Conformal field theory and the hot phase of the 3D U(1) gauge theory

Alessandro Nada¹

in collaboration with

Michele Caselle², Marco Panero² and Davide Vadacchino³

¹NIC. DESY Zeuthen

²Università di Torino & INFN, Sezione di Torino

³INFN, Sezione di Pisa

25th November 2019

DESY, Zeuthen

Confinement and center symmetry in pure-gauge theories

In Yang-Mills theories with symmetry gauge group G, the deconfinement transition is related to the breaking of the "center" symmetry

- ▶ it is a global symmetry involving transformations z which are part of the center of G
- on the lattice, all the temporal links on a given slice are multiplied by z
- \blacktriangleright this leaves the action invariant, as for any loop (e.g. plaquette) for every z there is also a z^*

A special case is the Polyakov loop that transforms as

$$P \rightarrow zP$$

and represents the order parameter of the spontaneous breaking of the center symmetry $\langle P \rangle = 0$ in the confined phase and $\langle P \rangle \neq 0$ in the deconfined phase

One can think of integrating out all degrees of freedom except the order parameter itself o effective field theory with a global symmetry given by the center of G

Confinement and center symmetry in pure-gauge theories

In Yang-Mills theories with symmetry gauge group G, the deconfinement transition is related to the breaking of the "center" symmetry

- ▶ it is a global symmetry involving transformations z which are part of the center of G
- on the lattice, all the temporal links on a given slice are multiplied by z
- \blacktriangleright this leaves the action invariant, as for any loop (e.g. plaquette) for every z there is also a z^*

A special case is the Polyakov loop that transforms as

$$\mathcal{P} \rightarrow z\mathcal{P}$$

and represents the order parameter of the spontaneous breaking of the center symmetry

 $\langle P \rangle = 0$ in the confined phase and $\langle P \rangle \neq 0$ in the deconfined phase

One can think of integrating out all degrees of freedom except the order parameter itself ightarrow effective field theory with a global symmetry given by the center of G

Confinement and center symmetry in pure-gauge theories

In Yang-Mills theories with symmetry gauge group G, the deconfinement transition is related to the breaking of the "center" symmetry

- ▶ it is a global symmetry involving transformations z which are part of the center of G
- on the lattice, all the temporal links on a given slice are multiplied by z
- \blacktriangleright this leaves the action invariant, as for any loop (e.g. plaquette) for every z there is also a z^*

A special case is the Polyakov loop that transforms as

$$\mathcal{P} \rightarrow z\mathcal{P}$$

and represents the order parameter of the spontaneous breaking of the center symmetry

 $\langle P \rangle = 0$ in the confined phase and $\langle P \rangle \neq 0$ in the deconfined phase

One can think of integrating out all degrees of freedom except the order parameter itself

 \rightarrow effective field theory with a global symmetry given by the center of G

The Svetitsky-Yaffe conjecture

The argument of [Svetitsky,Yaffe; 1982] is that at $T = T_c$, in the case of a continuous (2nd order) phase transition, there is an equivalence for the critical behaviour of

 \Leftrightarrow

the theory with gauge symmetry group ${\cal G}$ in d+1 spacetime dimensions

a spin model in d dimensions with the center of G as a global symmetry group

Example: universality class in

 $\mathrm{SU}(3)$ in 2+1 dimensions

3-state Potts model in 2 dimensions Ising model in 3 dimensions

Moreover, the phases are "exchanged": the correct mapping is

ot" phase

"ordered" phase

and

"cold" phase

 \Leftrightarrow

'disordered" phase

The Svetitsky-Yaffe conjecture

The argument of [Svetitsky,Yaffe; 1982] is that at $T = T_c$, in the case of a continuous (2nd order) phase transition, there is an equivalence for the critical behaviour of

 \Leftrightarrow

the theory with gauge symmetry group ${\it G}$ in d+1 spacetime dimensions

a spin model in d dimensions with the center of G as a global symmetry group

Example: universality class in

SU(3) in 2+1 dimensions SU(2) in 3+1 dimensions

⇒ 3-state Potts model in 2 dimensions lsing model in 3 dimensions

Moreover, the phases are "exchanged": the correct mapping is

"hot" phase

 \Leftrightarrow

"ordered" phase

and

"cold" phase

 \Leftrightarrow

"disordered" phase

There is a "special" case:

 $\label{eq:memory} \mbox{Mermin-Wagner theorem} \Rightarrow \mbox{no spontaneous symmetry breaking} \Rightarrow \mbox{Kosterlitz-Thouless transition}$ $\mbox{phases are characterized by "topological" order}$

In addition, the low-temperature phase of the XY model

- is scale-invariant
- has a conformal-field-theory description
- can be considered as a line of fixed points

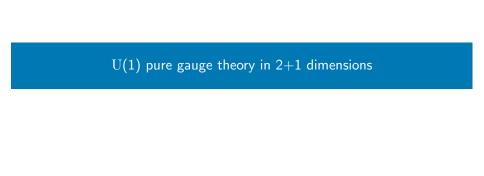
What happens in the corresponding (hot, $T > T_c$) phase in the U(1) theory? Can we extend the conjecture?

