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Motivations

A large part of the success of Lattice Gauge Theory is inherently tied with advances in
Monte Carlo simulations.

Monte Carlo methods used in Lattice Gauge Theory are importance sampling methods.

I Generating an ensemble of configurations through a Markov process and estimating
the expectation values on the ensemble averages.

I On very large lattices translation averages in presence of a single gauge field (the
master field) provide an alternative way of calculating the expectation values.

However, when the gap of the lattice Dirac operator shrinks, algorithmic instabilities and
precision issues hamper the stability of the configurations generation and affect the
estimate of observables.

Ways to overcome these problems are described in this talk for the case of the O(a)-improved
Wilson formulation of lattice QCD.
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Identifying the critical aspects

Algorithmic stability:

I Update algorithm: Hybrid Monte-Carlo.

I Integration schemes.

I Global Metropolis accept-reject step.

Fermion discretisation:

I Spectral gap of Dirac operator.

I Near zero-modes: MD evolution of smallest eigenvalue.

I Solver stopping criteria.

All the above have a strong influence on the simulation cost and affects the reliability of the
simulation.
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Summary: Stabilized Wilson fermions

The proposed stabilizing measures include:

1 A modification of the standard O(a)-improved lattice Dirac operator.

2 The use of the Stochastic Molecular Dynamics (SMD) simulation algorithm.

3 Tuning of the numerical precision required to guarantee a sufficient level of accuracy on
large lattices.

I will present results of some representative simulations of the theory with 2 + 1 flavours of
quarks, to demonstrate the viability of the framework.
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O(a)-improvement revisited

The traditional Wilson Dirac O(a)-improved operator is

D =
1

2
{γµ(∇∗µ +∇µ − a∇∗µ∇µ)}+ csw

i

4
σµν F̂µν +m0.

If the lattice points are classified as even-odd

D =

(
Dee Deo
Doe Doo

)

with the diagonal part

Dee +Doo = 4 +m0 + csw
i

4
σµν F̂µν .

The even-odd preconditioned form

D̂ = Dee −Deo (Doo)
−1Doe.
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O(a)-improvement revisited

The coefficient csw is equal to 1 at tree-level PT and grows monotonically with the gauge
coupling (∼ 2 on coarse lattices).

The Pauli term in these equations can be fairly large, particularly so on coarse lattices
(saturating the bound). ∣∣∣∣∣∣∣∣ i4σµν F̂µν

∣∣∣∣∣∣∣∣
2

≤ 3

Positive and negative eigenvalues of the Pauli term are equally distributed.
Doo is not protected by small eigenvalues especially for small masses and rough gauge
fields.

EO preconditioning occasionally fails with probability growing with the lattice size.

Impossible to use in master-field simulations.
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O(a)-improvement revisited

The improved Wilson-Dirac is not positive: is this why it tends to promote the instabilities?

An alternative definition of the Wilson Dirac O(a)-improved operator is

Dee +Doo = (4 +m0) exp

(
csw

4 + m0

i

4
σµν F̂µν

)
.

At leading order of perturbation theory this expression actually coincides with the
traditional.

The diagonal part of the Dirac operator is positive definite and safely invertible.

Even-odd preconditioning is therefore guaranteed to be numerically unproblematic.

Moreover, det D = det D̂ up to a field-independent proportionality constant.

The exponential and the associated force can be evaluated with negligible computational
effort.
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Improved csw tuning
Is this a viable choice of Dirac-Wilson improvement?

We need extensive simulations of the modified theory.

Nf = 2 + 1 QCD simulations with a tree level improved Symanzik action.

Tuning of the csw through the standard massless Schröedinger Functional scheme

Scan up to very large β to make contact with PT.Improvement coefficient csw
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P. Fritzsch Lattice 2019, Wuhan 6
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Comparison with the traditional csw term

How does it compare with the traditional csw tuned values?
Improvement coefficient csw
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The scale setting is different. Arrows indicate a ∼ 0.095fm

For equal lattice spacing cnewsw < coldsw

A similar outcome is obtained also for the quenched theory
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Comparison of the critical mass

It is analogously possible to compare the critical mass: amcr = 1
2κcr
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Also in this case the scale setting is different.

