

Status of the LHC and of ATLAS at DESY.

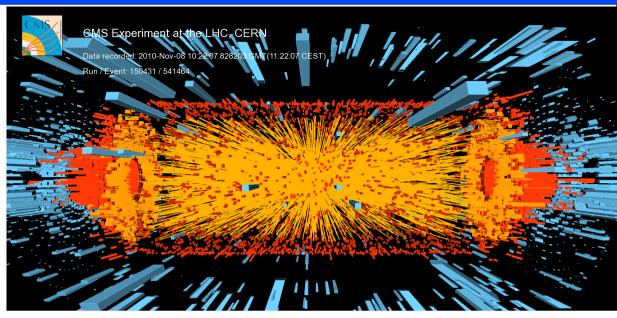
Elin Bergeaas Kuutmann on behalf of the DESY ATLAS group

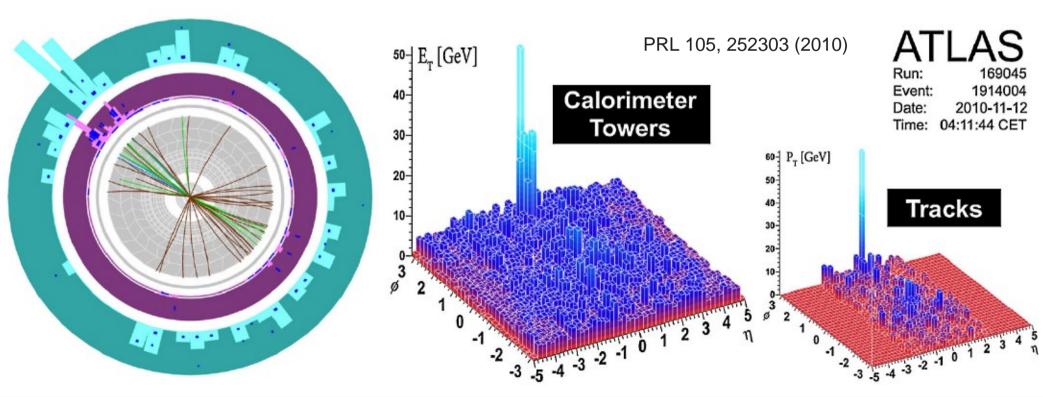
Outline Current LHC status Status of ATLAS DESY ATLAS activities:

- Hardware and tools
- Measurements of the SM
- Search for new physics
- Detector upgrade

LHC status & 2011/12 plans

http://lpcc.web.cern.ch/LPCC, Chamonix workshop 24-28 Jan 2011


- 2010 results
 - ~48 pb⁻¹ of pp collisions delivered.
 - Heavy ion (Pb-Pb) collisions
- Run plans for 2011
 - pp collisions (3.5 TeV per beam) resumed on 13 March.
 - Will run pp collisions until mid-November 2011, with short reoccurring technical stops.
 - HI collisions for about a month.
 - Technical stop and Christmas shut-down.
 - 1 fb⁻¹ of integrated (pp) luminosity foreseen for 2011 (up to 3 fb⁻¹ possible). Target for summer conferences: 500 pb⁻¹.
- LHC will run at (at least) 3.5+3.5 TeV in 2012.


71st DESY PRC - 28 April 2011

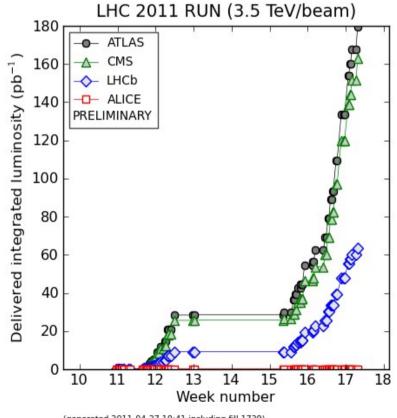
The heavy ion collisions 2010

- $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- 9.69 μb⁻¹ delivered.
- Led to the observation of a centrality-dependent dijet asymmetry in lead-lead collisions.

LHC status in numbers

- \sim 48 pb⁻¹ delivered in 2010.
- \sim 170 pb⁻¹ recorded so far in 2011. Twice the lumi of 2010 delivered during Easter!

