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Introduction
Why Machine Learning?

When is ML useful?

ML algorithms can be successful in cases where the task to be performed is hard or
impossible to translate into a specific algorithm. For example:

Given pictures of mushrooms, say which one is edible, which is poisonous.

Given pictures of handwritten symbols, identify wether they correspond to letters
of an alphabet.

Discover correlations between a particular genetic signature and a particular
illness.

Extrapolate future desiderata from past purchases.

Amara’s law

We tend to overestimate the effect of a technology in the short run and to
underestimate its effect in the long run
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Introduction
Does it work?

Successes. . .

In many cases, these algorithms were successful:

Sorting of mail in worldwide postal services

Song proposal on Spotify

AiGo won narrowly against Ke Jie, Go world champion. (He said it was an
“horrible experience”)

..and tragic of funny failures..

In other, funny or tragic cases:

Amazon purchase predictor algorithm suggested phone covers featuring foot
fungus images.

Microsoft teenage chatbot ”Tay.ai” on Twitter turned into “Nazi loving troll“
after just one day online

“How scientists fooled Google’s AI into thinking a cat was guacamole”
(InceptionV3 Google image recognition AI)
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Introduction
The use of ML in the natural sciences

Computational Learning Theory is a subfield of Artificial Intelligence studies.
Many algorithms available: (deep) neural networks, Support Vector machines, . . .

Many ready-to-use libraries in a variety of programming languages: scikit-learn,
tensorFlow, Theano, . . . . [Chang, Chih-Chung and Lin, Chih-Jen, 2011]

In Physics: Several studies of ML applied to the study of phase transition are
already present in the litterature. [Melko, Rogers, Carrasquilla and many others]

In Health Sciences: Used to discover genotypes involved in drug resistance.
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Introduction
Types of machine learning

The archetypical problem

Identifying to which of a set of categories a new observation belongs, and to what
extent.

This is a problems of Classification. ML algorithms can be classified according to:

Type of task:
Supervised learning: the machine learns from labelled data( SVMs, for example), or
from feedback on its action (reinforcement learning).
Unsupervised learning: no label is given, the machine must discover pattern in input
data. (autoencoders. . . )

Desired output:
Regression and Classification (SVM)
Clustering
Dimensionality Reduction
. . .
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Introduction
Our work

Our question. . .

What informations can we obtain on a model of statistical physics from a collection of
its raw configurations at given temperatures?

We choose to study the 2D Ising model because it is exactly solved and thus an
ideal testbed for new approaches.

We want to use one of the simplest and most transparent example of supervised
learning algorithm: a Support Vector Machine. [V. N. Vapnik, A. Y. Chervonenkis ’63]

For comparison, we perform the standard multihistogram analysis on the same
configurations. [Ferrenberg, Swenden ’88]

Let us introduce Support Vector Machines. . .
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SVM
Introduction - Definitions

Statement of the problem

We are Given a set of N training samples

(~x1, y1), (~x2, y2), · · · , (~xN , yN )

where ~xi ∈ Rp are the input data and yi = ±1 the class labels.

Example:

Input data: amount of red in the pixels of a picture arranged in typographical
ordering: ~x = (0.3, 0.9, 0.7, · · · ).

Class: is there a dog(y = +1) or a cat(y = −1) in the picture?

General problem

Given the input data ~x∗ of a new point, the test point, we want to find out its class
label y∗.
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SVM
Introduction - Heuristics

The case p = 2

The training and test points can be represented on the plane. What is the correct
label for the test point (triangle) ?
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SVM
The margin and the separating plane

The idea behind SVM

Draw the margin: the region delimited by the dashed lines in the figures. For each
choice of the margin, a separating plane can be constructed (solid line).

Problem solved?

Once the margin and the separating hyperplane have been choosen, assign the triangle
to the same class as the points lying on the same side of the separating hyperplane.
(circle on the right, bullets on the left.). Which hyperplane to choose? The one with
the largest margin!
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SVM
Formalization

Generally, an hyperplane is defined by

~ω · ~x − b = 0

where ~ω is the normal to the plane in Rp and b ∈ R is an offset.

~ω and b

We can scale ~ω and b such that on the margin

~ω · ~x − b = ±1

then for points on either side of the margin

(~ω · ~x − b)y ≥ 1

The margin has length 2/||~ω||.
The distance of the separating hyperplane
from the origin is b/||~ω||.