Test: conformal-field theory predictions for U(1) observables!

- 1 U(1) pure gauge theory in 2+1 dimensions
 - The compact formulation, on the lattice
 - Observables in the dual formulation

- The XY model
 - The KT transition
 - A conformal description at low-T

lacksquare Numerical results for the hot phase in the $\mathrm{U}(1)$ model



The model

Our theory: $\mathrm{U}(1)$ gauge theory (QED) without matter fields in a three-dimensional spacetime

Action in the continuum:

$$\mathcal{S}_{ ext{cont}} = -rac{1}{4}\int ext{d}^2\,x\int ext{d}\,t\,F_{\mu
u}F^{\mu
u}$$

where $F_{\mu\nu}=\partial_{\mu}A_{
u}-\partial_{
u}A_{\mu}$

Note that in classical electrodynamics in 2 spatial dimensions:

- the Coulombic potential is logarithmic
- the magnetic field is a scalar

Many interesting properties emerge in the compact formulation of this QFT

- ightarrow when the gauge field components A_{μ} are periodic
- → seminal studies by [Polyakov; 1975,1976] in semiclassical calculations

The model

Our theory: $\mathrm{U}(1)$ gauge theory (QED) without matter fields in a three-dimensional spacetime

Action in the continuum:

$$\mathcal{S}_{ ext{cont}} = -rac{1}{4}\int ext{d}^2\,x\int ext{d}\,t\,F_{\mu
u}F^{\mu
u}$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

Note that in classical electrodynamics in 2 spatial dimensions:

- the Coulombic potential is logarithmic
- the magnetic field is a scalar

Many interesting properties emerge in the compact formulation of this QFT

- \rightarrow when the gauge field components A_{μ} are periodic
- → seminal studies by [Polyakov; 1975,1976] in semiclassical calculations

The model on the lattice

The compact formulation is easy to implement when discretizing the spacetime on a lattice Λ

Wilson action

$$S_W = -\frac{1}{ae^2} \sum_{x \in \Lambda} \sum_{1 \le \mu < \nu \le 3} \operatorname{Re} U_{\mu\nu}(x)$$

with the usual plaquette

$$U_{\mu
u}(x)=U_{\mu}(x)U_{
u}(x+\mathsf{a}\hat{\mu})U_{\mu}^{\star}(x+\mathsf{a}\hat{
u})U_{
u}^{\star}(x)$$

and the parallel transporter $U_{\mu}(x)=\exp\left[ieaA_{\mu}\left(x+rac{a}{2}\hat{\mu}
ight)
ight]$ on the links

the invariance under

$$A_{\mu}
ightarrow A_{\mu}+rac{2\pi k}{ea}$$

is guaranteed \rightarrow "compact" $\mathrm{U}(1)$

Field configurations admit topological defects ("magnetic monopoles") [Polyakov; 1975,1976]

- ▶ the ground state can be thought as a plasma of (anti)monopoles
- ightharpoonup this condensation implies confinement of electric charges for all values of $eta=rac{1}{ae^2}$ as a dual Meissner effect
- dual superconductor model [Nambu; 1974],[Mandelstam; 1976],['t Hooft; 1979]

The model on the lattice

The compact formulation is easy to implement when discretizing the spacetime on a lattice Λ

Wilson action

$$S_W = -\frac{1}{ae^2} \sum_{x \in \Lambda} \sum_{1 \le \mu < \nu \le 3} \operatorname{Re} U_{\mu\nu}(x)$$

with the usual plaquette

$$U_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\star}(x+a\hat{\nu})U_{\nu}^{\star}(x)$$

and the parallel transporter $U_{\mu}(x)=\exp\left[ieaA_{\mu}\left(x+rac{a}{2}\hat{\mu}
ight)
ight]$ on the links

▶ the invariance under

$$A_{\mu}
ightarrow A_{\mu} + rac{2\pi k}{ea}$$

is guaranteed \rightarrow "compact" $\mathrm{U}(1)$

Field configurations admit topological defects ("magnetic monopoles") [Polyakov; 1975,1976]

- the ground state can be thought as a plasma of (anti)monopoles
- this condensation implies confinement of electric charges for all values of $\beta=\frac{1}{ae^2}$ as a dual Meissner effect
- dual superconductor model [Nambu; 1974],[Mandelstam; 1976],['t Hooft; 1979]

How is Maxwell theory recovered?

Analytical proof [Göpfert, Mack; 1982] (in the Villain formulation) of the existence of

▶ a non-zero mass gap

$$m_D a \simeq k_1 \sqrt{\beta} \exp(-k_2 \beta)$$
 for $\beta \gg 1$

▶ a finite string tension

$$\sigma a^2 \geq rac{k_3}{\sqrt{eta}} \exp(-k_2 eta) \quad ext{ for } eta \gg 1$$

the model is confining for any value of $\beta = \frac{1}{ae^2}$!