On April 22, LHC set the world record in instantaneous


luminosity at hadron colliders:

 $4.67 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$.

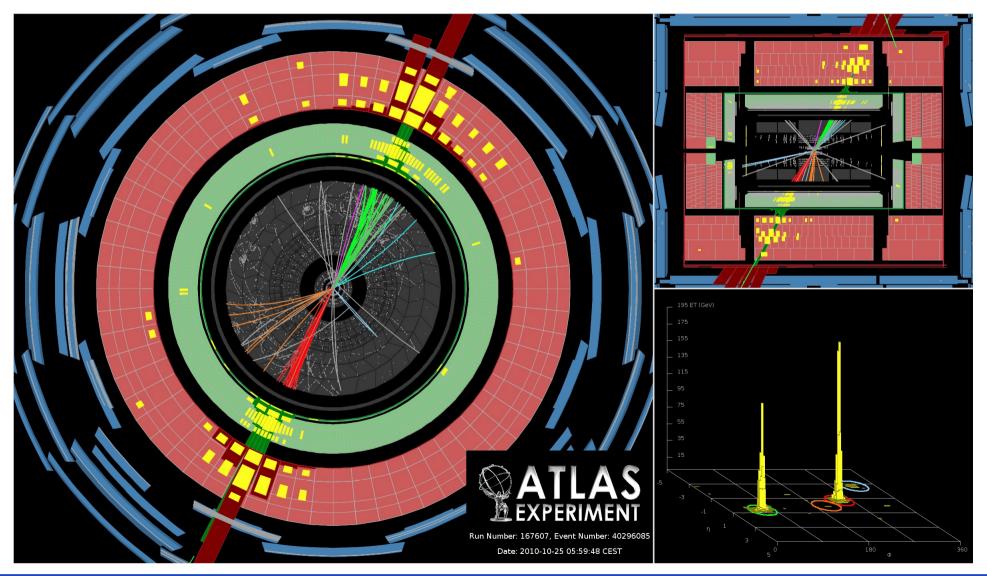
(Broken again on April 26:

 $5.20 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$).

- Maximum Colliding Bunches: 425
- Maximum Peak Events per Bunch Crossing: 14.01

(generated 2011-04-27 10:41 including fill 1739)

Status of ATLAS


Data-taking efficiency >97% for all systems

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.2%
SCT Silicon Strips	6.3 M	99.2%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.9%
Tile calorimeter	9800	98.8%
Hadronic endcap LAr calorimeter	5600	99.8%
Forward LAr calorimeter	3500	99.9%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trigger	370 k	99.5%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.8%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Chambers	370 k	97.0%
TGC Endcap Muon Chambers	320 k	99.1%

- Using the 2010 data set, a very large range of physics has been investigated: SM: soft QCD, jet physics, c, b, t, g, γ, W, Z, e, μ, τ. Searches for H, SUSY, Z', W', q*, ...
- 67 conference notes, 33 physics publications and 11 performance papers have been published using 2010 ATLAS data.

ATLAS at the Terascale

dijet mass = 3.1 TeV $p_T^{\text{jet1,2}} = 1.3 \text{ TeV}$

ATLAS at DESY – people

- 9 permanent positions of which one starts May 1
- Two tenure track in Zeuthen (starting May 1 and June 1)
- 3 YIGs.

 (U. Husemann will leave for a professorship July 1;
 K. Tackmann started April 1).
- 16 postdocs
- 19 PhD students
- 10 Diploma/master students

Key people in ATLAS

- Publication committee chair and EB member (K. Mönig)
- Top reconstruction convener (U. Husemann)
- Trigger coordinator
 (D. Strom guest from Oregon)
- Module convener for Phase 2 (I.M. Gregor)
- Egamma Signature Group Coordinator (T. Kono)
- MC Tuning Forum Convenor (J. Katzy)
- Top MC Contact (L. Mijovic)
- MC Software Manager (J. Kotanski)
- ATLAS-D SM convener (T. Kuhl)
 ATLAS-D top convener
 (U. Husemann)
- Coordination of German LHC communication (T. Naumann)

