

Recent combined results of H1 & ZEUS

Jolanta Sztuk-Dambietz

University of Hamburg on behalf of the H1 and ZEUS Collaborations

Outline:

- HERA combination groups
- Recent results
- Plans

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

PRC meeting, DESY, April 28, 2011

HERA Combination Working Groups

Goal: Exploit the full potential of the HERA data

Proton Structure: NC and CC cross sections, QCD analyses including NC, CC, jets, charm data → precise PDFs

Jets: combine measurements of jet cross sections and extract α_s

Heavy Flavors: combine measurements of charm and beauty production as an input for PDFs

Diffraction: extraction of the proton diffractive structure function, better understanding of color neutral exchanges

ElectroWeak: test EW unification in the t-channel, W-production

Exotics: reach the best sensitivity to BSM physics (CI and LQ)

https://www.desy.de/h1zeus/combined_results

HERAPDFs

HERA analyses of NC and CC, jet inclusive cross sections almost completed \rightarrow Many of the H1 and ZEUS measurements are combined:

- \Rightarrow Strong consistency check of the measurements
- ⇒ Experiments "cross-calibrate" each other: reduction of the syst. uncert.
- ⇒ Combined data set ideal input for a DGLAP QCD analysis to extract proton's PDFs

published

 \rightarrow consistent data sets and theory

HERAPDF1.0

- → HERA I NC+CC data after combination
- ➔ full errors for NLO

 \rightarrow 2 central fits for 2 different values of α_s for NNLO

→ HERAPDF1.0 plus low energy and charm data

HERAPDF1.5 – smaller uncertainty at high-x

- → HERA I+ high-Q² HERAII NC+CC data after combination
- ➔ full errors for NLO
- → more flexible parameterization for NLO (*)
- → PDF fit at NNLO with full error (*)

HERAPDF1.6 – included jet data

- → HERA I+ high-Q² HERAII NC+CC data + jet data
- \rightarrow PDF fit + free α_s for NLO (*)
- $\rightarrow \alpha_{s}$ determination from simultaneous fit (*)

(*) New results since last PRC

Reminder: HERAPDF1.5 (NLO) QCD fit based on HERAI+II high-Q²

 $xg, xu_v, xd_v, xS = x\overline{U} + x\overline{D}$ at the scale Q²=10 GeV² H1 and ZEUS Combined PDF Fit July 2010 ¥ HERAPDF1.0 $Q^2 = 10 \text{ GeV}^2$ xg VS 0.8 Working Group HERAPDF1.5 HERAPDF1.0 (HERA I) xS HERAPDF1.5 (prel.) 0.6 (HERA I+II) XU, E Inclusion of the HERA II data reduces 0.4 the uncertainties on PDFs at high x, especially visible on the valence HERA Structure xd, 0.2 0.2 0.4 0.6 0.8 0

HERAPDF1.5 NNLO Analysis based on HERAI+II NC and CC DIS combined data

H1-prel-11-042/ZEUS-prel-11-002

HERAPDF1.5 vs. HERAPDF1.5f (NLO)

HERAPDF1.5 was updated from the standard parameterization to a more flexible parameterization HERAPDF1.5f \rightarrow needed for NNLO & jets fits

Flexible parameterization allows terms for low x gluon and lets u_{val} and d_{val} decouple at low x

Fixed $\alpha_s(Mz)$ at NLO = 0.1176

xf

HERAPDF1.5 (NNLO)

HERAPDF1.5 NNLO and their full uncertianties (exp., model, param.) at the scale Q²=10 GeV²

$$xg, xu_v, xd_v, xS = x\overline{U} + x\overline{D}$$

H1 and ZEUS HERA I+II PDF Fit

More flexible 14 Parameter fit Fixed $\alpha_s(Mz)$ at NNLO = 0.1176

Gluon uncertainties at low-x significantly larger than for HERAPDF1.5 NLO fits (mainly due to sensitivity to Q² cut variation in NNLO fit)

HERA NNLO PDFs available for cross section calculations at NNLO

H1-prel-11-034/ZEUS-prel-11-001

HERAPDF1.6 – data sets

- The same DIS data as HERAPDF1.5: HERA I+II, NC+CC, H1+ZEUS combined data
- four inclusive DIS jet measurements:

HERA I + II high Q² normalized jets (H1) HERA I low Q² jets (H1) 96-97 high Q² jets (ZEUS) 98-00 high Q² jets (ZEUS)

 Correlated errors between jet measurements taken into account

✓ PDF fit with free α_s

Transition to free α_s

No jets, fixed α_s

No jets, free α_s

➤ Large gluon (xg(x)) – α_s correlation → freeing α_s in fits increases gluon uncertainty at low x