A similar outcome is obtained also for the quenched theory
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The SMD algorithm

The SMD algorithm is rather similar to the HMC algorithm.

Start with:

U(x, µ), the momentum π(x, µ) and the pseudo-fermion φ(x) with action Spf = φ(D†D)−1)φ

One cycle consists of:

A random rotation of the momentum and the pseudo-fermion

π → c1π + c2v φ→ c1φ+ c2D
†η

with v and η random normally distributed, c21 + c22 = 1 and c1 = e−εγ .

Where ε is the MD integration time and γ is the friction parameter.

A short molecular-dynamics evolution

an accept-reject step that makes the algorithm exact
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The SMD algorithm

Generally: More spikes in �H means longer autocorrelation times.
,

anthony.francis@cern.ch 16/26
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Considerations on the SMD algorithm

At fixed ε and large γ, the SMD algorithm coincides with the HMC algorithm

If ε is sufficiently small, the SMD algorithm can be rigorously shown to be ergodic and to
converge to a unique stationary state simulating the canonical distribution.

When field configurations are rejected, the momentum is reversed and the algorithm tends
to backtrack its trajectory in field space. Rejections must occur at large separations in
simulation time.

As ∆H grows like V 1/2, to preserve acceptance the integration has to become more
accurate with the volume. It is hence convenient to use integration rule of high order as
the computational cost will scale with V 1/(2p)

While the unit of MD the SMD tends to be slower than the HMC, the difference is
(largely) compensated by a shorter autocorrelation time.

Significant reduction of the unbounded energy violations |∆H| � 1
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Other algorithmic improvements

Convergence criterion for the solver
The solver uses an iterative procedure that is being stopped when the approssimate
solution ψ̃ satisfies

||η −Dψ̃||2 ≤ w||η||2 with ||η||2 ∝ V

X Replaced with the uniform norm: ||η||∞ = supx||η(x)||2 (V-independent)

Global reductions
Sum over all lattice points can cause accumulations errors.

∆H ∝
√
V the numerical precision has to increase with V.

X Use quadruple precision in global sums
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Ongoing investigations
Once csw is tuned and with all the algorithmic measures in place

We performed a set of (2+1)-flavour simulations

a/fm β T × L3 mπ/MeV mK/MeV Lmπ BC status
0.095 3.8 96×323 410 410 6.3 P X

96×323 294 458 4.5 P X
96×323 220 478 3.4 P X

144×643 135 494 4.2 P planned
0.064 4.0 96×483 410 410 6.4 P X
0.055 4.1 96×483 410 410 5.5 O thermalized

The runs are in direct comparison with ensambles from Coordinated Lattice Simulations (CLS)
collaboration.

The scale setting is on the symmetric point for the continuum limit:

φ4 ≡ 8t0(
1

2
m2
π +m2

K) = const ∝ tr(Mq)

We have also planned a single β set of runs up to the physical point on the coarsest
lattice.
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Details of the SMD runs

The runs have shown no issues of instability

Parameters setup: γ = 0.3, ε = 0.31, 2-lvls of OMF-4, Npf ≤ 8, deg(R) ≤ 10

mπ/MeV Pacc P (|∆H| ≥ 2)
410 97.5% 0.15%
294 98.6% 0.15%
220 98.2% 0.05%

Physical mπ seems possible also at such coarse lattice spacing.

The lowest eigenvalue of
√
D†D was measured with a precision greater than 0.5%.
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Spectral gap of the Dirac operator

Width (σ) of the distribution is generally
smaller than the traditional case.

σ decreases for lighter pions (as observed
with Nf = 2)

Empirically σ ∝ 1/
√
V

No data for a direct comparison.

For R1 mπ = 410

For R2 mπ = 294

For R3 mπ = 220

Towards large scale simulations
How does the lowest eigenvalue distribution scale with quark mass?

mfi = 410MeV

mfi = 294MeV
mfi = 220MeV

Overall behaviour of smallest eigenvalue

a⁄ = min
)
spec(D†

uDu)1/2
*

median µ̄ Ã m

width ‡ decreases

somewhat similar to Nf = 2 case[12]

(non-)Gaussian ?

historical data missing for detailed comparison

P. Fritzsch Lattice 2019, Wuhan 8

R1
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These simulations are all about equally expensive, as we lower mu and raise ms the cost
balance stays constant.