▶ in the continuum limit ($a \rightarrow 0$ means $\beta \rightarrow \infty$ at fixed e^2) the Maxwell theory of non-interacting photons is recovered!

Interesting note: the ratio behaves differently with respect to other confining gauge theories (where it is fixed up to a effects)

$$\frac{m_D^2}{\sigma} \propto \sqrt{\beta^3} \exp(-k_2 \beta)$$

 \to one can also take the continuum limit on a "line of constant physics" (i.e. keeping m_D or σ fixed) ...

How is Maxwell theory recovered?

Analytical proof [Göpfert, Mack; 1982] (in the Villain formulation) of the existence of

▶ a non-zero mass gap

$$m_D a \simeq k_1 \sqrt{\beta} \exp(-k_2 \beta)$$
 for $\beta \gg 1$

▶ a finite string tension

$$\sigma a^2 \geq rac{k_3}{\sqrt{eta}} \exp(-k_2 eta) \quad ext{ for } eta \gg 1$$

the model is confining for any value of $\beta = \frac{1}{ae^2}$!

▶ in the continuum limit ($a \rightarrow 0$ means $\beta \rightarrow \infty$ at fixed e^2) the Maxwell theory of non-interacting photons is recovered!

Interesting note: the ratio behaves differently with respect to other confining gauge theories (where it is fixed up to a effects)

$$\frac{m_D^2}{\sigma} \propto \sqrt{\beta^3} \exp(-k_2 \beta)$$

 \rightarrow one can also take the continuum limit on a "line of constant physics" (i.e. keeping m_D or σ fixed) ...

A phase transition at finite T

Non-zero temperature setup, temporal direction compactified with

$$T = \frac{1}{N_t a}$$

Similarly to SU(N) gauge models, a phase transition takes place at a critical temperature T_c

- ▶ in the low-temperature phase, the theory is linearly confining
- ▶ in the high-temperature region no mass scale (or Debye screening) is present
- " logarithmic confinement" is expected

Interpretation: monopole-antimonopole confining plasma turns into a dipole plasma at T_c [Chernodub et al.; 2001]

Recent results confirm the "XY nature" of the transition [Borisenko et al.; 2015] infinite-order nature of the transition (exponentially-diverging correlation length) makes it difficult to study the theory close to T_c (huge finite-size effects)

A phase transition at finite T

Non-zero temperature setup, temporal direction compactified with

$$T = \frac{1}{N_t a}$$

Similarly to $\mathrm{SU}(N)$ gauge models, a phase transition takes place at a critical temperature T_c

- in the low-temperature phase, the theory is linearly confining
- ▶ in the high-temperature region no mass scale (or Debye screening) is present
- " logarithmic confinement" is expected

Interpretation: monopole-antimonopole confining plasma turns into a dipole plasma at T_c [Chernodub et al.; 2001]

Recent results confirm the "XY nature" of the transition [Borisenko et al.; 2015] infinite-order nature of the transition (exponentially-diverging correlation length) makes it difficult to study the theory close to T_c (huge finite-size effects)

A different formulation

The usual partition function/path integral

$$\mathcal{Z} = \int \prod_{x,\mu} \mathsf{d} \ U_{\mu}(x) \exp[-S_W]$$

can be formulated in terms of a spin model with global $\ensuremath{\mathbb{Z}}$ symmetry

 \rightarrow integer-valued variables s placed on the sites of the dual lattice

$$\mathcal{Z} = \sum_{\{s\}} \prod_{y,\nu} I_{|s(y) - s(y + a\hat{\nu})|}(\beta)$$

- $I_{\alpha} =$ modified Bessel function of 1st kind of order α
- ▶ $s(y) s(y + a\hat{\nu})$ difference of \mathbb{Z} variables at the ends of each bond
- ▶ ∏ taken on bonds of the dual lattice

 \rightarrow expectation values of interesting quantities can be rewritten in terms of ratios of partition functions!

Observables - Static potential

The Polyakov-loop correlation function can be rewritten as

$$\langle \mathcal{P}^{\star}(\textbf{r})\mathcal{P}(\textbf{0})\rangle = \frac{\mathcal{Z}_{N_{t}\times N_{r}}}{\mathcal{Z}}$$

with

$$\mathcal{Z}_{N_{t}\times N_{r}} = \sum_{\{s\}} \prod_{y,\nu} I_{|s(y)-s(y+a\hat{\nu})+n_{\nu}(y)|}(\beta)$$

the variables $n_{\nu}(y)$

- are zero on the oriented bonds of the dual lattice
- but not on the bonds dual to the surface $N_t \times N_r$ bounded by the two Polyakov loops: in that case $n_{\nu}(y) = 1 \rightarrow$ frustration or "defect"