Transition to free α_s

No jets, free α_s H1 and ZEUS HERA I+II PDF Fit ¥ March 2011 $O^2 = 10 \text{ GeV}^2$ HERAPDF1.5f (prel.) 0.8 free $\alpha_s(M_{\tau})$ exp. uncert. **HERAPDF Structure Function Working Group** model uncert. xu, parametrization uncert. 0.6 0.4 xd, xg (× 0.05) 0.2 xS (×0.05) 0 10-3 10-2 10-1 10^{-4} 1 х

> Including jets:

- reduced xg(x) – α_s correlation and improve uncertainty.

With jets, free α_s

Determination of α_s simultaneously with PDFs

> Fitted α_s consistent with world average & other HERA measurements

HERA jet data vs. HERAPDF1.6

5< Q² < 100 GeV²

 $Q^2 > 125 GeV^2$

- ZEUS data

 $250 < Q^2 < 500 \text{ GeV}^2$

 $Q^2 > 5000 \text{ GeV}^2$

Nuc. Phys. B765 (2007)

H1 and ZEUS (prel.)

E, [GeV] 10

Consistent description of the jet cross sections

March 2011

Function Working Group

HERAPDF Structure

E_r [GeV]

W and lepton asymmetries at LHC

W, Z production

Compare measured and predicted cross sections (NNLO):
 MERAPDF1.0(α_s=0.1145), ABKM, JR09, MSTW08

HERAPDF based solely on ep data provides a competitive prediction to the LHC data!

HERAPDF1.5 set without jet data - provides very good description of the jet data

Predictions for Higgs production at LHC

Topic of great interest \rightarrow Higgs production cross section gg \rightarrow H Ecms = 7 TeV MH = 120 GeV

HERAPDF based solely on ep data provides a competitive prediction compared to global PDF sets

Plans & Further Strategy

Plans & Further Strategy

Proton Structure Functions:

PDF fit based on full H1 & ZEUS published data including ZEUS NC HERAII e+p high-Q², charm, low energy and jet data sets

Heavy Flavours :

Finalize combination of measurements of charm production - F₂^{cc}

Diffraction :

- Combine ZEUS and H1 inclusive diffractive cross- sections
- \Rightarrow QCD analysis \rightarrow DPDF

Jets:

- Combine H1 and ZEUS DIS jet cross-sections
- \Rightarrow Extract α_s

Summary and Outlook

Combined analyses improve the precision and enhance HERA data visibility

- > New precise PDF determination from HERA:
 - PDF analysis is performed at NLO and NNLO.
 - Fit to DIS inclusive + jet data provides determination of
- α_s with consistent treatment of PDF uncertainties
- HERA continues to provide precise data & HERAPDF and is used for the first LHC measurements
- > Work is in progress in the other combination areas

A number of important results are expected in the next two years

Extra-slides

PDF determination at HERA

QCD Fit settings:

- > NLO (and NNLO) DGLAP evolution equations QCDNUM package (M. Botje)
- RT-VFNS (as for MSTW08)
 Other schemes were investigated as well: RT (optimal), ACOT (full and χ), FFNS
 DDF neuron starting of at the starting scale O²:
- > PDF parameterized at the starting scale Q_0^2 :

$$xg, xu_{val}, xd_{val}, x\overline{U} = x\overline{u}(+x\overline{c}), x\overline{D} = x\overline{d} + x\overline{s}(+x\overline{b})$$

✓ central fit with <u>10 free parameters (standard)</u> - HERAPDF1.0, HERAPDF1.5(NLO)

$$xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$$

 $\mathbf{B}_{gl}, \mathbf{C}_{g}, \mathbf{B}_{u\text{-val}}, \mathbf{C}_{u\text{-val}}, \mathbf{C}_{d\text{-val}}, \mathbf{A}_{anti\text{-}D}, \mathbf{B}_{anti\text{-}D}, \mathbf{C}_{anti\text{-}D}, \mathbf{C}_{anti\text{-}U}, \mathbf{E}_{_u\text{-val}}$

central fit with 14 free parameters (flexible) - HERAPDF1.5 NNLO and jet fits

$$xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2) - A'x^{B'}(1-x)^{25}$$

 \rightarrow allow terms for low x gluon + let u_{val} and d_{val} decouple at low x, by having separate B(u_{val}) and B(d_{val})

QCD fits based on HERAI+II data HERAPDF1.5 (NNLO)

Fixed $\alpha_s(Mz)$ at NNLO = 0.1176

- ➤ HERAPDF1.5 NLO vs NNLO is in much better agreement than for HERAPDF1.0 → use of a more flexible parametrisation for the central fit (10 vs 14 parameters fit)
- HERAPDF1.5 NNLO has harder gluon and softer valence at high x compared to HERAPDF1.0 NNLO fit.

HERAPDF1.5 (NNLO vs NLO)

Fixed $a_s(Mz)$ at NNLO = 0.1176

X

The more flexible 14 parameter fit is used here for the NLO fit as well. See some differences in the pdfs when going from NLO to NNLO with the same parametrization.

Fits performed at NNLO using RT-VFNS; χ^2 9 units higher than for NLO.

HERA: World's Only ep Collider

Presented results:

HERA-I: 1992-2000 L~120 pb⁻¹/exp.

-precision measurements at low/medium-Q²

...and a glimpse of high-Q² potential

HERA-II 2002-2007 L~350 pb⁻¹/exp. -luminosity upgrade → larger statistics for high-Q² -Polarized e+/e- beam → direct EW sensitivity -Low energy data (Ep=450, 575 GeV) → FL 23

Days of running

H1 & ZEUS: Hermetic multi-purpose detectors

Liquid Argon Calorimeter

optimized for precision measurement of the scattered lepton

 $\sigma_{\rm E}/{\rm E} = 11\%/\sqrt{\rm E}$ (electrons) $\sigma_{\rm F}/{\rm E} = 50\%/\sqrt{\rm E}$ (hadrons)

Uranium-scintillator Calorimeter

optimized for precision measurement of the hadronic final state

 $\sigma_{\rm E}/{\rm E} = 18\%/\sqrt{\rm E}$ (electrons)

 $\sigma_{\rm E}/{\rm E} = 35\%/\sqrt{\rm E}$ (hadrons)

Deep Inelastic Scattering Processes

Neutral Current

Charged Current

 $Q^2 = -(k - k')^2$ Q² = -(4-momentum of propagator)² - the virtuality of the exchanged boson the virtuality of the exchanged boson.

 $x = \frac{Q^2}{2P \cdot (k - k')}$ **x** – fractional momentum of proton carried by struck quark **q**

 $y = \frac{P \cdot (k - k')}{P \cdot k}$ y – fractional energy of the incoming lepton transferred to the proton in the proton's rest frame (inelasticity)

Deep Inelastic ep Scattering

NC: Sensitive to gluons, valence quarks and see quarks

Directly sensitive to quark distribution Gluon from scaling violations.

Use 'reduced cross section' to remove kinematic dependence:

$$\bullet \sigma_r = \frac{xQ^2}{2\alpha\pi^2 Y_+} \frac{\mathrm{d}^2 \sigma_{NC}^{\pm}}{\mathrm{d}x \mathrm{d}Q^2} \approx F_2$$

CC: Flavour decomposition

$$\begin{array}{l} \textcircled{\textbf{e-p:}} \quad \frac{\mathrm{d}^2 \sigma_{CC}^-}{\mathrm{d} x \mathrm{d} Q^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right) \begin{matrix} u + c + (1 - y)^2 (\overline{d} + \overline{s}) \end{matrix} \right] \\ \textcircled{\textbf{e+p:}} \quad \frac{\mathrm{d}^2 \sigma_{CC}^+}{\mathrm{d} x \mathrm{d} Q^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right) \boxed{u} + \overline{c} + (1 - y)^2 (d + \overline{s}) \end{matrix}$$

Inclusive cross section combination HERA-I

H1 & ZEUS have combined inclusive DIS cross sections from HERA I data > New average with L=240 pb⁻¹

The Power of Combination (JHEP01 (2010) 109)

Combined are full published HERA-I NC, CC e[±]p cross sections

 Unprecedented precision due to cross calibration of detectors

2% for 3<Q²<500 GeV² 1% for 20< Q²<100 GeV²

Data show good consistency χ2/n_{dof} = 637/656

QCD analysis based on HERA-I data \rightarrow HERAPDF1.0

HERA-I combined NC at high-Q² data

H1 and ZEUS

NC data at high- $Q^2 \rightarrow Z_{\gamma}$ interference **destructive (e+p)** and **constructive (e-p)**

Good agreement between data and NLO QCD fit (HERAPDF1.0)

Including HERA-II high-Q² data → improvement at high-Q² and high-x is expected

Combination of the high-Q² data Extension of the published combination of the HERA I data: <u>Used data:</u> ✓ HERA-I as in JHEP01(2010)109 ✓ HERAII: H1, HERA II (high Q², P=0) ZEUS, HERA II (high Q², P=0) CC e-p NC e-p CC e+p CC e-p NC e-p CC e+p NC e+p

Method of combination:

- HERA-I : same as in JHEP01(2010)109
- HERA-II : three additional procedural errors

$$\chi 2/n_{dof} = 967/1032$$

QCD analysis based on HERA-I + HERA-II high-Q² data HERAPDF1.5

Combination of NC data

HERA-I combined results:

HERA-I+II combined results:

H1 and ZEUS

 \succ Data show strong scaling violations at low x \rightarrow large gluon density

New HERA-II measurements \rightarrow increased precision at high-Q²

F₂ with combined HERA-I+II NC

F₂ (x,Q²) shows strong rise as x->0, the rise increases with increasing Q²
 Data well described by QCD fit from Q²=2 to 30000 GeV²

Combination of NC high-Q² data

NC data at high-Q² \rightarrow Z_Y interference destructive (e+p) & constructive (e-p)

HERA-I combined results vs. HERAPDF1.0

HERA-I+II combined results vs HERAPDF1.0

Including HERA-II high- Q^2 data \rightarrow improved data precision at high- Q^2 and high-x

Combination of NC high-Q² data

NC data at high-Q² \rightarrow Z_Y interference destructive (e+p) & constructive (e-p)

HERA-I combined results vs. HERAPDF1.0

HERA-I+II combined results vs. HERAPDF1.5

Including HERA-II high- Q^2 data \rightarrow improved PDF precision at high- Q^2 and high-x

Combined HERA-I CC data vs. HERAPDF1.0

CC e⁺p/e⁻p allows to disentangle contributions of d and u quarks Probes flavor structure of the proton

Combined HERAI+II CC data vs. HERAPDF1.0

CC e⁺p/e⁻p allows to disentangle contributions of d and u quarks
Probes flavor structure of the proton

Including HERA-II high-Q² data → increased data precision

Combined HERAI+II CC data vs. HERAPDF1.5

CC e⁺p/e⁻p allows to disentangle contributions of d and u quarks
Probes flavor structure of the proton

by factor $(1-y)^2$

Including HERA-II high-Q² data → increased PDF precision

Kinematic plane

QCD evolution extrapolates HERA measured PDFs to LHC

PDF's obtained in low x regime at HERA are applicable to LHC

HERA data cover LHC central rapidity range for M > 100 GeV

F₂ with combined e+p HERA-I NC

Low/medium Q² bins (2-150 GeV²)

High Q² bins(150-30000 GeV²)

F₂ (x,Q²) shows strong rise as x→0, the rise increases with increasing Q²
 Data well described by QCD fit from Q²=2 to 30000 GeV²

HERA-I combined NC

>Data show strong scaling violations at low $x \rightarrow$ large gluon density

NC data at high-Q2: $Z\gamma$ interference destructive (e+p) and constructive (e-p)

H1 and ZEUS

Good agreement between data and NLO QCD fit!

HERA-I combined CC data

CC e⁺p/e⁻p allows to disentangle contributions of d and u quarks
Probes flavor structure of the proton

HERA-I QCD fit - HERAPDF1.0

Fit uses combined H1&ZEUS NC, CC data only		Scheme		TRVFNS		
		Evolution	QC	QCDNUM17.02		7.02
DGLAP equations at NLO in MSbar scheme		Order		NLO		
		Q_0^2		$1.9 \ { m GeV^2}$		
Parameterize parton distribution function	ons	$f_s = s/D$		0.3	1	
at starting scale and evolve with Q ^{2.} Thorne-Roberts Variable Flavour Number		Renorm. sca	le	Q^2		
		Factor. scale)	Q^2		
		Q^2_{min}		$3.5 \ { m GeV^2}$		
Scheme (as for MSTW08):		$\alpha_S(M_Z)$		0.1176		
→takes the quark masses into account		M_c		$1.4 \mathrm{GeV}$		
		M_b		$4.75~{\rm GeV}$		
	PDF	A	В	C	D	E
PDFs at the starting scale parameterised as:	xg	sum rule	FIT	FIT	-	-
	xu_{val}	sum rule	FIT	FIT	-	FIT

 $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$ where $xf = xu_{val}$, xd_{val} , xg, xUbar, xDbar

PDF	A	В	С	D	Ε
xg	sum rule	FIT	FIT	-	-
xu_{val}	sum rule	FIT	FIT	-	FIT
xd_{val}	sum rule	$=B_{u_{val}}$	FIT	-	-
$x\overline{U}$	$\lim_{x\to 0} \overline{u}/\overline{d} \to 1$	FIT	FIT	-	-
$x\overline{D}$	FIT	$=B_{\overline{U}}$	FIT	-	-

