#### Stabilised Wilson fermions for QCD

Antonio Rago

University of Plymouth

13<sup>th</sup> January 2020

In collaboration with A. Francis, P. Fritzsch and M. Lüscher

#### **Motivations**

- A large part of the success of Lattice Gauge Theory is inherently tied with advances in Monte Carlo simulations.
- Monte Carlo methods used in Lattice Gauge Theory are importance sampling methods.
  - Generating an ensemble of configurations through a Markov process and estimating the expectation values on the ensemble averages.
  - On very large lattices translation averages in presence of a single gauge field (the master field) provide an alternative way of calculating the expectation values.
- However, when the gap of the lattice Dirac operator shrinks, algorithmic instabilities and precision issues hamper the stability of the configurations generation and affect the estimate of observables.

Ways to overcome these problems are described in this talk for the case of the O(a)-improved Wilson formulation of lattice QCD.

#### Identifying the critical aspects

- Algorithmic stability:
  - Update algorithm: Hybrid Monte-Carlo.
  - ▶ Integration schemes.
  - Global Metropolis accept-reject step.
- Fermion discretisation:
  - Spectral gap of Dirac operator.
  - Near zero-modes: MD evolution of smallest eigenvalue.
  - Solver stopping criteria.

All the above have a strong influence on the simulation cost and affects the reliability of the simulation.

# Summary: Stabilized Wilson fermions

The proposed stabilizing measures include:

- $oldsymbol{0}$  A modification of the standard O(a)-improved lattice Dirac operator.
- 2 The use of the Stochastic Molecular Dynamics (SMD) simulation algorithm.
- 3 Tuning of the numerical precision required to guarantee a sufficient level of accuracy on large lattices.

I will present results of some representative simulations of the theory with 2+1 flavours of quarks, to demonstrate the viability of the framework.

• The traditional Wilson Dirac O(a)-improved operator is

$$D = \frac{1}{2} \{ \gamma_\mu (\nabla_\mu^* + \nabla_\mu - a \nabla_\mu^* \nabla_\mu) \} + c_{\rm sw} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} + m_0. \label{eq:Delta}$$

If the lattice points are classified as even-odd

$$D = \begin{pmatrix} D_{ee} & D_{eo} \\ D_{oe} & D_{oo} \end{pmatrix}$$

with the diagonal part

$$D_{ee} + D_{oo} = 4 + m_0 + c_{sw} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}.$$

• The even-odd preconditioned form

$$\hat{D} = D_{ee} - D_{eo} \left( \frac{D_{oo}}{D_{oo}} \right)^{-1} D_{oe}.$$

- The coefficient  $c_{\rm sw}$  is equal to 1 at tree-level PT and grows monotonically with the gauge coupling ( $\sim 2$  on coarse lattices).
- The Pauli term in these equations can be fairly large, particularly so on coarse lattices (saturating the bound).

$$\left\| \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu} \right\|_2 \le 3$$

- Positive and negative eigenvalues of the Pauli term are equally distributed.
   D<sub>oo</sub> is not protected by small eigenvalues especially for small masses and rough gauge fields.
- EO preconditioning occasionally fails with probability growing with the lattice size.
- Impossible to use in master-field simulations.

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

$$D_{ee} + D_{oo} = (4 + m_0) \exp\left(\frac{c_{sw}}{4 + m_0} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}\right).$$

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

• An alternative definition of the Wilson Dirac O(a)-improved operator is

$$D_{ee} + D_{oo} = (4 + m_0) \exp\left(\frac{c_{sw}}{4 + m_0} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}\right).$$

 At leading order of perturbation theory this expression actually coincides with the traditional.

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

$$D_{ee} + D_{oo} = (4 + m_0) \exp\left(\frac{c_{sw}}{4 + m_0} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}\right).$$

- At leading order of perturbation theory this expression actually coincides with the traditional.
- The diagonal part of the Dirac operator is positive definite and safely invertible.