Support Vectors

The points lying on the margin boundaries (red in the picture), that directly determine
the separating hyperplane, are called support vectors.
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SVM
The decision function

Solution of the problem

Once ~ω and b are found for the maximum margin hyperplane, the distance of a new
data point ~x from the latter is given by the decision function:

d(~x) = ~ω · ~x − b,

whose sign determines the classification

f (~x) = sign d (~x)

Mathematically speaking. . .

This is a minimization problem for a quadratic function subject to a linear constraint:
it always has a global solution if the data is linearly separable.

min
ω,b

1

2
||~ω||2 / yi (~ω · ~xi − b) ≥ 1, ∀i

where i runs over the training set.
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SVM
Hard and Soft margin classifiers

When the data are not linearly separable. . .

. . . we might still find a solution if we
let some of the points into the margin,

yi (~ω · ~xi − b)− 1 ≤ 0

we then obtain a soft margin classifier.
We introduce the slack variables ζi

ζi ≥ 1− yi (~ω · ~xi − b) , ∀i

when ζi = 0, ∀i , we have the hard
margin classifier again.

For a soft margin classifier

The minimization then problem becomes

min
ω,b

(
1

2
||~ω||2 + C

1

N

∑
ζi

)
/ yi (~ω · ~xi − b) ≥ 1− ζi , and ζi ≥ 0, ∀i

The slack variables introduce a penalty for points that fall into the margin. The
parameter C weights the penalty of letting points into the margin.
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SVM
as a minimization problem

Primal problem

By introducing the Lagrande multipliers αi and γi ,

L =
1

2
||~ω||2 +

C

N

N∑
i=1

ζi +
N∑

i=1

αi (1− yi (~ω · ~xi − b))−
N∑

i=1

γiζi ,

where γi , αi ≥ 0 because of the inequality constraintsa.
Setting the gradients of L to zero:

∇ωL = ~ω −
∑

i

αi yi~xi = 0

∇bL = −
∑

i

αi yi = 0

∇γL =
C

N
− αi − γi = 0

and substituting back in L. . .

aKKT conditions
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SVM
as a minimization problem

Dual problem

. . . we obtain the quadratic program: find the αi ’s such that

L = −
1

2

∑
i,j

yi yjαiαj~xi · ~xj +
∑

i

αi , αi , γi ≥ 0

is minimized, with 0 ≤ Nαi ≤ C and
∑

i αi yi = 0.

Note that:

The minimization problem only depends on scalar products between training data
points.

The vector ~ω can be expressed from the training data,

~ω =
∑

i

yiαi~xi .

The problem consists in finding the αi as described above. Once this is done, we
can classify a new sample ~x by computing,

d(~x) =
∑

i

yiαi~xi · ~x − b .
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Nonlinear classification
Non linearly-separable problems

The dual formulation is very useful for an additional reason. What if the training data
are as shown below ?

D. V. A quantitative study of the 2D Ising model with machine learning techniques



Nonlinear classification
Feature mapping

A non-separable problem in input space might still have a solution in a new space
through the feature map

Φ : ~x −→ Φ(~x)

In the case above ~x ∈ R2, Φ(~x) ∈ R3. In the new space, we might recover linear
separability.
The new minimization problem is

L = −
1

2

∑
i,j

yi yjαiαj Φ(~xi ) · Φ(~xj ) +
∑

i

αi

with 0 ≤ Nαi ≤ C and
∑
αi yi = 0. The vector ~ω =

∑
i yiαi φ(~xi ) is now a vector in

R3 and the decision function is

d(~x) =
N∑

i=1

yiαi Φ(~xi ) · Φ(~x)− b
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SVM
Kernel trick

Note that:

The minimization problem and the decision function only depend on scalar
products in feature space.

In principle, Φ could have a very large number of components, in which case the
problem could become computationally very demanding.

Say there exist a function K, called kernel, such that

K
(
~x , ~x ′

)
= Φ(~x) · Φ(~x ′)

then, the minimization problem becomes

L = −
1

2
αT yTK

(
~xi , ~xj

)
yα+ αT e, αT y = 0, 0 ≤ Nαi ≤ C

Where the notation has been made more compact, and e is a vector with 1 in every
component.
The decision function becomes

d(~x) =
N∑

i=1

yiαiK(~xi , ~x)− b

To be accceptable, a Kernel must be symmetric and positive semi-definite.
(Mercer’s condition).