DESY ATLAS activities

Hardware and tools

- ALFA luminosity measurement
- Computing: ATLAS software infrastructure, CutFlowService, DDM operations, TAGs for physics analysis, NAF support
- Trigger Menus, Configuration, egamma HLT selection, DQ monitoring
- ID material mapping with photon conversions
- Calibration work for the LAr energy scale
- Radiation-damage effects of SCT in the SCT digitization model
- Pixel and Silicon strips operation

Upgrade

Hardware and simulation

Physics analysis

- MC tuning
- Multijet cross section
- $W \rightarrow \tau V$
- $Z \rightarrow \tau\tau$, $Z \rightarrow ee$, $Z p_T$; combination of e- μ channels
- inclusive photon cross section
- ttbar cross section + QCD background, e and μ SFs
- $H \rightarrow \gamma \gamma$
- SUSY analyses: di-lepton, 0-lepton, di-photon, di-τ.
- Fittino: interpreting signals of new physics
- jet substructure for boosted tops
- ttbar resonances

Recent ATLAS notes with significant DESY contribution

Diagnostic Systems and Resource Utilisation of the ATLAS High Level Trigger, ATL-DAQ-PROC-2010-047.

Diagnostic and Monitoring Systems of the ATLAS High Level Trigger, ATL-DAQ-PROC-2010-006

Observation of Z->tau h tau | Decays with the ATLAS detector, ATLAS-CONF-2011-010

Measurement of the top quark-pair cross-section with ATLAS in pp collisions at sqrt(s) = 7 TeV in the single-lepton channel using b-tagging, ATLAS-CONF-2011-035

A combined measurement of the top quark pair production cross-section using dilepton and single-lepton final states. ATLAS-CONF-2011-040

Determination of the Top-Quark Mass from the ttbar Cross Section Measurement in pp Collisions at sqrt(s)=7 TeV with the ATLAS detector, ATLAS-CONF-2011-054

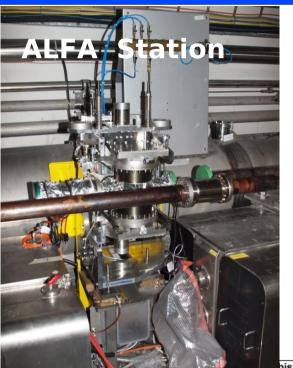
Measurement of multi-jet cross-sections in proton-proton collisions at 7 TeV center-of-mass energy, ATLAS-CONF-2011-043

Measurement of the inclusive isolated prompt photon cross section in pp collisions at sqrts=7 TeV with the ATLAS detector using 35 pb⁻¹, ATLAS-CONF-2011-058

New ATLAS event generator tunes to 2010 data, ATL-PHYS-PUB-2011-008

Measurement of the backgrounds to the $H\rightarrow\gamma\gamma$ search and reappraisal of its sensitivity with 37 pb⁻¹ of data recorded by the ATLAS detector, ATLAS-CONF-2011-004

Search for the Higgs boson in the diphoton final state with 38 pb⁻¹ of data recorded by the ATLAS detector in proton-proton collisions at \sqrt{s} =7 TeV, ATLAS-CONF-2011-025


Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in $sqrt\{s\} = 7$ TeV proton-proton collisions with the ATLAS detector, arXiv:1103.6208 (submitted to EPJ C).

Other DESY (contribution) publications:

Boosted objects: a probe of beyond the Standard Model physics, arXiv:1012.5412 (accepted by EPJ C)

What if the LHC does not find supersymmetry in the sqrt(s)=7 TeV run? arXiv:1102.4693 (submitted to PRL)

HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, arXiv:1102.1898 (submitted to CompPhysComm)

ALFA Status and Plans 2011

Commissioning: completed

- mechanics and electronics fully installed.
- survey of movable detectors finished.
- readout tested and functioning by pulsed LEDs.
- slow control integrated in ATLAS DCS.
- TDAQ with latest version presently standalone.
- implementation in ATLAS central trigger processor ongoing.
- interlocks test for position limits and beam modes finished.