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

$$D_{ee} + D_{oo} = (4 + m_0) \exp\left(\frac{c_{sw}}{4 + m_0} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}\right).$$

- At leading order of perturbation theory this expression actually coincides with the traditional.
- The diagonal part of the Dirac operator is positive definite and safely invertible.
- Even-odd preconditioning is therefore guaranteed to be numerically unproblematic.

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

$$D_{ee} + D_{oo} = (4 + m_0) \exp\left(\frac{c_{sw}}{4 + m_0} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}\right).$$

- At leading order of perturbation theory this expression actually coincides with the traditional.
- The diagonal part of the Dirac operator is positive definite and safely invertible.
- Even-odd preconditioning is therefore guaranteed to be numerically unproblematic.
- $\bullet$  Moreover,  $\det D = \det \hat{D}$  up to a field-independent proportionality constant.

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

$$D_{ee} + D_{oo} = (4 + m_0) \exp\left(\frac{c_{sw}}{4 + m_0} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}\right).$$

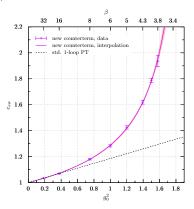
- At leading order of perturbation theory this expression actually coincides with the traditional.
- The diagonal part of the Dirac operator is positive definite and safely invertible.
- Even-odd preconditioning is therefore guaranteed to be numerically unproblematic.
- Moreover,  $\det D = \det \hat{D}$  up to a field-independent proportionality constant.
- The exponential and the associated force can be evaluated with negligible computational effort.

## Improved $c_{\rm sw}$ tuning

Is this a viable choice of Dirac-Wilson improvement?

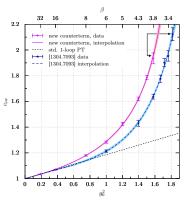
We need extensive simulations of the modified theory.

- ullet  $N_f=2+1$  QCD simulations with a tree level improved Symanzik action.
- lacktriangle Tuning of the  $c_{
  m sw}$  through the standard massless Schröedinger Functional scheme
- Scan up to very large  $\beta$  to make contact with PT.



## Comparison with the traditional $c_{\mathrm{sw}}$ term

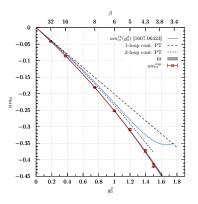
lacktriangle How does it compare with the traditional  $c_{\mathrm{sw}}$  tuned values?



- The scale setting is different. Arrows indicate  $a \sim 0.095 \mathrm{fm}$
- For equal lattice spacing  $c_{
  m sw}^{
  m new} < c_{
  m sw}^{
  m old}$
- A similar outcome is obtained also for the quenched theory

#### Comparison of the critical mass

 $\bullet$  It is analogously possible to compare the critical mass:  $am_{cr}=\frac{1}{2\kappa_{cr}}-4$ 



- Also in this case the scale setting is different.
- A similar outcome is obtained also for the quenched theory

## The SMD algorithm

The SMD algorithm is rather similar to the HMC algorithm.

#### Start with:

 $U(x,\mu)$ , the momentum  $\pi(x,\mu)$  and the pseudo-fermion  $\phi(x)$  with action  $S_{
m pf}=\phi(D^\dagger D)^{-1})\phi$ 

#### One cycle consists of:

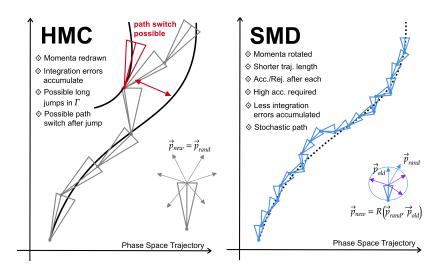
A random rotation of the momentum and the pseudo-fermion

$$\pi \to c_1 \pi + c_2 v$$
  $\phi \to c_1 \phi + c_2 D^{\dagger} \eta$ 

with v and  $\eta$  random normally distributed,  $c_1^2+c_2^2=1$  and  $c_1=e^{-\epsilon\gamma}$ . Where  $\epsilon$  is the MD integration time and  $\gamma$  is the friction parameter.