The kernel is of crucial importance: it is the informational bottleneck of the
system.
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SVM
Kernel Methods

Some examples of Kernels:

Linear, K = ~x · ~x ′
Φ(~x) = (x1, x2, x3, · · · )

Polynomial, K = (co + ~xi · ~xj )
d . In the case d = 2,

Φ(~x) = (x2
1 , · · · , x2

N , x1x2, · · · , xN−1xN , c0x1, · · · , c0xN )

Gaussian Kernel. In this case Φ has an infinite number of components.

K(~x , ~x ′) = exp−
||~x − ~x ′||2

2σ2

Note that

In each case, d , c0 and σ are hyperparameters to be fixed to maximize the quality
of the classifier or using some prior knowledge on the system.

Note that complicated kernels can be obtained from simple ones as long as
Mercer’s condition is respected:
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SVM
Overfitting, Underfitting and Prior knowledge

Bias vs. Variance tradeoff

In choosing a Kernel we might incur in two opposite problems:

Underfitting: simple Kernel, large classification error. There are not enough free
parameters to fit. The bias is large.

Overfitting: complexa Kernel, small classification error. There are so many
parameters that they fit to the noise.

aAs in complicated

How to measure the quality of our machine?
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SVM
Cross validation

Cross Validation

Partition the original training data into a training set and a validation set. Count the
ratio R of errors of prediction. Repeat with a different partition.

As a result, we obtain the Score:
S = 1− R

which is a way to evaluate how well the results of this statistical analysis will
generalize to unknown samples.

S ∼ 1: good, the machine will correctly predict the class of new samples

S ∼ 0.5: bad, the machine will fail on most new samples.

Intuitively, if one removes a point which is not a support vector, nothing should
change. Thus,

R ≤
〈nSV〉

m
,

where m is the number of data points in the training set. Thus 〈nSV〉/m gives a
rough comparative metric of the quality of classification.

Other similar (and useful) inequalities can be shown to hold in Statistical
Learning Theory.
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SVM
Cross validation

Many different implementations:

Leave-One-Out: use one data point as the validation set, the rest as training set.

k-fold: partition the original data into k equal size subsamples, use one of these
in turn as validation set.

Stratified k-fold: same as before but respecting the distribution over the class
labels.
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Cross Validation and empirical error
A step back to statistical learning theory

SVM can be seen as the result of empirical risk minimization. Say we have a collection
of data points X , with labels Y , related by the probability distribution P(X , Y ).
Then, given a model f , we can compute its expected risk

R[f ] =

∫
dP(X , Y )V(Y , f (X )) (1)

where V is the loss function that we assume convex. Examples are

Indicator function (NP-Hard problem!): Statistics and Decision Theory.

Quadratic: Least squares.

Hinge loss: SVM with soft margin,

V(Y , sign d(X )) = max (0, 1− Y sign d(X ))

In this case F can be seen as the class of Kernels we choose.

The best model is found as
f ? = arg min

f∈F
R[f ]

Overfitting if F is too large

Underfitting if F is too small
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Empirical risk minimization
Structural Risk Minimization

We define the empirical risk as

Remp[f ] =
1

m

m∑
i=1

V(Yi , f (Xi )) ,

And it can be shown that the LOO cross-validation estimate of R is a unbiased
estimator of the Risk computed on n − 1 samples,

〈RLOO[fn]〉 = 〈R[fn−1]〉 .
Scholkopf, Smola

Structural Risk Minimization

A possible strategy to choose the model
that neither overfits nor underfits is to
progressively restrict the complexity of the
class of models F in which we look for the
optimum. Vapnik, Chervonekis
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The 2D Ising model
Definition and Numerical setup

The (ferromagnetic) Ising model is defined by the Hamiltonian,

H = −J
∑
〈i,j〉

σiσj , J > 0

where 〈i , j〉 denotes the sum over next neighbours and σi = ±.
For this study, a square lattice and D = 2, then the model is exactly solved and :

At Tc = 2/ ln
(

1 +
√

2
)

, there is a second order phase transition separating an

ordered from a disordered phase.