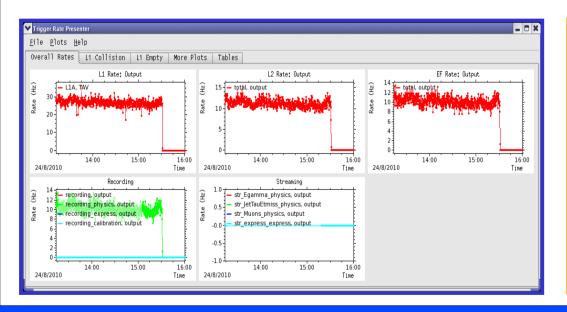
Commissioning: next weeks

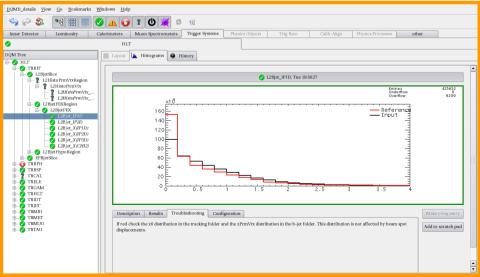
- perform a scraping run for beam based alignment
- integrate fully into ATLAS TDAQ
- implement ALFA triggers in ATLAS menu

Plans for data taking

- move detectors out of garage position in a distance of
- ~ 10mm to the beam for halo particles
- run with ATLAS latency adjusted for final proof all systems
- physics run with beta = 90m optics and detectors as close as possible to the beam

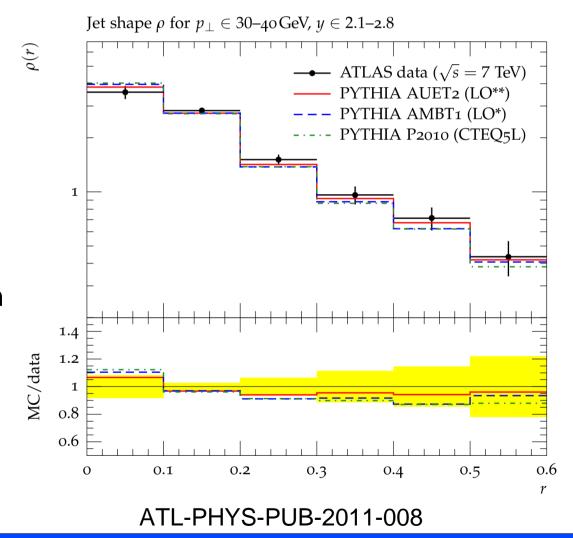
Allows measurement of the total cross section using external luminosity. Rel error ~5%.

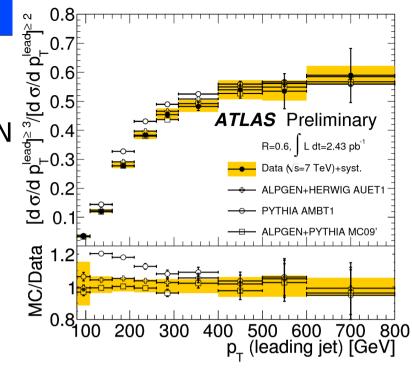


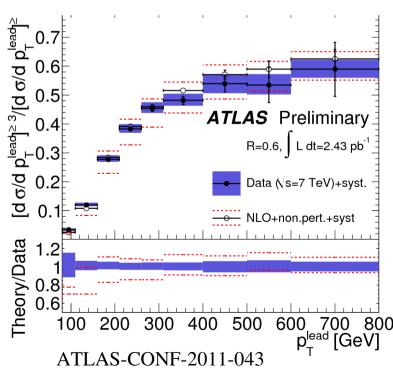

more than 1 tracks generates ghosts

Trigger Monitoring

common project DESY/Humboldt

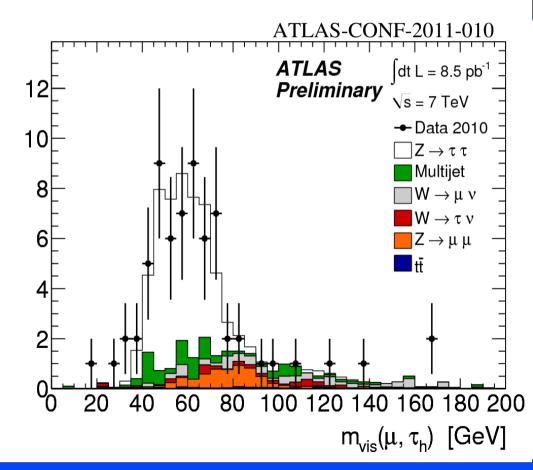

- Well established resources:
 - Trigger Rate Presenter TRP. Main diagnostic tool in ATLAS control room.
 - Trigger Data Quality Monitoring. Automatic checks (online and offline) delivery of DQ-flags.
 - Online Histogram Presenter OHP.
- in stable and smooth running
- fully integrated in standard TDAQ
- 2 published conference contributions in 2011 (ATL-DAQ-PROC-2010-047, ATL-DAQ-PROC-2010-006)


MC tuning


- ATLAS tuning effort of Pythia6 and Herwig/Jimmy to further improve description of ATLAS 2010 data.
- Tunes are performed to LEP, Tevatron and LHC data using the Professor and Rivet tools. Significant amount of MC production run on NAF.
- Pythia6 tune involving tuning the shower model to hadron collider data for the first time in ATLAS in order to describe the jet measurements (DESY contribution).
- Resulting tunes give good description of ATLAS data.

Multijet cross section

- Measuring the differential cross section of N jet events (N≥2) as a function of p_T lead,
 p_T lead+second</sub>, H_T
- Multi-jet triggers.
- Event selection: $p_T > 60 \text{GeV} (p_T^{\text{lead}} > 80 \text{GeV}),$ |y| < 2.8. Standard jet quality selection.
- Unfolded to the particle level (bin-by-bin, ALPGEN).
- Comparisons with full simulation MC and NLO calculations (NLOjet++ by Z. Nagy, Analysis Centre).
- Cross section ratio, sensitive to α_s and MC tuning. $R_{32} = \frac{\mathrm{d}\,\sigma^{N\geqslant3}/\mathrm{d}\,p_{\mathrm{T}}}{\mathrm{d}\,\sigma^{N\geqslant2}/\mathrm{d}\,p_{\mathrm{T}}}$
- The first part of the 2010 data set used.
 After this, the triggers were prescaled and the pile-up increasing.



Observation of $Z \rightarrow \tau \tau$

Events / 5 GeV

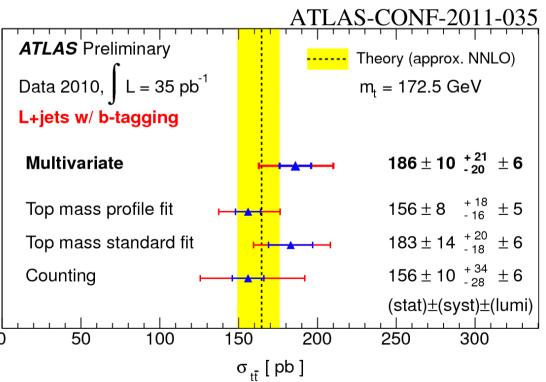
- Proof that ATLAS can measure τ . Important background to many BSM searches (SUSY etc).
- One τ decays leptonically, one hadronically.
- Event signature: $1 e/\mu$, E_T^{miss} , 1 hadronic τ . Single lepton trigger used. Provides unbiased τ_h sample.
- Multijet suppression: lepton isolation, τ identification
- W suppression: dilepton veto, $\Delta\phi(l/\tau_{\rm h}-E_{\rm T}^{\rm miss})$ cut, $35 < m_{\rm vis} < 75~{\rm GeV},$ 1 or 3 tracks to the tau-jet, $q_{\rm \tau h}=\pm 1.$ Opposite charges: l^{\pm} , τ^{\mp}

- Multijets and W bkg modelled with data-driven methods.
- Data agrees well with SM prediction.

Top quark cross section

- Lepton+jets channel: single lepton trigger.
- Objects selected: 1 electron or muon, trigger matched Jets, $p_T > 20$ GeV. $E_T^{\text{miss}} > 35$ (20) GeV in ele (muo) channel.
- Combination of 6 channels.
 Continuous b-tagging.
- Selection through a multivariate likelihood discriminant using 4 variables: pseudorapidity of the lepton, aplanarity, $H_{T,3p}$, average of the two lowest light-jet probabilities DESY/Göttingen development: best ATLAS measurement!
- Profile likelihood fit constrain systematics from data.
- This result basis for combination with the dilepton channel, and the top mass measurement.

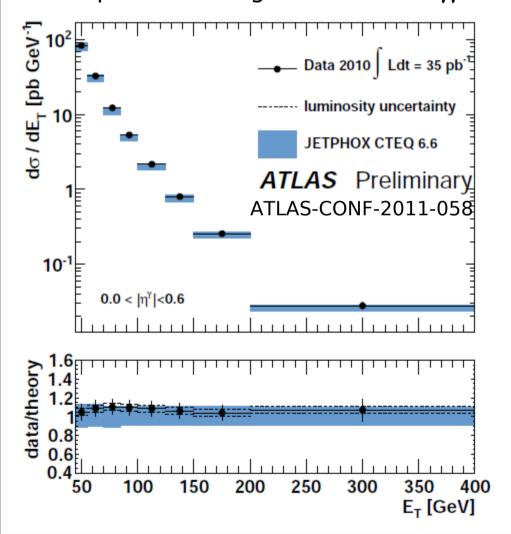
Cross section value ($M_t = 172.5$


GeV):

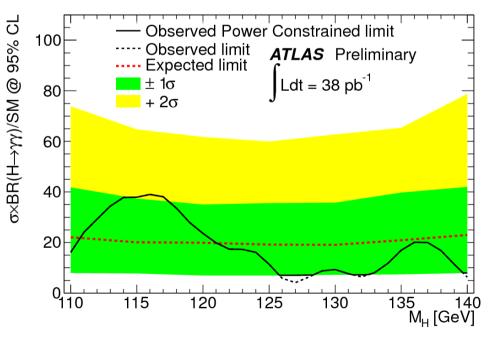
$$\sigma_{t\bar{t}} = 186 \pm 10 \text{ (stat.)}_{-20}^{+21} \text{ (syst.)} \pm 6 \text{ (lumi.)} \text{ pb.}$$

Theory: $\sigma_{t\bar{t}} = 164.6^{+11.4}_{-15.7}$ pb

Comb. with dileptons:


 $\sigma_{t\bar{t}} = 180 \pm 9 \text{(stat.)} \pm 15 \text{(syst.)} \pm 6 \text{(lumi.)} \text{ pb.}$

Inclusive photon cross section and $H \rightarrow \gamma \gamma$

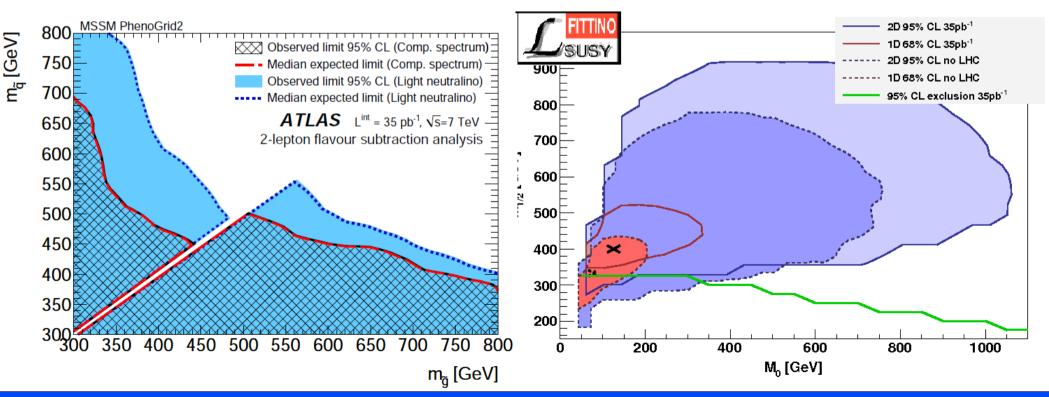

(K. Tackmann, recently joined DESY)

 Prompt photon production can be used to test pQCD.
 Important background for H → γγ.

- $H \rightarrow \gamma \gamma$ search
- Higgs signal modelled as a Crystal Ball / Gaussian on top of the $\gamma\gamma$ background.
- Limits set with PCL_{s+b}.
- Exclusion in units of SM Higgs xsec.

ATLAS-CONF-2011-025

Beyond the Standard Model: SUSY


Di-lepton analysis opposite signs.