Note that $\langle \mathcal{P}^*(r)\mathcal{P}(0)\rangle$ can be rewritten in order to use error-reduction techniques (snake algorithm [De Forcrand et al.; 2001])

$$\frac{\langle \mathcal{P}^{\star}(r+a)\mathcal{P}(0)\rangle}{\langle \mathcal{P}^{\star}(r)\mathcal{P}(0)\rangle} = \prod_{i=0}^{N_{t}-1} \frac{\mathcal{Z}_{(N_{t}\times N_{r})+i+1}}{\mathcal{Z}_{(N_{t}\times N_{r})+i}} = \prod_{i=0}^{N_{t}-1} \left\langle \frac{I_{|s(x)-s(x+a\hat{\nu})+1|}(\beta)}{I_{|s(x)-s(x+a\hat{\nu})|}(\beta)} \right\rangle_{(N_{t}\times N_{r})+i}$$

Alessandro Nada (DESY)

Observables - Static potential

The Polyakov-loop correlation function can be rewritten as

$$\langle \mathcal{P}^*(r)\mathcal{P}(0)\rangle = \frac{\mathcal{Z}_{N_t \times N_r}}{\mathcal{Z}}$$

with

$$\mathcal{Z}_{N_{t}\times N_{r}} = \sum_{\{s\}} \prod_{y,\nu} I_{|s(y)-s(y+a\hat{\nu})+n_{\nu}(y)|}(\beta)$$

the variables $n_{\nu}(y)$

- are zero on the oriented bonds of the dual lattice
- ▶ but not on the bonds dual to the surface $N_t \times N_r$ bounded by the two Polyakov loops: in that case $n_{\nu}(y) = 1 \rightarrow$ frustration or "defect"

Note that $\langle \mathcal{P}^{\star}(r)\mathcal{P}(0)\rangle$ can be rewritten in order to use error-reduction techniques (snake algorithm [De Forcrand et al.; 2001])

In particular we look at

$$\frac{\langle \mathcal{P}^{\star}(r+a)\mathcal{P}(0)\rangle}{\langle \mathcal{P}^{\star}(r)\mathcal{P}(0)\rangle} = \prod_{i=0}^{N_{t}-1} \frac{\mathcal{Z}_{(N_{t}\times N_{r})+i+1}}{\mathcal{Z}_{(N_{t}\times N_{r})+i}} = \prod_{i=0}^{N_{t}-1} \left\langle \frac{I_{|s(x)-s(x+a\hat{\nu})+1|}(\beta)}{I_{|s(x)-s(x+a\hat{\nu})|}(\beta)} \right\rangle_{(N_{t}\times N_{r})+i}$$

where each factor in the r.h.s. can be computed using hierarchical updates [Caselle et al.; 2003]

Observables - Flux tube profile

Another crucial observable: the profile of the flux tube between a pair of static eletric sources

Connected correlator of the field-strength $E(x_t)$ in a background of two Polyakov lines (sources)

$$W(r, x_t) = \frac{\langle \mathcal{P}^*(r)\mathcal{P}(0)E(x_t)\rangle}{\langle \mathcal{P}^*(r)\mathcal{P}(0)\rangle} - \langle E(x_t)\rangle$$

where $E(x_t)$ is placed at a transverse distance x_t from the temporal plane of the sources

In the dual formulation it becomes simply

$$W(r,x) = \frac{\langle s(x) - s(x + a\hat{\nu}) + n_{\nu}(x) \rangle_{N_{t} \times N_{r}}}{\sqrt{\beta}}$$

- ▶ at T = 0 the profile is exponential [Caselle et al.; 2016]
- in agreement with the dual superconductor model

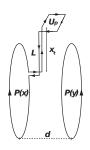
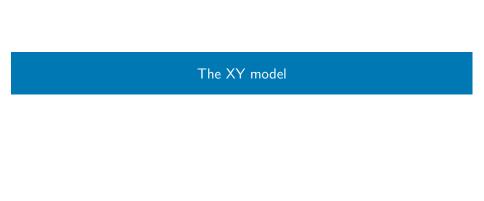


Image from [EPJ Web Conf. 175 (2018) 12006]



The XY model in two dimensions

The well-known Hamiltonian of the XY model is

$$H = -J \sum_{\langle x, y \rangle} \vec{s}(x) \cdot \vec{s}(y) = -J \sum_{\langle x, y \rangle} \cos[\theta(x) - \theta(y)]$$

where $\vec{s}(x)$ are two-component real vectors of unit length and θ is the angle with a respect to a predefined direction

It has an O(2) internal global symmetry and is ferromagnetic for J > 0

- for T > 0 the system is in a disordered phase, for which $\langle \vec{s} \rangle = 0$
 - → Mermin-Wagner theorem

systems with continuous symmetries are always disordered by thermal fluctuations in 2D

- "conventional" long-range order not allowed at low-7
- ▶ however, for $T \rightarrow 0$ a non-conventional "quasi-long-range" order emerges, where the lowest-energy states are spin-waves
- ightharpoonup signal of a phase transition at $T=T_{KT}$

The XY model in two dimensions

The well-known Hamiltonian of the XY model is

$$H = -J \sum_{\langle x,y \rangle} \vec{s}(x) \cdot \vec{s}(y) = -J \sum_{\langle x,y \rangle} \cos[\theta(x) - \theta(y)]$$

where $\vec{s}(x)$ are two-component real vectors of unit length and θ is the angle with a respect to a predefined direction