- A short molecular-dynamics evolution
- an accept-reject step that makes the algorithm exact

## The SMD algorithm



ullet At fixed  $\epsilon$  and large  $\gamma$ , the SMD algorithm coincides with the HMC algorithm

- ullet At fixed  $\epsilon$  and large  $\gamma$ , the SMD algorithm coincides with the HMC algorithm
- ullet If  $\epsilon$  is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to converge to a unique stationary state simulating the canonical distribution.

- ullet At fixed  $\epsilon$  and large  $\gamma$ , the SMD algorithm coincides with the HMC algorithm
- ullet If  $\epsilon$  is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to converge to a unique stationary state simulating the canonical distribution.
- When field configurations are rejected, the momentum is reversed and the algorithm tends to backtrack its trajectory in field space. Rejections must occur at large separations in simulation time.

- ullet At fixed  $\epsilon$  and large  $\gamma$ , the SMD algorithm coincides with the HMC algorithm
- ullet If  $\epsilon$  is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to converge to a unique stationary state simulating the canonical distribution.
- When field configurations are rejected, the momentum is reversed and the algorithm tends to backtrack its trajectory in field space. Rejections must occur at large separations in simulation time.
- As  $\Delta H$  grows like  $V^{1/2}$ , to preserve acceptance the integration has to become more accurate with the volume. It is hence convenient to use integration rule of high order as the computational cost will scale with  $V^{1/(2p)}$

- ullet At fixed  $\epsilon$  and large  $\gamma$ , the SMD algorithm coincides with the HMC algorithm
- ullet If  $\epsilon$  is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to converge to a unique stationary state simulating the canonical distribution.
- When field configurations are rejected, the momentum is reversed and the algorithm tends to backtrack its trajectory in field space. Rejections must occur at large separations in simulation time.
- As  $\Delta H$  grows like  $V^{1/2}$ , to preserve acceptance the integration has to become more accurate with the volume. It is hence convenient to use integration rule of high order as the computational cost will scale with  $V^{1/(2p)}$
- While the unit of MD the SMD tends to be slower than the HMC, the difference is (largely) compensated by a shorter autocorrelation time.

- ullet At fixed  $\epsilon$  and large  $\gamma$ , the SMD algorithm coincides with the HMC algorithm
- ullet If  $\epsilon$  is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to converge to a unique stationary state simulating the canonical distribution.
- When field configurations are rejected, the momentum is reversed and the algorithm tends to backtrack its trajectory in field space. Rejections must occur at large separations in simulation time.
- As  $\Delta H$  grows like  $V^{1/2}$ , to preserve acceptance the integration has to become more accurate with the volume. It is hence convenient to use integration rule of high order as the computational cost will scale with  $V^{1/(2p)}$
- While the unit of MD the SMD tends to be slower than the HMC, the difference is (largely) compensated by a shorter autocorrelation time.

Significant reduction of the unbounded energy violations  $|\Delta H|\gg 1$ 

## Other algorithmic improvements

 $\bullet$  Convergence criterion for the solver The solver uses an iterative procedure that is being stopped when the approximate solution  $\tilde{\psi}$  satisfies

$$||\eta - D\tilde{\psi}||_2 \le w||\eta||_2 \qquad \quad \text{with} \qquad \quad ||\eta||_2 \propto V$$

Global reductions
 Sum over all lattice points can cause accumulations errors.

 $\Delta H \propto \sqrt{V}$  the numerical precision has to increase with V.

## Other algorithmic improvements

 $\bullet$  Convergence criterion for the solver The solver uses an iterative procedure that is being stopped when the approximate solution  $\tilde{\psi}$  satisfies

$$||\eta - D\tilde{\psi}||_2 \le w||\eta||_2$$
 with  $||\eta||_2 \propto V$ 

 $\checkmark$  Replaced with the uniform norm:  $||\eta||_{\infty} = \sup_x ||\eta(x)||_2$  (V-independent)

Global reductions
 Sum over all lattice points can cause accumulations errors.

$$\Delta H \propto \sqrt{V}$$
 the numerical precision has to increase with V.

