501 (2013)]

at low temperatures: only
vortex-antivortex pairs are energetically
possible in the thermodynamic limit

at high temperatures: the entropy increase
compensates the energy for the creation of
an isolated vortex → free vortices
proliferate and interact with each other
with a logarithmic Coulomb potential
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A conformal description for the low-T phase of the XY model

We know that for T < TKT

G(r) ∼
( r

L

)−η
→ the correlation function is scale-invariant!

for any length x , the system is invariant under global dilatation transformations

x → λx

For classical systems with local interactions: invariance under global dilatations + translations +
rotations ⇒ conformal invariance

x → λ(x)x

a simple way of understanding conformal transformations: they leave invariant the relative angle
between vectors

I a conformal field theory (CFT) description of the XY model in the low-T phase is possible

I it is the theory of a free, massless compact bosonic field with central charge c = 1

I the field is identified with the θ phase

Note that conformal invariance implies the lack of a mass gap or of Debye screening: consistent
with hot phase of U(1)
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A conformal description for the U(1) hot phase - P correlator

Crucial feature of conformal invariance → constraints on correlation functions

We consider quasi-primary fields Qi that transform under general conformal mapping as

Qi (x) =

∣∣∣∣∂x ′∂x
∣∣∣∣∆i/D

Qi (x
′)

∆i = “scaling dimension”

For the two-point function conformal invariance tells us

〈Qa(x1)Qb(x2)〉 =
δab

|x1 − x2|2∆a

For the spin field ~s

〈~s(r) ·~s(0)〉 ∼
1

rη

We identify the spins ~s with the Polyakov loop P and we investigate the ratio

H(r) =
〈P?(r + a)P(0)〉
〈P?(r)P(0)〉

=

(
1 +

1

r/a

)−η
(where a is the lattice spacing) so that the normalization does not enter the analysis
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′)

∆i = “scaling dimension”

For the two-point function conformal invariance tells us

〈Qa(x1)Qb(x2)〉 =
δab

|x1 − x2|2∆a

For the spin field ~s

〈~s(r) ·~s(0)〉 ∼
1

rη

We identify the spins ~s with the Polyakov loop P and we investigate the ratio

H(r) =
〈P?(r + a)P(0)〉
〈P?(r)P(0)〉

=

(
1 +

1

r/a

)−η
(where a is the lattice spacing) so that the normalization does not enter the analysis
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A conformal description for the hot phase - flux tube

For the three point-function conformal invariance tells us that

〈Qa(x1)Qb(x2)Qc (x3)〉 =
cabc

x
∆a−∆b−∆c
12 x

∆b−∆a−∆c
13 x

∆c−∆a−∆b
23

cabc = structure constant of the algebra of the fields

For the flux-tube profile we have that

W (r , x) =
〈~s(r)~s(0)φ(x)〉
〈~s(r)~s(0)〉

− 〈φ〉 =
cssφ

(r/4)∆φ

(
1 +

4x2

r2

)−∆φ

= C(r)

(
1 +

4x2

r2

)−∆φ

where

I ∆φ is the scaling dimension of the operator φ that corresponds to the field-strength

I φ(x) is placed in the perpendicular line that goes through the midpoint between the two
charges

I 〈φ〉 = 0 due to scale invariance

I any dependence on 2∆s = η has disappeared
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Numerical results for the hot phase in the U(1) model



Numerical simulations

GOAL: describe quantities in the high-T region of the U(1) pure gauge theory using functional
forms dictated by conformal invariance

I Ns � Nt to avoid finite-size effects

I values of β for each Nt chosen considering the βc from [Borisenko et al.; 2015]

I e.g. βc = 3.005 for Nt = 4→ β ∈ [3.01, 4]

We start with the Polyakov loop correlator ratio

H(r) =
〈P?(r + a)P(0)〉
〈P?(r)P(0)〉

=

(
1 +

1

r/a

)−η
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Fits of H(r)
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0.65
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0.9
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1
H

(r
)

β = 3.01
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0.85
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0.95

β = 3.25

0 25 50

0.7

0.75

0.8

0.85
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0.95

β = 4.1

η = 0.2469(12) η = 0.2299(10) η = 0.1750(9)
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Behaviour of η

We recall that
η(TKT ) = 1/4

A (very) crude ansatz for η(T )

η = a1
βc

β
+ a0

works surprisingly well

2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

β

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

η

0.7 0.8 0.9 1

β
cr

 / β

0.15

0.2

0.25

η
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Now we look at the profile of the flux-tube (β = 4.0, Nt = 4)

W (r , x) = C(r)
(

1 + 4x2

r2

)−∆φ
with C(r) and ∆φ as free parameters

0 20 40 60 80 100
x / a

0

0.002

0.004

0.006

0.008

0.01

0.012
W

 (
x
 ,

 r
),

  
fo

r 
r
 =

 3
2

 a

L / a = 128
L / a = 192
L / a = 256

fit for fixed r/a = 32 in the 2 < x/a < 40 range

∆φ = 0.933(7) coming from weighted average at several r
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Field-strength correlator

2-parameter fits of W (x , r) not very precise at large r

There is a direct way of getting ∆φ: looking at the field-strength correlator

Y (x) = 〈E(x)E(0)〉

which we fit with

Y (x) = b0 ·
[

1

x2∆φ
+

1

(L− x)2∆φ

]
+ b1 ·

[
1

x4
+

1

(L− x)4

]

I we include contributions from
I the operator φ (scaling dimension ∆φ)
I the marginal operator associated to action density (exact scaling dimension ∆m = 2)

I finite spatial size L contribution included
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β = 4.0, Ns = 192, Nt = 4

0 10 20 30 40 50 60 70 80 90 100
x / a

1e-05

0.0001

0.001

0.01

0.1

1

Y
(x

)

the fit for Y (x) yields ∆φ = 0.946(5)
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Fitting W (x) again

I fix ∆φ = 0.946(5) from the field-strength correlator

I study again the flux-tube profile W (x , r) with a one-parameter fit

W (r , x) = C(r)

(
1 +

4x2

r2

)−∆φ

I extract C(r) for several values of r

I fit it again in ∆φ and cssφ knowing that

C(r) =
cssφ

(r/4)∆φ

I the fit yields ∆φ = 0.948(6): self-consistent result!
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Conclusions

I “expanding” the Svetitsky-Yaffe conjecture: the whole hot phase of the U(1) pure gauge
theory in 3D can be mapped to the low-T phase of the XY model in 2D

I numerical study of the behaviour of
I the Polyakov loop (static charges) correlator
I the flux-tube profile (field strength in a background of static charges)

I they are effectively described by the same functional forms used for the XY model

I directly descend from constraints obtained in conformal field theory!

Moreover

I the critical index η behaves roughly as expected when the moving away from the critical
point at T > Tc

I the scaling dimension ∆φ can be extracted independently from the flux-tube profile and from
the field-strength correlator: good agreement

I not only: they can be used together to draw a consistent picture over different observables
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Thank you for the attention!
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