Exclusion plot for a phenomenological MSSM scenario which allows sleptons in the decay chains M(Squark/gluino) → M(chi2) → M(slepton) → M(chi1)

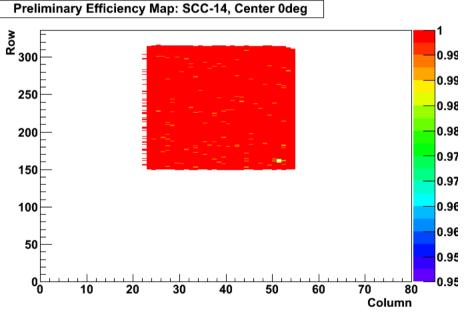
Compressed ("soft" particles) and "harder" particles (favorable)

Interpretation: using FITTINO to search for SUSY.

Combined fit using low-energy measurements, the dark matter relic density constraint and potential LHC exclusions.

PETAL2014.

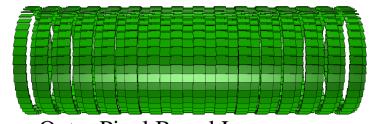
Planning for the future: Upgrade Activities

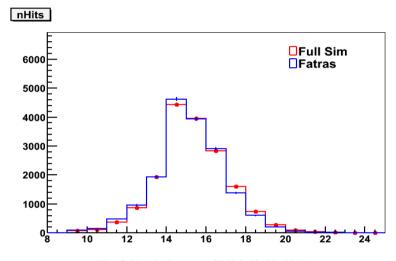

DESY Upgrade Projects

- > Phase 0 (2013): Insertable B-Layer (IBL) -> new very tight schedule
 - focusing on test beam studies towards sensor decision (July 2011)
- > Phase 2 (2020+): ATLAS Silicon Strip End cap -> Petal2014 integral part of project

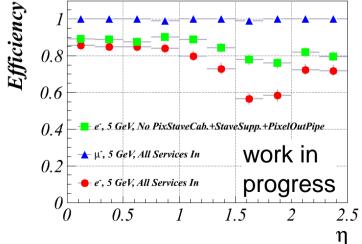
involvement includes simulation, electronics, modules and mechanics
Preliminary Efficiency Man: SCC-14 Center Oder

The new FE-I4 readout chip for the **IBL** was successfully tested at the DESY test beam in February and April.


- DESY team involved in the EUDET telescope: support, data taking, reconstruction and analysis.
- Samples irradiated in Karlsruhe and Ljubljana.
- > Further studies with and without magnetic field at CERN SPS starting in May; Test beam setup, GEANT4 simulation, and reconstruction software development ongoing.


Efficiency map for a sensor-FE-I4 chip assembly (DESY TB data Feb. 2011)

Upgrade Activities – Phase 2 Detector Simulation


- A new Inner Detector Upgrade Simulation Group was formed
- > DESY is playing a significant role in this effort
- > Validation of Fast simulation (Fatras) against Full simulation
- > Working with ATLAS "Tracking Geometry"
 - simplified geometry description used both by Full Simulation (for track reconstruction) and Fatras (as simulation geometry).
 - Next step: implementing new geometries.
- Electron efficiency studies to understand where material can and has to be reduced
 - main contribution to inefficiency results from the Pixel stave cables and the Pixel stave supports.

Outer Pixel Barrel Layer

ATLAS Utopia Layout - SLHC-19-20, 2011

Upgrade Activity – End Cap Module Assembly

- Various projects started towards the Petal2014
- > Module building
 - building modules for stave09 program use this expertise for future end-cap modules
 - gain expertise in handling of tools, gluing, wire bonding steps and DAQ
 - all tools in hand and assembly of first modules started
- > Sensor testing
 - gain experience for tests of future endcap sensors
 - compare values with measurements of same sensors after having them integrated into modules
- > DAQ software / firmware development
 - DAQ system in Zeuthen complete and running
 - first tests with ABCN single chip card have started to gain experience for later tests of hybrids / modules
 - Hamburg system to follow

Module assembly in Zeuthen

Summary

- LHC is running well and is planned to continue doing so in 2012.
- DESY is making a significant contribution to ATLAS:
 - Hardware contributions: ALFA
 - Software development
 - Measurements of the Standard Model and MC tuning
 - Searches for "new physics" have started.
 SUSY analysis public, other searches in the pipeline.
 - Detector upgrade: IBL, PETAL2014