√ Use quadruple precision in global sums

# Ongoing investigations

Once  $c_{\rm sw}$  is tuned and with all the algorithmic measures in place We performed a set of (2+1)-flavour simulations

| a/fm  | $\beta$ | $T \times L^3$      | $m_\pi/MeV$ | $m_K/MeV$ | $Lm_{\pi}$ | BC | status       |
|-------|---------|---------------------|-------------|-----------|------------|----|--------------|
| 0.095 | 3.8     | $96 \times 32^{3}$  | 410         | 410       | 6.3        | Р  | ✓            |
|       |         | $96 \times 32^{3}$  | 294         | 458       | 4.5        | Р  | $\checkmark$ |
|       |         | $96 \times 32^{3}$  | 220         | 478       | 3.4        | Р  | $\checkmark$ |
|       |         | $144 \times 64^{3}$ | 135         | 494       | 4.2        | Р  | planned      |
| 0.064 | 4.0     | $96 \times 48^{3}$  | 410         | 410       | 6.4        | Р  | · 🗸          |
| 0.055 | 4.1     | $96 \times 48^{3}$  | 410         | 410       | 5.5        | 0  | thermalized  |

The runs are in direct comparison with ensambles from Coordinated Lattice Simulations (CLS) collaboration.

• The scale setting is on the symmetric point for the continuum limit:

$$\phi_4 \equiv 8t_0(\frac{1}{2}m_\pi^2 + m_K^2) = const \propto tr(M_q)$$

ullet We have also planned a single eta set of runs up to the physical point on the coarsest lattice.

#### Details of the SMD runs

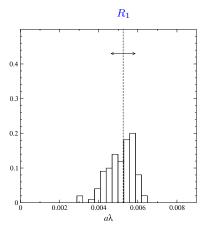
- The runs have shown no issues of instability
- Parameters setup:  $\gamma=0.3, \epsilon=0.31$ , 2-IvIs of OMF-4,  $N_{
  m pf}\leq 8, \ {
  m deg(R)}\leq 10$

| $m_\pi/{\sf MeV}$ | $P_{acc}$ | $P( \Delta H  \ge 2)$ |
|-------------------|-----------|-----------------------|
| 410               | 97.5%     | 0.15%                 |
| 294               | 98.6%     | 0.15%                 |
| 220               | 98.2%     | 0.05%                 |

- Physical  $m_{\pi}$  seems possible also at such coarse lattice spacing.
- ullet The lowest eigenvalue of  $\sqrt{D^\dagger D}$  was measured with a precision greater than 0.5%.

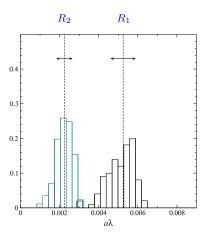
# Spectral gap of the Dirac operator

- Width  $(\sigma)$  of the distribution is generally smaller than the traditional case.
- $m{\sigma}$  decreases for lighter pions (as observed with  $N_f=2$ )
- Empirically  $\sigma \propto 1/\sqrt{V}$
- No data for a direct comparison.
- For  $R_1$   $m_{\pi} = 410$



## Spectral gap of the Dirac operator

- Width  $(\sigma)$  of the distribution is generally smaller than the traditional case.
- $\sigma$  decreases for lighter pions (as observed with  $N_f=2$ )
- Empirically  $\sigma \propto 1/\sqrt{V}$
- No data for a direct comparison.
- For  $R_1 \ m_{\pi} = 410$
- For  $R_2 \ m_\pi = 294$



# Spectral gap of the Dirac operator

• Width  $(\sigma)$  of the distribution is generally smaller than the traditional case.

•  $\sigma$  decreases for lighter pions (as observed with  $N_f=2$ )

• Empirically  $\sigma \propto 1/\sqrt{V}$ 

No data for a direct comparison.