A. Rago (U. Plymouth) Stabilised Wilson fermions 13th January 2020 17 / 21



Quenched observables

A direct comparison is easier in a quenched setup

Quenched improved Wilson action, β = 6.0

Standard csw Modified csw
9

FIG. 10. Volume dependence using the standard (left throughout) and exponentiated (right throughout) clovers. Top: PP-
correlators for di↵erent volumes at � = 6.0. Middle: PCAC masses. Bottom: cosh�masses.
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Quantifying O(a2) effects

With the generation of the continuum limit trajectories still ongoing we can give estimates
of the size of the cutoff effects.

CLS continuum extrapolation of symmetric point fπK data [M. Bruno et al. Phys. Rev. D 95, 074504 ]

0 0.1 0.2 0.3 0.4

0.215

0.220

0.225

PSfrag replacements

a2/t0

√
8t0Fπ

Fig. 4. Lattice-spacing dependence of
√

8t0Fπ at m0,u = m0,d = m0,s. Open squares

represent results previously obtained in ref. [32] at φ4 = 1.11 using the traditional

setup of the O(a)-improved theory. A linear extrapolation of these data yields a value

in the continuum limit (cross), which coincides with the results obtained in the runs

A1, B1 (black circles) and X1 (open circle). The latter moves down if the axial-current

renormalization constant is replaced by the one used in ref. [32] (grey open circle).

improved two-flavour theory [38]. With respect to the distribution measured in run

A1, the one obtained in run X1 is however noticeably wider, i.e. at this fairly coarse

lattice spacing, the use of the modified Dirac operator leads to a narrower eigenvalue

distribution.

6.7 Higher-order lattice effects

All simulated lattices are in a range of parameters, where O(a2) lattice effects cannot

be expected to be very small, independently of which Dirac operator is chosen. The

values of t0/a
2, for example, would change by 15% on the A1 lattice and by 6%

on the B1 lattice, if defined with the Wilson plaquette instead of the symmetric

(“clover”) expression for the Yang–Mills action density.

The dimensionless combination
√

8t0Fπ is potentially more sensitive to the choice

of the lattice Dirac operator than gluonic quantities like t0. In fig. 4 the results for√
8t0Fπ obtained at the SU(3)-symmetric point (i.e. in the runs A1, B1 and X1)

are compared with data published in ref. [32]. For a sensible comparison, φ4 should

20

NOTE: The CLS current has been renormalized with the ZA from the chirally rotated SF [M. Dalla Brida et al. Eur. Phys. J.
C79 (2019)]. We Use ZA determined with the fermion flow [M. Lüscher,JHEP 1304 (2013) 123].
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Lattice effects

A fixed bare quark masses trajectory will show deviations in the observables of order O(am)
[M. Bruno et al. Phys. Rev. D 95, 074504 ]

Stabilized Wilson CLS runs

a=0.095 fm

a=0.064 fm

a=0.086 fm

More about lattice effects
--------------------------

The runs 96x32x32x32-20{1,2,3} are at fixed sum of the bare quark masses. As 
already emphasized by Bruno et al. [1], this is a trajectory where the sum of the 
renormalized quark masses may not be strictly constant, the deviations being an 
O(a*m) lattice effect. The effects shown in the bottom-left plot in Fig.4 of [1] 
are actually quite big on the coarsest lattice considered there, where the lattice 
spacing is 0.086 fm. Significant lattice effects were also seen in the ratios 
t0/t0^sym and f_piK/f_piK^sym.

In the runs 96x32x32x32-20{1,2,3}, the lattice spacing is about 0.094 fm and thus 
even larger, but the lattice effects in the ratios considered in [1] appear to be
smaller:

Fig.7: Results for phi4, t0, FpiK=(Fpi+2*FK)/3 and tr{MR}=m00_R/2+m01_R obtained in 
the runs 96x32x32x32-20{1,2,3}, all given in units of their values at the symmetric 
point (run 96x32x32x32-201), plotted as a function of phi2=8*t0*Mpi^2. The decay 
constants are the renormalized ones and the renormalization of the quark masses 
does not include ZP and the associated O(a*m) factors.