The order parameter associated to the transition is

m =
1

L2

L2∑
i=1

σi

The critical exponents are ν = 1 and γ = 7/4. Using the hyperscaling relations,
all the other exponents can be computed.
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The 2D Ising model
Numerical Setup

Several values of the linear size L were explored: L = 128, 240, 360, 440, 512,
760, 1024.

A rough scan in the temperature was performed, and then refined after evaluating
the magnetization and its susceptibility.

N = 200 decorrelated configurations were collected for later analysis.

The Wolff algorithm was used to avoid critical slowing down.

The magnetic susceptibility χ2 could be estimated at any intermediate T using
the multihistogram method.

The finite size behaviour of the pseudo-critical temperature Tc (L) and the critical
magnetic susceptibility χ2

c (L)

Tc (L)− Tc (∞) ∝ L1/ν , χ2
c (L) ∝ Lγ/ν

allows us to estimate Tc , ν and γ/ν. The rest of the indices can be obtained
with the hyperscaling relations.
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The 2D Ising model
Numerical setup

L Tmin Tmax nsteps

64 2.280 2.330 20

128 2.275 2.294 20

240 2.273 2.285 24

360 2.270 2.280 20

440 2.270 2.280 20

512 2.2665 2.2770 22

760 2.27000 2.27400 20

1024 2.27000 2.27300 30

L Tc χmax

64 2.3037(29) 1.284(37) · 102

128 2.28664(74) 4.590(97) · 102

360 2.27528(28) 2.781(65) · 102

440 2.27448(47) 3.97(10) · 103

512 2.27351(29) 5.24(14) · 103

240 2.27892(39) 1.383(28) · 103

760 2.27226(25) 1.035(21) · 104

1024 2.27145(23) 1.757(40) · 104

Table: On the left, scanning windows of temperatures for extracting the pseudocritical temperature
Tc (L) at each value of L; nsteps indicates the number of simulated values of T , all equally spaced
between the two extremes Tmin and Tmax. On the right, values of the pseudocritical temperature
Tc and the corresponding maximum of the magnetic susceptibility, as obtained from the
multi-histogram method.
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Multihistogram method
Determination of Tc and ν

0 250 500 750 1000

L

2.27

2.28

2.29

2.30

2.31

T
c
(L

)

Tc =2.26922(33)
ν =1.004(48)
χ2
r =0.36

Tc =2.26925(11)
ν = 1, χ2

r =0.3

0 250 500 750 1000
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γ/ν = 1.7634(68)
χ2
r =0.46

γ/ν = 7/4
χ2
r =0.66

D. V. A quantitative study of the 2D Ising model with machine learning techniques



Multihistogram method
Determination of Tc and ν

By fitting the following scaling laws,

Tc (L)− Tc (∞) ∝ L−1/ν , χ2
c (L) ∝ Lγ/ν

to the data, one obtains:

Tc ν χ2
r γ/ν χ2

r

2.26922(33) 1.004(48) 0.36 1.7634(68) 0.46

2.26925(11) 1 (exact) 0.3 7/4 (exact) 0.66

where χ2
r = χ2/d .o.f , and:

In the first row, the fits are performed with Tc , ν and γ as fittings parameters.

In the second raw, the fits are performed with ν and γ fixed at their known value,
and Tc used as a fitting parameter.

D. V. A quantitative study of the 2D Ising model with machine learning techniques



The 2D Ising model
Training the SVM

Our program

We want to use the same configurations produced for the “standard” study and
analyze the data with a SVM with a minimal set of assumptions.

Our claim:

Using a SVM, we can obtain estimates of the critical temperature, the corresponding
exponents and the global symmetry of the system.
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SVM analysis of the 2D Ising model
Setup

Our only assumption

There is a second order phase transition somewhere in the probed temperature range.

We will need a Training set: we take the 200 configurations at To and 200 at
Td > To . These training temperatures can be considered as additional
hyperparameters.

We classify 200 configurations at each intermediate temperature T using
homogeneous polynomial kernels of degrees n = 1, 2, 3 . . .. The degree of the
polynomial kernel can be considered as an hyperparameter.

The choice of using homogeneous polynomial kernels is less restrictive than it
seems.

We studied

For each pair To , Td , for each L and for each n:

The decision function d(~x):
1. Its dependence on To and Td .
2. Its value calculated on configurations at temperature T , for To ≤ T ≤ Td .

The score S that measures the quality of the classifier.

