Report from

Contalbrigo Marco INFN Ferrara

DESY PRC 71 – Open session April 28, 2011 DESY Hamburg

INCLUSIVE MEASUREMENTS

DIS cross-section and F₂

DESY PRC 71, 28th April 2011, Hamburg

Contalbrigo M.

SEMI-INCLUSIVE & EXCLUSIVE

Quantum phase-space distributions of quarks

 $W_{p}^{q}(x,k_{T},r)$ "Mother" Wigner distributions

SEMI-INCLUSIVE MEASUREMENTS

Leading Twist TMDs

Different from zero ! PRL 94 (2005) 012002 PRL 103 (2009) 152002

HERMES has access to all of them through specific azimuthal modulations (ϕ , ϕ_s) of the cross-section thanks to the polarized beam and target

Leading Twist TMDs

Charged-hadron multiplicities

 $\sigma_{UU} \propto f_1 \otimes D_1$

LO interpretation:

$$M_{N}^{h} = \frac{1}{N_{N}^{DIS}(Q^{2})} \frac{dN_{N}^{h}(z,Q^{2})}{dz} = \frac{\sum_{q} e_{q}^{2} \int dx \ f_{1q}(x,Q^{2}) D_{1q}^{h}(z,Q^{2})}{\sum_{q} e_{q}^{2} \int dx \ f_{1q}(x,Q^{2})}$$

Disagreement for negative hadrons SIDIS data important to constrain fragmentation into kaons Proton-deuteron asymmetry:

$$A_{d-p}^{h} \equiv \frac{M_{d}^{h} - M_{p}^{h}}{M_{d}^{h} + M_{p}^{h}}$$

Reflects different flavor content Correlated systematics cancels

Charged-hadron multiplicities

- Disentanglement of z and $P_{h\perp}$
- Access to the transverse intrinsic quark p_T and fragmentation k_T

 $\sigma_{UU} \propto f_1 \otimes D_1$

A₁ double-spin asymmetry

Refined studies extending the standard approach published *in Phys. Rev. Lett.* 92 (2004) 012005

 $\sigma_{LL} \propto g_{1L} \otimes D_1$

 $A_1(\mathbf{X}, P_{h\perp})$

2D - dependence

Sensitive to differences in transverse momentum dependence of g_1 and f_1

No significant $P_{h\perp}$ dependence observed

Contalbrigo M.

DESY PRC 71, 28th April 2011, Hamburg

A₁ double-spin asymmetry

Refined studies extending the standard approach published *in Phys. Rev. Lett.* 92 (2004) 012005

 $\sigma_{LL} \propto g_{1L} \otimes D_1$

DESY PRC 71, 28th April 2011, Hamburg

Leading Twist TMDs

New TMD measurement

 $\sigma_{LT}^{\cos(\phi-\phi_S)} \propto g_{1T}^{\perp} \otimes D_1$

Worm-gear function: longitudinally polarized quarks in a transversely polarized nucleon

Related to parton orbital motion: requires interference between wave functions with OAM difference by 1 unit

DESY PRC 71, 28th April 2011, Hamburg

Anti-Lambda longitudinal spin trasfer

EXCLUSIVE MEASUREMENTS

Generalized parton distributions

Encompass parton distributions and form factors

longitudinal momentum and transverse spatial position correlated information

Access OAM $L_q = J_q^{-1/2} \Delta \Sigma$ via Ji sum rule

$$J_{q} = \lim_{t \to 0} \int_{-1}^{1} dx \, x \Big[H_{q}(x,\xi,t) + E_{q}(x,\xi,t) \Big]$$

- Sensitivity of different final states to different GPDs
- For spin-1/2 target 4 chiral-even
 leading-twist quark GPDs: H,E,H,E
- H, \widetilde{H} conserve nucleon helicity, E, \widetilde{E} involve nucleon helicity flip
- DVCS $(\gamma) \rightarrow H, E, \widetilde{H}, \widetilde{E}$
- Vector mesons $(\rho, \omega, \phi) \rightarrow H, E$
- Pseudoscalar mesons $(\pi, \eta) \rightarrow \widetilde{H}, \widetilde{E}$