By and large, the behaviour of the t0, FpiK and tr{MR} ratios is similar to the 
ones plotted on the left of Fig.4 of [1] at beta=3.55 (where a=0.064 fm). One 
should however take into account that the decay constants include an O(a*m) factor, 
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are actually quite big on the coarsest lattice considered there, where the lattice 
spacing is 0.086 fm. Significant lattice effects were also seen in the ratios 
t0/t0^sym and f_piK/f_piK^sym.

In the runs 96x32x32x32-20{1,2,3}, the lattice spacing is about 0.094 fm and thus 
even larger, but the lattice effects in the ratios considered in [1] appear to be
smaller:

Fig.7: Results for phi4, t0, FpiK=(Fpi+2*FK)/3 and tr{MR}=m00_R/2+m01_R obtained in 
the runs 96x32x32x32-20{1,2,3}, all given in units of their values at the symmetric 
point (run 96x32x32x32-201), plotted as a function of phi2=8*t0*Mpi^2. The decay 
constants are the renormalized ones and the renormalization of the quark masses 
does not include ZP and the associated O(a*m) factors.

By and large, the behaviour of the t0, FpiK and tr{MR} ratios is similar to the 
ones plotted on the left of Fig.4 of [1] at beta=3.55 (where a=0.064 fm). One 
should however take into account that the decay constants include an O(a*m) factor, 

whose coefficient (ctilde_P) is set to its tree-level value. In the ratio of the 
decay constants this approximation could cause a systematic bias up to 1%. A 
similar comment applies to the ratio of the quark mass sums. The difference with 
respect to the CLS data for phi4 and t0, which are not affected by normalization 
ambiguities, however remains striking:

Fig.8: Results for phi4 and t0 obtained in the CLS runs H101,H102,H105,C101 
(beta=3.4, a=0.086 fm, blue squares) and N202,N203,N200,D200 (beta=3.55, a=0.064 
fm, red diamonds), normalized by their values at the symmetric point.

Apparently both quantities are constant in the continuum limit within variations of 
at most 1% in the range of phi2 covered.

[1] M. Bruno, T. Korzec, S. Schaefer, Setting the scale for the CLS 2+1 flavor
    ensembles, Phys. Rev. D95 (2017) [arXiv:1608.08900]

Where

φ4 ≡ 8t0(
1

2
m

2
π +m

2
K) φ2 = 8t0m

2
π

H101,H102,H105,C101, blue squares.

N202,N203,N200,D200, red diamonds.
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Summary and Perspectives

Our measures to stabilize the Wilson Dirac improved action comprise

A modified O(a) improvement of the action.

Stochastic Molecular Dynamics

Uniform norm and quadruple precision

So far:

X Good behaviour of the proposal even on very coarse lattices

X Comparable runtime with respect to the traditional formulation

X No indication of unusually large lattice effects

Ongoing:

Continuum limit scaling behaviour
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Modified csw implementation

The Cayley-Hamilton theorem can be used to express a n× n matrix as:

expN (A) =
N∑
m=0

1

m!

n−1∑
i=0

ci(m,A)Ai =

n−1∑
i=0

bi(N,A)Ai.

The Horner method states that for a sequence of polynomial qi(X) the iteration

qN = cN

qi = Xqi+1 + ci i = N − 1, . . . , 0

ci = 1/i!

will converge and the last polynomial q0 will coincide with the evaluation of the recursive
sum up to grade N .
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Modified csw implementation

Specialising to the case of 6× 6 matrices and the Cayley-Hamilton representation

qN,0 = cN = 1/N ! qN,1...5 = 0

qn,0 = −p0qn+1,5 + 1/n!

qn,i = −piqn+1,5 + qn+1,i−1 i = 1, · · · , 5,

where the pi are the coefficients of the characteristic polynomial.

Rapid convergence:
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