• For 
$$R_1 \ m_{\pi} = 410$$

• For 
$$R_2 \ m_\pi = 294$$

• For 
$$R_3 \ m_\pi = 220$$

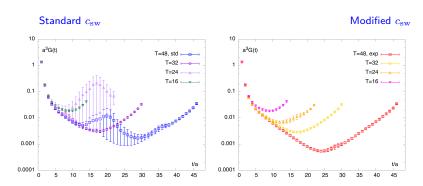
 $R_3$   $R_2$  $R_1$ 0.4 0.3 0.2 0.1 0.004 0.006 0.008 0.002 $a\lambda$ 

These simulations are all about equally expensive, as we lower  $m_u$  and raise  $m_s$  the cost balance stays constant.

#### Quenched observables

#### A direct comparison is easier in a quenched setup

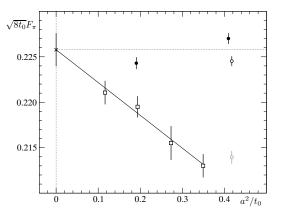
• Quenched improved Wilson action,  $\beta = 6.0$ 



# Quantifying $\mathcal{O}(a^2)$ effects

With the generation of the continuum limit trajectories still ongoing we can give estimates
of the size of the cutoff effects.

CLS continuum extrapolation of symmetric point  $f_{\pi K}$  data [M. Bruno et al. Phys. Rev. D 95, 074504]



NOTE: The CLS current has been renormalized with the  $Z_A$  from the chirally rotated SF [M. Dalla Brida et al. Eur. Phys. J. C79 (2019)]. We Use  $Z_A$  determined with the fermion flow [M. Lüscher, JHEP 1304 (2013) 123].

#### Lattice effects

A fixed bare quark masses trajectory will show deviations in the observables of order  $\mathcal{O}(a\,m)$  [M. Bruno et al. Phys. Rev. D 95, 074504 ]

a=0.095 fm

Stabilized Wilson

1.04

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

CLS runs

a=0.064 fm

a=0.086 fm

0.08

0.09

0.09

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.

Where

$$\phi_4 \equiv 8t_0(\frac{1}{2}m_{\pi}^2 + m_K^2)$$

$$\phi_2 = 8t_0 m_\pi^2$$

H101,H102,H105,C101, blue squares. N202,N203,N200,D200, red diamonds.

## Summary and Perspectives

Our measures to stabilize the Wilson Dirac improved action comprise

- A modified O(a) improvement of the action.
- Stochastic Molecular Dynamics
- Uniform norm and quadruple precision

#### So far:

- √ Good behaviour of the proposal even on very coarse lattices
- √ Comparable runtime with respect to the traditional formulation
- ✓ No indication of unusually large lattice effects

#### Ongoing:

Continuum limit scaling behaviour

## Modified $c_{\rm sw}$ implementation

• The Cayley-Hamilton theorem can be used to express a  $n \times n$  matrix as:

$$\exp_N(A) = \sum_{m=0}^N \frac{1}{m!} \sum_{i=0}^{n-1} c_i(m,A) A^i = \sum_{i=0}^{n-1} b_i(N,A) A^i.$$

• The Horner method states that for a sequence of polynomial  $q_i(X)$  the iteration

$$q_N = c_N$$
  

$$q_i = Xq_{i+1} + c_i \qquad i = N - 1, \dots, 0$$
  

$$c_i = 1/i!$$

will converge and the last polynomial  $q_0$  will coincide with the evaluation of the recursive sum up to grade N.

#### Modified $c_{\rm sw}$ implementation

ullet Specialising to the case of  $6\times 6$  matrices and the Cayley-Hamilton representation

$$\begin{split} q_{N,0} &= c_N = 1/N! & q_{N,1...5} = 0 \\ q_{n,0} &= -p_0 q_{n+1,5} + 1/n! \\ q_{n,i} &= -p_i q_{n+1,5} + q_{n+1,i-1} & i = 1, \cdots, 5, \end{split}$$

where the  $p_i$  are the coefficients of the characteristic polynomial.

Rapid convergence:

