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Motivations

@ A large part of the success of Lattice Gauge Theory is inherently tied with advances in
Monte Carlo simulations.

@ Monte Carlo methods used in Lattice Gauge Theory are importance sampling methods.

> Generating an ensemble of configurations through a Markov process and estimating
the expectation values on the ensemble averages.

> On very large lattices translation averages in presence of a single gauge field (the
master field) provide an alternative way of calculating the expectation values.

@ However, when the gap of the lattice Dirac operator shrinks, algorithmic instabilities and
precision issues hamper the stability of the configurations generation and affect the
estimate of observables.

Ways to overcome these problems are described in this talk for the case of the O(a)-improved
Wilson formulation of lattice QCD.
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Identifying the critical aspects

@ Algorithmic stability:
> Update algorithm: Hybrid Monte-Carlo.
> Integration schemes.

> Global Metropolis accept-reject step.

@ Fermion discretisation:

> Spectral gap of Dirac operator.
> Near zero-modes: MD evolution of smallest eigenvalue.

> Solver stopping criteria.

All the above have a strong influence on the simulation cost and affects the reliability of the
simulation.
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Summary: Stabilized Wilson fermions

The proposed stabilizing measures include:
@ A modification of the standard O(a)-improved lattice Dirac operator.
@ The use of the Stochastic Molecular Dynamics (SMD) simulation algorithm.

© Tuning of the numerical precision required to guarantee a sufficient level of accuracy on
large lattices.

I will present results of some representative simulations of the theory with 2 4 1 flavours of
quarks, to demonstrate the viability of the framework.
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O(a)-improvement revisited

@ The traditional Wilson Dirac O(a)-improved operator is

1 i .
D= E{V‘L(V; +V,— aV:LVM)} + CSWZO"“,F,“, + mo.
@ |If the lattice points are classified as even-odd
DEE DEO
D =
(b o)

with the diagonal part

A N
Dee + Doo =4 +mg + CSWZU;LVF,U,V-

@ The even-odd preconditioned form

D = Dee - Deo (Doo)71 Doe-
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O(a)-improvement revisited

The coefficient csyw is equal to 1 at tree-level PT and grows monotonically with the gauge
coupling (~ 2 on coarse lattices).

The Pauli term in these equations can be fairly large, particularly so on coarse lattices
(saturating the bound).

i

4

<3
2

—ouFuy

Positive and negative eigenvalues of the Pauli term are equally distributed.
Dy, is not protected by small eigenvalues especially for small masses and rough gauge
fields.

EO preconditioning occasionally fails with probability growing with the lattice size.

Impossible to use in master-field simulations.
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O(a)-improvement revisited

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

@ An alternative definition of the Wilson Dirac O(a)-improved operator is

i A
Dee + Doo = (4 + mop) exp (4_:7‘:110 ZUW,FW,) .
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The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

@ An alternative definition of the Wilson Dirac O(a)-improved operator is

i A
Dee + Doo = (4 + mop) exp (4_:7‘;10 ZO'L“,FW,) .

@ At leading order of perturbation theory this expression actually coincides with the
traditional.
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@ The diagonal part of the Dirac operator is positive definite and safely invertible.
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@ At leading order of perturbation theory this expression actually coincides with the
traditional.

@ The diagonal part of the Dirac operator is positive definite and safely invertible.

@ Even-odd preconditioning is therefore guaranteed to be numerically unproblematic.
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O(a)-improvement revisited

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

@ An alternative definition of the Wilson Dirac O(a)-improved operator is

Csw 1 P
Dee + Doo = (4+mp) exp | ——— o F .
ee oo ( O) P(4+m04 v [_LV)
@ At leading order of perturbation theory this expression actually coincides with the
traditional.
@ The diagonal part of the Dirac operator is positive definite and safely invertible.

@ Even-odd preconditioning is therefore guaranteed to be numerically unproblematic.

@ Moreover, det D = det D up to a field-independent proportionality constant.
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O(a)-improvement revisited

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

@ An alternative definition of the Wilson Dirac O(a)-improved operator is

[¢ i ~
Dee + Doo = (4 + mop) exp (4_:7‘:110 ZO'W,FW,) .

@ At leading order of perturbation theory this expression actually coincides with the
traditional.

@ The diagonal part of the Dirac operator is positive definite and safely invertible.

@ Even-odd preconditioning is therefore guaranteed to be numerically unproblematic.

@ Moreover, detD = det D up to a field-independent proportionality constant.

@ The exponential and the associated force can be evaluated with negligible computational

effort.
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Improved cg, tuning
Is this a viable choice of Dirac-Wilson improvement?
We need extensive simulations of the modified theory.
@ Ny =2+1 QCD simulations with a tree level improved Symanzik action.
@ Tuning of the cgw through the standard massless Schroedinger Functional scheme

@ Scan up to very large 3 to make contact with PT.

8
32 16 8 6 5 43 38 34
2.2 T T T T T L
L new counterterm, data 4
new counterterm, interpolation
2 [ - std. 1doop PT 4

1.8 -
716 =
14 -

12 -
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Comparison with the traditional ¢y, term

@ How does it compare with the traditional csyw tuned values?

16 8 6 5 43 38 34
T T T T T T

32
T T
L new counterterm, data 4’}
—— new counterterm, interpolation J
2 b std. 1-loop PT _If -

= [1304.7093] data
[ --- [1304.7093] interpolation
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@ The scale setting is different. Arrows indicate a ~ 0.095fm
@ For equal lattice spacing 2% < cold

SW

@ A similar outcome is obtained also for the quenched theory
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Comparison of the critical mass

@ It is analogously possible to compare the critical mass: ame, = % —4
cr

8
32 16 8 6 5 43 38 34
0 T T T T T T T ]
aml®(g3) [1607.06423] — ]
=0.05 1-loop cont. PT - =
2-loop cont. PT ----- 7
-01 | i 4
—015 [ E
_ -0z [ 3
E ]
—0.25 | 4
03 | 3
—035 [ SR
—04 [ E
045 1 1 1 1 1 1 1 =
0 02 04 06 08 1 12 14 16 18

9

@ Also in this case the scale setting is different.

@ A similar outcome is obtained also for the quenched theory
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The SMD algorithm

The SMD algorithm is rather similar to the HMC algorithm.

Start with:
U(z, 1), the momentum m(z, 1) and the pseudo-fermion ¢(x) with action Spr = ¢(DTD)~1)¢

One cycle consists of:

@ A random rotation of the momentum and the pseudo-fermion
T — 1T + cov ¢ — c1é+caD'y

with v and 7 random normally distributed, c% + c% =1landci =e 7.

Where ¢ is the MD integration time and + is the friction parameter.
@ A short molecular-dynamics evolution

@ an accept-reject step that makes the algorithm exact
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'HMC

© Momenta redrawn

< Integration errors
accumulate

© Possible long
jumps inI”

© Possible path
switch after jump

path switch
possible

> o
Prew = pmnd

Phase Space Trajectory

The SMD algorithm

SMD

<© Momenta rotated
<© Shorter traj. length
©® Acc./Rej. after each

© High acc. required

& Less integration
errors accumulated

© Stochastic path

?’new = R(ﬁmnd’ ?uld)

Phase Space Trajectory
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Considerations on the SMD algorithm

@ At fixed € and large 7, the SMD algorithm coincides with the HMC algorithm
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Considerations on the SMD algorithm
@ At fixed € and large 7, the SMD algorithm coincides with the HMC algorithm

@ If € is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to
converge to a unique stationary state simulating the canonical distribution.
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Considerations on the SMD algorithm

@ At fixed € and large 7, the SMD algorithm coincides with the HMC algorithm

@ If € is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to
converge to a unique stationary state simulating the canonical distribution.

@ When field configurations are rejected, the momentum is reversed and the algorithm tends
to backtrack its trajectory in field space. Rejections must occur at large separations in
simulation time.
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Considerations on the SMD algorithm

At fixed € and large v, the SMD algorithm coincides with the HMC algorithm

If € is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to
converge to a unique stationary state simulating the canonical distribution.

When field configurations are rejected, the momentum is reversed and the algorithm tends
to backtrack its trajectory in field space. Rejections must occur at large separations in
simulation time.