It has an O(2) internal global symmetry and is ferromagnetic for J > 0

- for T>0 the system is in a disordered phase, for which $\langle \vec{s} \rangle = 0$
 - → Mermin-Wagner theorem

systems with continuous symmetries are always disordered by thermal fluctuations in 2D

- "conventional" long-range order not allowed at low-T
- ▶ however, for $T \rightarrow 0$ a non-conventional "quasi-long-range" order emerges, where the lowest-energy states are spin-waves
- signal of a phase transition at $T = T_{KT}$

One can distinguish two different phases by analyzing the behaviour of the spin-spin correlation function

$$G(r) = \langle \vec{s}(x) \cdot \vec{s}(y) \rangle, \quad \text{with } r = |x - y|$$

▶ in the high-T phase we have

$$G(r) \sim \exp\left(-\frac{r}{\xi}\right)$$

where ξ is a temperature-dependent correlation length that for $T o T_{KT}$

$$rac{\xi}{a} \sim \exp\left(rac{b}{\sqrt{ au}}
ight), \qquad au = rac{T}{T_{KT}} - 1$$

- \rightarrow infinite-order phase transition!
- ▶ while in the low-T phase

$$G(r) \sim \left(\frac{r}{l}\right)^{-\eta}$$

where n depends on T as well

$$\eta(T) = \frac{T}{2\pi I} = \frac{1}{2\pi K}$$
 $\eta(T_{KT}) = 1/4$

One can distinguish two different phases by analyzing the behaviour of the spin-spin correlation function

$$G(r) = \langle \vec{s}(x) \cdot \vec{s}(y) \rangle, \quad \text{with } r = |x - y|$$

▶ in the high-T phase we have

$$G(r) \sim \exp\left(-rac{r}{\xi}
ight)$$

where ξ is a temperature-dependent correlation length that for $T \to T_{KT}$

$$rac{\xi}{\mathsf{a}} \sim \exp\left(rac{b}{\sqrt{ au}}
ight), \qquad au = rac{T}{T_{\mathit{KT}}} - 1$$

- → infinite-order phase transition!
- ▶ while in the low-T phase

$$G(r) \sim \left(\frac{r}{l}\right)^{-\eta}$$

where n depends on T as well

$$\eta(T) = \frac{T}{2\pi I} = \frac{1}{2\pi K}$$
 $\eta(T_{KT}) = 1/4$

One can distinguish two different phases by analyzing the behaviour of the spin-spin correlation function

$$G(r) = \langle \vec{s}(x) \cdot \vec{s}(y) \rangle, \quad \text{with } r = |x - y|$$

▶ in the high-T phase we have

$$G(r)\sim \exp\left(-rac{r}{\xi}
ight)$$

where ξ is a temperature-dependent correlation length that for $T o T_{\mathcal{KT}}$

$$rac{\xi}{\mathsf{a}} \sim \exp\left(rac{b}{\sqrt{ au}}
ight), \qquad au = rac{T}{T_{\mathsf{KT}}} - 1$$

- → infinite-order phase transition!
- ▶ while in the low-T phase

$$G(r) \sim \left(\frac{r}{I}\right)^{-\eta}$$

where η depends on T as well

$$\eta(T) = \frac{T}{2\pi J} = \frac{1}{2\pi K} \qquad \eta(T_{KT}) = 1/4$$

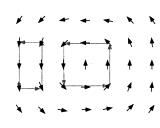
Where does this behaviour come from?

ightarrow "vortex" solutions: when the θ field winds around a point (vortex center) n times

$$\oint \nabla \theta \cdot \mathrm{d}\, I = 2\pi n$$

and to each vortex we associate

energy
$$\sim \pi n^2 J \ln \left(\frac{L}{a}\right)$$



If the entropy goes just like $S\sim \ln\left((L/a)^2
ight)$ then the free energy for an isolated vortex is

$$F_{v} \sim (\pi J - 2T) \ln \left(\frac{L}{a}\right)$$

and so the creation of a free vortex becomes possible when

$$\frac{T_{KT}}{J} = \frac{\pi}{2}$$

more complicated with more than one vortex: the actual value is

$$\frac{T_{KT}}{I} = 0.89294(8)$$

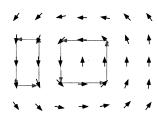
Where does this behaviour come from?

ightarrow "vortex" solutions: when the θ field winds around a point (vortex center) n times

$$\oint \nabla \theta \cdot \mathsf{d}\, I = 2\pi n$$

and to each vortex we associate

energy
$$\sim \pi n^2 J \ln \left(\frac{L}{a}\right)$$



If the entropy goes just like $S \sim \ln\left((L/a)^2\right)$ then the free energy for an isolated vortex is

$$F_{\nu} \sim (\pi J - 2T) \ln \left(\frac{L}{a}\right)$$

and so the creation of a free vortex becomes possible when

$$\frac{T_{KT}}{J} = \frac{\pi}{2}$$

more complicated with more than one vortex: the actual value is

$$\frac{T_{KT}}{I} = 0.89294(8)$$

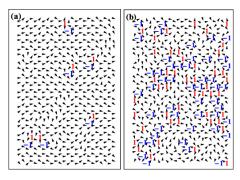


Image from [J Phys Condens Matter 25, 065501 (2013)]

at low temperatures: only vortex-antivortex pairs are energetically possible in the thermodynamic limit at high temperatures: the entropy increase compensates the energy for the creation of an isolated vortex → free vortices proliferate and interact with each other with a logarithmic Coulomb potential