The ratio of number of support vectors nSV to the number of training points m.
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SVM analysis of the 2D Ising model
The decision function

For convenience, we studied

d̃(~x) =
1

2
d(~x)− b . (2)

The training temperatures

The training temperatures we initially chosen as far from each other as possible,
i.e.

To = 0.5, Td = 5.0

In the following, unless mentionned, we always verified that the final results were
independent of the choice of To and Td .

The estimate of 〈d̃〉

At each intermediate temperature T , 〈d̃〉 was obtained as an average the 200
configurations.

〈d̃〉 =
1

200

200∑
j=1

d̃(~xj ) .

where j labels the configuration.

Its error was computed by resampling.
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SVM analysis of the 2D Ising model
The decision function
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Figure: Odd power kernels on the left hand side, even power kernels on the right hand side. Larger
L’s behave similarly and are not included to avoid overcrowding the plots.

D. V. A quantitative study of the 2D Ising model with machine learning techniques



SVM analysis of the 2D Ising model
The decision function

Very different results for even and odd power kernels

Even powers

All the even power kernels behave as we expect

T → To , d̃ → 1, and T → Td , d̃ → 0 .

The neighbourhood of T ∼ 2.5 will be called critical region.

Odd powers

As a function of T , no clear trend.

The values of 〈d̃〉 seem to be always clustered around 0, the machine seems not
to be able if the analyzed T is closer to To than to Td .

The results are largely independent of the choice of To and Td provided these are far
from the critical region, in the case of even power kernels. Questions:

What is the physical meaning of d̃ in the even power case?

How does d̃ depend on To and Td ?

Why the odd/even power kernels behave so differently?
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SVM analysis of the 2D Ising model
Meaning of the decision function

Any even power kernel can be obtained from the quadratic one, any odd from the
linear one. For now, We restrict our attention to the quadratic kernel

K(~x , ~x ′) =

(
~x · ~x ′

L2

)2

,

where L2 has been introduced so that for identical configurations K(~x , ~x) = 1.

The Quadratic kernel

d̃(~x) =
1

2

nSV∑
i=1

yiαi K (~xi , ~x) =
1

2L4

nSV∑
i=1

yiαi

(∑
~a

xi (~a) x(~a)

)2

,

now define

C(~a, ~b) =
1

L4

nSV∑
i=1

yiαi xi (~a) xi (~b) .

then

d̃(~x) =
1

2

∑
~a,~b

C(~a, ~b) x(~a) x(~b) ,

The quantity C(~a, ~b) can be interpreted as an effective coupling between two spins at

positions ~a and ~b [Melko, Ponte]
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SVM analysis of the 2D Ising model
Meaning of the decision function

If we pick To and Td in various ways, and represent 〈C(~0, ~b)〉. . .
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Figure: In typographical ordering: (To , Td ) = (0.5, 5.0), (To , Td ) = (0.5, 2.0),
(To , Td ) = (2.0, 2.5), (To , Td ) = (3.0, 5.0).
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SVM analysis of the 2D Ising model
Meaning of the decision function

When To and Td are both above the critical region, d̃ is a short ranged version of
m2

If at least one of the training temperatures is below the critical region, then

d̃ ∝ m2

where m is the magnetization.

These results are mostly independent on the choice of C .

This will eventually allow us to obtain the critical temperature and the critical
exponents.
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SVM analysis of the 2D Ising model
A solid choice of Kernel

What happens with other Kernels, why should we discard them? Remember now two
useful informations to estimate the generalization ability of our machine:

The score S = 1− R where R is the classification error on a known test set

The ratio 〈nSV〉/m, where m is the number or data points in the training set, nSV

the number of support vectors.

The inequality

R <
〈nSV〉

m

With this, we did the following:

Picked all possible pairs (To , Td ) and train a SVM.

Performed a stratified 10-fold cross validation procedure in which nSV and R were
estimated.