As AH grows like V1/2, to preserve acceptance the integration has to become more
accurate with the volume. It is hence convenient to use integration rule of high order as
the computational cost will scale with V/1/(2p)
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Considerations on the SMD algorithm

At fixed € and large v, the SMD algorithm coincides with the HMC algorithm

If € is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to
converge to a unique stationary state simulating the canonical distribution.

When field configurations are rejected, the momentum is reversed and the algorithm tends
to backtrack its trajectory in field space. Rejections must occur at large separations in
simulation time.

As AH grows like V1/2, to preserve acceptance the integration has to become more
accurate with the volume. It is hence convenient to use integration rule of high order as

the computational cost will scale with V/1/(2p)

While the unit of MD the SMD tends to be slower than the HMC, the difference is
(largely) compensated by a shorter autocorrelation time.
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Considerations on the SMD algorithm

At fixed € and large v, the SMD algorithm coincides with the HMC algorithm

If € is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to
converge to a unique stationary state simulating the canonical distribution.

When field configurations are rejected, the momentum is reversed and the algorithm tends
to backtrack its trajectory in field space. Rejections must occur at large separations in
simulation time.

As AH grows like V1/2, to preserve acceptance the integration has to become more
accurate with the volume. It is hence convenient to use integration rule of high order as

the computational cost will scale with V/1/(2p)

While the unit of MD the SMD tends to be slower than the HMC, the difference is
(largely) compensated by a shorter autocorrelation time.

Significant reduction of the unbounded energy violations |[AH| > 1 J
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Other algorithmic improvements

@ Convergence criterion for the solver
The solver uses an iterative procedure that is being stopped when the approssimate
solution 1) satisfies

[ln — D]z < w||n]l2 with [z o< V

@ Global reductions
Sum over all lattice points can cause accumulations errors.

AH < VvV the numerical precision has to increase with V.
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Other algorithmic improvements

@ Convergence criterion for the solver
The solver uses an iterative procedure that is being stopped when the approssimate
solution 1 satisfies

[ln — D]z < w||n]l2 with [z o< V

V" Replaced with the uniform norm: ||n||ec = sup,||n(x)||2 (V-independent)

@ Global reductions
Sum over all lattice points can cause accumulations errors.

AH < VvV the numerical precision has to increase with V.

V' Use quadruple precision in global sums
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Ongoing investigations

Once cgsw is tuned and with all the algorithmic measures in place

We performed a set of (2+1)-flavour simulations

a/fm B TxL?> mz/MeV mg/MeV Lm, BC status
0.005 3.8 96x323 410 410 6.3 P v

96x 323 204 458 45 P v

96x 323 220 478 3.4 P v

144x643 135 494 4.2 P planned
0.064 4.0 96x483 410 410 6.4 P v
0.055 4.1  96x483 410 410 5.5 O  thermalized

The runs are in direct comparison with ensambles from Coordinated Lattice Simulations (CLS)
collaboration.

@ The scale setting is on the symmetric point for the continuum limit:

1
¢4 = 825()(577172T +m2) = const o tr(My)

@ We have also planned a single 3 set of runs up to the physical point on the coarsest
lattice.
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Details of the SMD runs

@ The runs have shown no issues of instability

@ Parameters setup: v = 0.3,e = 0.31, 2-lvls of OMF-4, N,¢ < 8, deg(R) < 10

mr/MeN  Paee  P(AH| > 2)

410 97.5% 0.15%
294 98.6% 0.15%
220 98.2% 0.05%

@ Physical m; seems possible also at such coarse lattice spacing.

@ The lowest eigenvalue of vV DT D was measured with a precision greater than 0.5%.
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Spectral gap of the Dirac operator

Width (o) of the distribution is generally
smaller than the traditional case.

o decreases for lighter pions (as observed
with Ny = 2)

Empirically o o< 1/v/V

No data for a direct comparison.
For R1 m» = 410
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Spectral gap of the Dirac operator

R Ry

Width (o) of the distribution is generally
smaller than the traditional case. PEEN i

041 B
o decreases for lighter pions (as observed
with Ny = 2) o3l 1
Empirically o < 1/vVV

021 B
No data for a direct comparison.
For Ry mz =410 01 ]
For Ry m, = 294

O 0.002 0.004 0.006 0.008
ah
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Spectral gap of the Dirac operator

R3 Ro> Ry
@ Width (o) of the distribution is generally
smaller than the traditional case. PETNPIEN DI
04r 1
@ o decreases for lighter pions (as observed
with Ny = 2) o3l - 1
@ Empirically o < 1/v/V
02f 1
@ No data for a direct comparison.
@ For Ry m, = 410 o.1f ]
@ For Ro my =294
@ For Ry mx =220 % 0.002 0004 0.006 0008
ak

These simulations are all about equally expensive, as we lower m,, and raise ms the cost
balance stays constant.
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Quenched observables

A direct comparison is easier in a quenched setup

@ Quenched improved Wilson action, 8 = 6.0

Standard csw Modified cgw
10 T T T T T T 10 T T T T T T T
3 1 3
a%G() Todg, std a’G() T=48, exp -—5—
1= T2 e | 1 l® T=32 ]
T=24 o T=24 .
T T=16 v T=16 v
L] A L
0.1 T 0.1
H o\ &
T4 Il - @ B
001 - 83 2° 22® 1 0.01 o®
a
Ll I g @@mﬂ"‘ 1 oo
e
0.001 |- 4 0001 J
tva | ta
0.0001 L L L 1 L L L L 0.0001 L L L L L L L
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
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Quantifying O(a?) effects

@ With the generation of the continuum limit trajectories still ongoing we can give estimates
of the size of the cutoff effects.
CLS continuum extrapolation of symmetric point frx data [M. Bruno et al. Phys. Rev. D 95, 074504 ]

I I I I
VBt F, [ i
i b
0225 ' b -
0.220]- ]
02151 + ]
I N B R B ]

T IR
0 0.1 0.2 03 04 a2/t

NOTE: The CLS current has been renormalized with the Z 4 from the chirally rotated SF [M. Dalla Brida et al. Eur. Phys. J.
C79 (2019)]. We Use Z 4 determined with the fermion flow [M. Liischer, JHEP 1304 (2013) 123].
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Lattice effects

A fixed bare quark masses trajectory will show deviations in the observables of order O(am)
[M. Bruno et al. Phys. Rev. D 95, 074504 |

Stabilized Wilson CLS runs
Y e
L2 [ - L2 b
& 100 + - & 100 3 + + s
098 + B 098 ' [ - 2a=0.064 fm
096 4 096 — 4 -
a=0.095 fm T S T T IS S VRN | Ce v b v by ey 0
R A T S S S
s 1 104 1 a=0.086 fm
L2 . e L2 . N . -
o 100 * . 2100 + + + .
098 B 098 B
0.96 [~ 4 096 [~ ‘ ‘ ‘ -
T S T T IS S VRN | Loy T P PR
0 02 04 06 g, 08 0 02 04 06y, 08
Where "
— 2 2 2
¢4:8t0(5mw+mx) ¢2 = 8tomy

H101,H102,H105,C101, blue squares.
N202,N203,N200,D200, red diamonds.
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Summary and Perspectives

Our measures to stabilize the Wilson Dirac improved action comprise
@ A modified O(a) improvement of the action.
@ Stochastic Molecular Dynamics
@ Uniform norm and quadruple precision

So far:

V" Good behaviour of the proposal even on very coarse lattices
v" Comparable runtime with respect to the traditional formulation

V" No indication of unusually large lattice effects

Ongoing:

@ Continuum limit scaling behaviour
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Modified cgy, implementation

@ The Cayley-Hamilton theorem can be used to express a n X n matrix as:

N n—1 } n—1 )
expy(A) =D — D ci(m, A)A" = > b(N, A) AL,
0 =0

!
m=0 """ iZ

@ The Horner method states that for a sequence of polynomial g;(X) the iteration

qv =cN
g = Xqi+1t¢ t=N-1,...,0
Cizl/i!

will converge and the last polynomial go will coincide with the evaluation of the recursive
sum up to grade N.
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Modified cgy, implementation

@ Specialising to the case of 6 X 6 matrices and the Cayley-Hamilton representation

qn,0 =cn = 1/N! qN,1..5=0
Gn,0 = —P0dn+1,5 + 1/n!
Gn,i = —Piqn+1,5 + gn+1,i—1 t=1,---,5,

where the p; are the coefficients of the characteristic polynomial.

@ Rapid convergence:

llexp(A)-expp(A)ll

1051

10181
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