A conformal description for the low-T phase of the XY model

We know that for $T < T_{KT}$

$$G(r) \sim \left(\frac{r}{L}\right)^{-\eta}$$

→ the correlation function is scale-invariant!

for any length x, the system is invariant under global dilatation transformations

$$x \rightarrow \lambda x$$

For classical systems with local interactions: invariance under global dilatations + translations + rotations \Rightarrow conformal invariance

$$x \to \lambda(x)x$$

a simple way of understanding conformal transformations: they leave invariant the relative angle between vectors

- a conformal field theory (CFT) description of the XY model in the low-T phase is possible
- lacktriangleright it is the theory of a free, massless compact bosonic field with central charge c=1
- \triangleright the field is identified with the θ phase

Note that conformal invariance implies the lack of a mass gap or of Debye screening: consistent with hot phase of $\mathrm{U}(1)$

A conformal description for the low-T phase of the XY model

We know that for $T < T_{KT}$

$$G(r) \sim \left(\frac{r}{L}\right)^{-\eta}$$

→ the correlation function is scale-invariant!

for any length x, the system is invariant under global dilatation transformations

$$x \rightarrow \lambda x$$

For classical systems with local interactions: invariance under global dilatations + translations + rotations \Rightarrow conformal invariance

$$x \to \lambda(x)x$$

a simple way of understanding conformal transformations: they leave invariant the relative angle between vectors

- ▶ a conformal field theory (CFT) description of the XY model in the low-T phase is possible
- \triangleright it is the theory of a free, massless compact bosonic field with central charge c=1
- the field is identified with the θ phase

Note that conformal invariance implies the lack of a mass gap or of Debye screening: consistent with hot phase of $\mathrm{U}(1)$

A conformal description for the $\mathrm{U}(1)$ hot phase - $\mathcal P$ correlator

Crucial feature of conformal invariance \rightarrow constraints on correlation functions

We consider quasi-primary fields Q_i that transform under general conformal mapping as

$$Q_i(x) = \left| \frac{\partial x'}{\partial x} \right|^{\Delta_i/D} Q_i(x')$$

 Δ_i = "scaling dimension"

For the two-point function conformal invariance tells us

$$\langle Q_a(x_1)Q_b(x_2)\rangle = rac{\delta_{ab}}{|x_1-x_2|^{2\Delta_a}}$$

For the spin field \vec{s}

$$\langle ec{s}(r) \cdot ec{s}(0)
angle \sim rac{1}{r^{\eta}}$$

We identify the spins \vec{s} with the Polyakov loop \mathcal{P} and we investigate the ratio

$$H(r) = \frac{\langle \mathcal{P}^{\star}(r+a)\mathcal{P}(0)\rangle}{\langle \mathcal{P}^{\star}(r)\mathcal{P}(0)\rangle} = \left(1 + \frac{1}{r/a}\right)^{-r}$$

(where a is the lattice spacing) so that the normalization does not enter the analysis

A conformal description for the $\mathrm{U}(1)$ hot phase - $\mathcal P$ correlator

Crucial feature of conformal invariance \rightarrow constraints on correlation functions

We consider quasi-primary fields Q_i that transform under general conformal mapping as

$$Q_i(x) = \left| \frac{\partial x'}{\partial x} \right|^{\Delta_i/D} Q_i(x')$$

 Δ_i = "scaling dimension"

For the two-point function conformal invariance tells us

$$\langle Q_a(x_1)Q_b(x_2)\rangle = rac{\delta_{ab}}{|x_1 - x_2|^{2\Delta_a}}$$

For the spin field \vec{s}

$$\langle \vec{s}(r) \cdot \vec{s}(0) \rangle \sim \frac{1}{r^{\eta}}$$

We identify the spins \vec{s} with the Polyakov loop \mathcal{P} and we investigate the ratio

$$H(r) = \frac{\langle \mathcal{P}^{*}(r+a)\mathcal{P}(0)\rangle}{\langle \mathcal{P}^{*}(r)\mathcal{P}(0)\rangle} = \left(1 + \frac{1}{r/a}\right)^{-\eta}$$

(where a is the lattice spacing) so that the normalization does not enter the analysis

A conformal description for the $\mathrm{U}(1)$ hot phase - $\mathcal P$ correlator

Crucial feature of conformal invariance \rightarrow constraints on correlation functions