Hard Exclusive ρ^0 Meson Production

Hard Exclusive Meson Production

Deeply Virtual Compton scattering

Theoretically cleanest way to access GPDs

@ HERMES:

Large BH amplitude enhances DVCS signal via interference

Complete set of beam helicity, beam charge, target polarization asymmetries

DVCS A_{LT} Azimuthal Asymmetry

Deeply virtual Compton scattering

Theoretically cleanest way to access GPDs

@ HERMES:

Large BH amplitude enhances DVCS signal via interference

Complete set of beam helicity, beam charge, target polarization asymmetries

Recoil detector to tag exclusivity

1T SC Solenoid

Photon Detector

Scintillating Fiber Tracker

Silicon Strip Detector

Unpolarized H and D targets

The recoil detector

Pure elastic DVCS

Within the present level of precision, the signal is stable with respect background subtraction

Indication that the leading amplitude for pure elastic process (background < 0.1%) is slightly larger in magnitude than the one for not-resolved elastic+associated processes

Recoil vs Traditional DVCS

DVCS analysis based on Recoil and/or Forward detector spans slightly different phase space With recoil information (overconstrained kinematics) the systematics is better under control Extraction of asymmetry amplitudes for associated processes is a subject of ongoing dedicated analysis

- ✤ 2011 started with:
 - 6 new preliminary results
 - 1 published, 2 submitted papers
 - 8 papers in circulation of the collaboration
 - 7 papers in advanced drafting stage
 - 9 talks at DIS (7 in spin session)
- New preliminary results cover all areas of physics studied at HERMES
- First released physics result based on Recoil Detector:
 DVCS background-free beam helicity amplitude

 Collaboration still actively working to accomplish the broad physics program

New TMD measurement

 $\sigma_{LT}^{\cos(\phi-\phi_S)} \propto g_{1T}^{\perp} \otimes D_1$

Worm-gear function: longitudinally polarized quarks in a transversely polarized nucleon

Related to parton orbital motion: requires interference between wave functions with OAM difference by 1 unit

DESY PRC 71, 28th April 2011, Hamburg

Open issues: test field for QCD

Single spin asymmetries: BIG (?!) although suppressed as m_q/Q^2 in pQCD

Cahn effect

Hadronic Structure Physics, 14th April 2010, Glasgow University

Boer-Mulders effect

M. Contalbrigo

DIS 2011, 13th April 2011, Newport News

The experiment

Unpolarized cross-section

The kaon signal

Spares

$$\sum_{a} \int dx \, d^2 \mathbf{k}_{\perp} \, \mathbf{k}_{\perp} \, f_{a/p^{\uparrow}}(x, \mathbf{k}_{\perp}) \equiv \sum_{a} \langle \mathbf{k}_{\perp}^a \rangle = 0$$

M. Burkardt, PR D69, 091501 (2004)

Burkardt sum rule almost saturated by **u** and **d** quarks alone; little residual contribution from gluons

 $-10 \le \langle k_{\perp}^g \rangle \le 48 \; (\mathrm{MeV}/c)$

Spares

Asymmetries and moments

Collins moment

[angle and moments definitions according to Trento conventions]

$$A_{\mathrm{UT}}^{\mathrm{h}}(\phi,\phi_{\mathrm{S}}) = \frac{1}{|S_{\mathrm{T}}|} \frac{N_{\mathrm{h}}^{\uparrow}(\phi,\phi_{\mathrm{S}}) - N_{\mathrm{h}}^{\downarrow}(\phi,\phi_{\mathrm{S}})}{N_{\mathrm{h}}^{\uparrow}(\phi,\phi_{\mathrm{S}}) + N_{\mathrm{h}}^{\downarrow}(\phi,\phi_{\mathrm{S}})} =$$

$$\propto \dots \sin(\phi + \phi_S) \cdot \frac{\sum_q e_q^2 \operatorname{I} \left[\dots h_1^q(x, \vec{p}_T^2) \cdot H_1^{\perp q}(z, \vec{k}_T^2) \right]}{\sum_q e_q^2 f_1(x) \cdot D_1^q(z)}$$