Results: 10 parameters for central fit $\chi 2/n_{dof} = 574/582$

HERA-I QCD fit - uncertainties

Experimental uncertainty:

Take into account experimental errors including, correlations bin to bin and between experiments/datasets => $\Delta \chi^2$ =1

>Model uncertainty includes theoretical errors:

Variation	Standard Value	Lower Limit	Upper Limit
f_s	0.31	0.23	0.38
m_c [GeV]	1.4	$1.35^{(a)}$	1.65
m_b [GeV]	4.75	4.3	5.0
Q_{min}^2 [GeV ²]	3.5	2.5	5.0
Q_0^2 [GeV ²]	1.9	$1.5^{(b)}$	$2.5^{(c,d)}$

≻Parameterisation uncertainty:

Vary parameterisation of PDFs at starting scale by adding in extra parameters in the fit

Parametrizations

For all pdf's: $xf(x,Q_0) = A \cdot x^B \cdot (1-x)^C \cdot (1 + \epsilon \sqrt{x} + Dx + Ex^2)$

There is a pdf for glue, u_{valence}, d_{valence}, anti-U, anti-D (includes strange with fixed fraction)

Constraints for standard fit for HERAPDF:

- momentum sum rule, quark sum rules
- E=0 except for $u_{valence}$; D=0; ϵ =0
- one B for valence, one B for sea quarks
- require anti-u=anti-d as x->0 (fixes A for anti-d)
- for the sea, S=2×(anti-U+anti-D)

Only 10 free parameters:

B_{glue}, C_{glue}, B_{u-valence}, C_{u-valence}, C_{d-valence}, A_{anti-D}, B_{anti-D}, C_{anti-D}, C_{anti-U}, E_{u-valence}

Extended (14 parameter) fit:

allow terms for low x gluon (a la MSTW) + let $u_{valence}$ and $d_{valence}$ decouple at low x, by having separate B($u_{valence}$) and B($d_{valence}$)

HERAPDF1.0 at Q²=10GeV²

High precision for sea and gluon at low x
 Reasonable precision for valence at high x
 Gluon error relatively large at high x

HERAPDF1.0

Distributions for valence quarks, see and gluons

Gluon and see distributions are scaled by factor 20

Small errors on gluon & see distributions at LHC energies → enables precise predictions for LHC cross sections

HERAPDF1.0: Crosscheck with TeVatron data

HERAPDF1.0 describes TeVatron data up to the high-Et jet production!

Ratio of D0 high Et jet cross-section to HERAPDF1.0 prediction:

- Total PDF uncertainty blue
- PDF experimental red
- Systematic experimental error yellow₅₁

HERAPDF1.0: Impact on LHC

Predictions for the W/Z production cross sections using HERAPDF1.0 (including experimental, model and parameterisation uncertainties) W and Z rapidity distributions

HERA combined NC e+p at very low Q2

Data shown in very low Q² region (0.05-1.5 GeV2)

>pQCD not expected to work in the very low Q² region.

PDF from HERAPDF1.0 at low Q2

PDF from HERAPDF1.0

Distributions for valence quarks, see and gluons (logarithmic scale)

Gluon density vs different α_s values

HERAPDF1.0 vs. HERAPDF1.0 ACOT scheme

Distributions for valence quarks, see and gluons

CDF jet data with HERAPDF1.0

HERAPDF1.0 predictions for W/Z production at LHC

These are at 14TeV but 10TeV and 7TeV exist

These show the full uncertainty bands of HERAPDf1.0 and compare to CTEQ66 and MSTW08 central values

Procedural Uncertainties

1. Additive vs Multiplicative nature of the error sources

Only normalizations uncertainties are taken as multiplicative (=> Typically below 0.5%, a few % at high-Q2) A general study of the possible correlated systematic uncertainties between H1 and ZEUS has been performed:

- Identified 12 possible uncertainties of common origin
- compared 212 averages taking all pairs as corr/uncor in turn Mostly negligible except for:

2. Correlated syst. uncert. for the photoproduction background

(Typically below 0.5%, but larger at high-y) 3. <u>Correlated syst. uncert. for the hadronic energy scale</u>

(Typically below 0.5%, significant only at low-y)

Procedural Uncertainties for HERA-II high-Q²

Three additional procedural errors

- Correlate across all data files
 δave,had hadronic energy scale
 δave,gp background due to photoproduction
- δave,rel change <u>relative to absolute errors</u>
 (Only lumistays relative)