We consider quasi-primary fields Q_i that transform under general conformal mapping as

$$Q_i(x) = \left| \frac{\partial x'}{\partial x} \right|^{\Delta_i/D} Q_i(x')$$

 Δ_i = "scaling dimension"

For the two-point function conformal invariance tells us

$$\langle Q_a(x_1)Q_b(x_2)\rangle = rac{\delta_{ab}}{|x_1 - x_2|^{2\Delta_a}}$$

For the spin field \vec{s}

$$\langle \vec{s}(r) \cdot \vec{s}(0) \rangle \sim \frac{1}{r^{\eta}}$$

We identify the spins \vec{s} with the Polyakov loop \mathcal{P} and we investigate the ratio

$$H(r) = \frac{\langle \mathcal{P}^{\star}(r+a)\mathcal{P}(0)\rangle}{\langle \mathcal{P}^{\star}(r)\mathcal{P}(0)\rangle} = \left(1 + \frac{1}{r/a}\right)^{-\eta}$$

(where a is the lattice spacing) so that the normalization does not enter the analysis

A conformal description for the hot phase - flux tube

For the three point-function conformal invariance tells us that

$$\langle Q_a(x_1)Q_b(x_2)Q_c(x_3)\rangle = \frac{c_{abc}}{x_{12}^{\Delta_a-\Delta_b-\Delta_c}x_{13}^{\Delta_b-\Delta_a-\Delta_c}x_{23}^{\Delta_c-\Delta_a-\Delta_b}}$$

 $c_{abc} = \text{structure constant of the algebra of the fields}$

For the flux-tube profile we have that

$$W(r,x) = \frac{\langle \vec{s}(r)\vec{s}(0)\phi(x)\rangle}{\langle \vec{s}(r)\vec{s}(0)\rangle} - \langle \phi \rangle = \frac{c_{ss\phi}}{(r/4)^{\Delta_{\phi}}} \left(1 + \frac{4x^2}{r^2}\right)^{-\Delta_{\phi}} = C(r) \left(1 + \frac{4x^2}{r^2}\right)^{-\Delta_{\phi}}$$

where

- \blacktriangleright Δ_{ϕ} is the scaling dimension of the operator ϕ that corresponds to the field-strength
- $\phi(x)$ is placed in the perpendicular line that goes through the midpoint between the two charges
- $| \langle \phi \rangle = 0$ due to scale invariance
- any dependence on $2\Delta_s = \eta$ has disappeared

A conformal description for the hot phase - flux tube

For the three point-function conformal invariance tells us that

$$\langle Q_a(x_1)Q_b(x_2)Q_c(x_3)\rangle = \frac{c_{abc}}{x_{12}^{\Delta_a-\Delta_b-\Delta_c}x_{13}^{\Delta_b-\Delta_a-\Delta_c}x_{23}^{\Delta_c-\Delta_a-\Delta_b}}$$

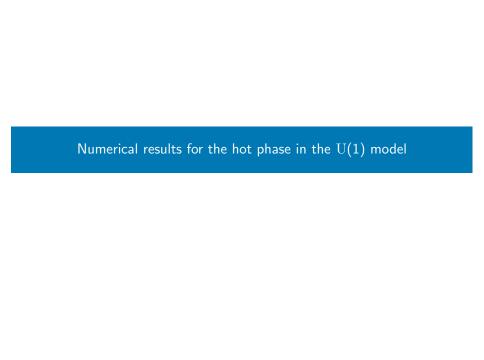
 $c_{abc} = \text{structure constant of the algebra of the fields}$

For the flux-tube profile we have that

$$W(r,x) = \frac{\langle \vec{s}(r)\vec{s}(0)\phi(x)\rangle}{\langle \vec{s}(r)\vec{s}(0)\rangle} - \langle \phi \rangle = \frac{c_{ss\phi}}{(r/4)^{\Delta_{\phi}}} \left(1 + \frac{4x^2}{r^2}\right)^{-\Delta_{\phi}} = C(r) \left(1 + \frac{4x^2}{r^2}\right)^{-\Delta_{\phi}}$$

where

- $lackbox{}\Delta_{\phi}$ is the scaling dimension of the operator ϕ that corresponds to the field-strength
- $oldsymbol{\phi}(x)$ is placed in the perpendicular line that goes through the midpoint between the two charges
- $\langle \phi \rangle = 0$ due to scale invariance
- any dependence on $2\Delta_s = \eta$ has disappeared



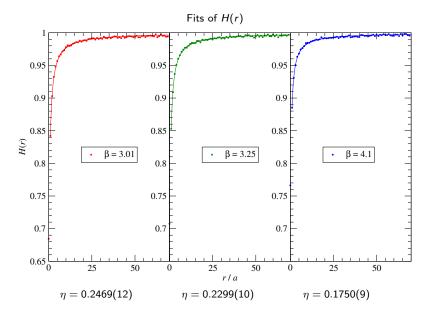
Numerical simulations

GOAL: describe quantities in the high-T region of the $\mathrm{U}(1)$ pure gauge theory using functional forms dictated by conformal invariance

- $ightharpoonup N_s \gg N_t$ to avoid finite-size effects
- ▶ values of β for each N_t chosen considering the β_c from [Borisenko et al.; 2015]
- e.g. $\beta_c = 3.005$ for $N_t = 4 \rightarrow \beta \in [3.01, 4]$

We start with the Polyakov loop correlator ratio

$$H(r) = rac{\langle \mathcal{P}^{\star}(r+a)\mathcal{P}(0)
angle}{\langle \mathcal{P}^{\star}(r)\mathcal{P}(0)
angle} = \left(1 + rac{1}{r/a}
ight)^{-\eta}$$



Behaviour of η

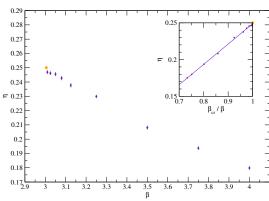
We recall that

$$\eta(T_{KT}) = 1/4$$

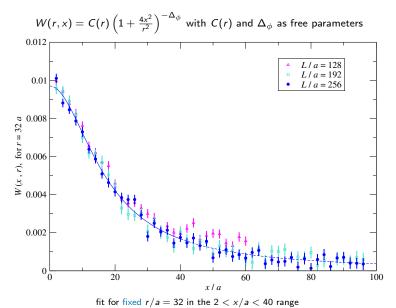
A (very) crude ansatz for $\eta(T)$

$$\eta = \mathsf{a}_1 rac{eta_c}{eta} + \mathsf{a}_0$$

works surprisingly well



Now we look at the profile of the flux-tube ($\beta=4.0$, $N_t=4$)



 $\Delta_{\phi} = 0.933(7)$ coming from weighted average at several r

Field-strength correlator

2-parameter fits of W(x, r) not very precise at large r

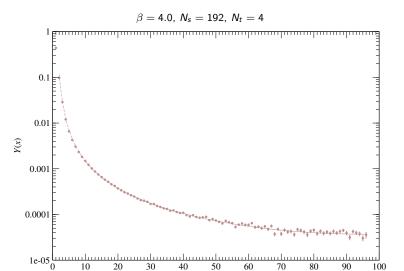
There is a direct way of getting Δ_{ϕ} : looking at the field-strength correlator

$$Y(x) = \langle E(x)E(0) \rangle$$

which we fit with

$$Y(x) = b_0 \cdot \left[\frac{1}{x^{2\Delta_{\phi}}} + \frac{1}{(L-x)^{2\Delta_{\phi}}} \right] + b_1 \cdot \left[\frac{1}{x^4} + \frac{1}{(L-x)^4} \right]$$

- we include contributions from
 - the operator ϕ (scaling dimension Δ_{ϕ})
 - lacktriangle the marginal operator associated to action density (exact scaling dimension $\Delta_m=2$)
- finite spatial size L contribution included



the fit for
$$Y(x)$$
 yields $\Delta_\phi=0.946(5)$

x/a

Fitting W(x) again

- fix $\Delta_\phi = 0.946(5)$ from the field-strength correlator
- **>** study again the flux-tube profile W(x, r) with a one-parameter fit

$$W(r,x) = C(r) \left(1 + \frac{4x^2}{r^2}\right)^{-\Delta_{\phi}}$$

- ightharpoonup extract C(r) for several values of r
- fit it again in Δ_ϕ and $c_{ss\phi}$ knowing that

$$C(r) = \frac{c_{ss\phi}}{(r/4)^{\Delta_{\phi}}}$$

• the fit yields $\Delta_{\phi}=0.948(6)$: self-consistent result!

Conclusions

- "expanding" the Svetitsky-Yaffe conjecture: the whole hot phase of the U(1) pure gauge theory in 3D can be mapped to the low-T phase of the XY model in 2D
- numerical study of the behaviour of
 - the Polyakov loop (static charges) correlator
 - ▶ the flux-tube profile (field strength in a background of static charges)
- they are effectively described by the same functional forms used for the XY model
- directly descend from constraints obtained in conformal field theory!

Moreover

- the critical index η behaves roughly as expected when the moving away from the critical point at $T > T_c$
- lacktriangle the scaling dimension Δ_ϕ can be extracted independently from the flux-tube profile and from the field-strength correlator: good agreement
- ▶ not only: they can be used together to draw a consistent picture over different observables

Conclusions

- "expanding" the Svetitsky-Yaffe conjecture: the whole hot phase of the U(1) pure gauge theory in 3D can be mapped to the low-T phase of the XY model in 2D
- numerical study of the behaviour of
 - the Polyakov loop (static charges) correlator
 - the flux-tube profile (field strength in a background of static charges)
- they are effectively described by the same functional forms used for the XY model
- directly descend from constraints obtained in conformal field theory!

Moreover

- the critical index η behaves roughly as expected when the moving away from the critical point at $T > T_c$
- lacktriangle the scaling dimension Δ_ϕ can be extracted independently from the flux-tube profile and from the field-strength correlator: good agreement
- ▶ not only: they can be used together to draw a consistent picture over different observables

Thank you for the attention!