Repeated at every value L of the linear size of the system.
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SVM analysis of the 2D Ising model
Scores at varying To , Td and n, at L = 128

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
T1

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

T
2

0.559(1)

0.51

0.51

0.51

0.51

0.51

0.51

0.51

0.51

0.0

0.88(3)

0.82(2)

0.738(4)

0.709(6)

0.718(6)

0.722(9)

0.721(7)

0.74(1)

0.0

0.0

0.9997(8)

0.974(4)

0.950(3)

0.965(4)

0.961(6)

0.955(5)

0.961(6)

0.0

0.0

0.0

0.998(2)

0.997(2)

0.994(2)

0.999(1)

0.999(1)

1.0

0.0

0.0

0.0

0.0

0.9997(8)

0.999(1)

0.994(3)

0.999(2)

0.999(2)

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

n=1

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
T1

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

T
2

1.0

1.0

0.558(3)

0.51

0.51

0.51

0.51

0.51

0.51

0.0

1.0

0.60(1)

0.539(4)

0.537(3)

0.534(3)

0.534(4)

0.533(3)

0.535(5)

0.0

0.0

0.818(9)

0.591(6)

0.586(3)

0.586(2)

0.586(3)

0.586(3)

0.586(3)

0.0

0.0

0.0

0.644(5)

0.642(4)

0.642(4)

0.642(4)

0.642(4)

0.642(4)

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

n=2

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Figure: Score (grayscale) and value of 〈nSV〉/n for each (To , Td ) at L = 128, n = 1 above, n = 2
below.
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SVM analysis of the 2D Ising model
Scores at varying To , Td and n, at L = 128

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
T1

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

T
2

1.0

0.998(2)

0.991(6)

1.0

1.0

1.0

1.0

1.0

1.0

0.0

1.0

0.999(1)

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

n=3

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
T1

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

T
2

1.0

1.0

0.324(4)

0.51

0.51

0.51

0.51

0.51

0.51

0.0

1.0

0.371(6)

0.537(4)

0.537(4)

0.537(4)

0.537(4)

0.537(4)

0.537(4)

0.0

0.0

0.55(1)

0.594(5)

0.594(6)

0.594(6)

0.594(6)

0.594(6)

0.594(6)

0.0

0.0

0.0

0.663(4)

0.663(4)

0.663(4)

0.663(4)

0.663(4)

0.663(4)

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

n=4

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Figure: Score (grayscale) and value of 〈nSV〉/n for each (To , Td ) at L = 128, n = 3 above, n = 4
below.
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SVM analysis of the 2D Ising model
Scores at varying To , Td and n, at L = 128

A lot of gray on the n = 1 case: the score is poor (remember that a score of 0.5
is the poorest possible)

For n = 2, good score with To < 2.5 and Td > 2.5.

The ratio 〈nSV〉/n is generally smaller for n = 2 and especially for To < 2.5 and
Td > 2.5.

Even power kernels behave like n = 2, odd ones like n = 1.

What do we learn?

We might as well ignore all powers other than n = 1 and n = 2.

The machine performs better if To and Td are chosen on either side of the
critical region.

Question

Why does the n = 2 Kernel perform so much better than the one with n = 1?

Symmetry!
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SVM
Symmetry and Kernels

Assume that we know that the input data must be symmetric with respect to some
transformation.
Examples:

Translation invariance if a particular object can be anywhere in a picture.

Rotation-Reflection invariance for a circular object

Internal invariance with respect to some transformation.

Then various approaches are possible

Filter the data so that the input are symmetric.

Restrict the class of Kernels to choose from so that they reflect the symmetry. 1

Symmetry in input data

Assume that the input data is symmetric with respect to the action of a symmetry
group G of elements g ,

~x → ~x ′ = g~x = (gx1, gx2, · · · , gxN ) .

We can ask the decision function to be invariant,

d(g~x) = d(~x) ∀g ∈ G , ~x ,

And, as a consequence, the kernel must be Totally Invariant (TI),

K(~x , g~x ′) = K(g~x , ~x ′) = K(~x , ~x ′) ∀g ∈ G , ~x , ~x ′

1Remember Structural Risk Minimization?
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SVM
Symmetry and Kernels

To implement our prior knowledge about the symmetry, we thus require:

Total invariance of the Kernel.

Completeness of the set of invariant features: every pair of orbits of the group
should be distinguishable by using the features in the set.

It can be shown that a TI kernel that also satisfies the second criteria can be obtained
by projecting on the group

KG (~x , ~x ′) =
1

|G |2
∑

g,g′∈G

K(g~x , g ′~x ′)

Group projection

For a generic function f (~x), we average over the action of the group

f̃ (~x) =
1

|G |
∑
g∈G

f (g~x)

where |G | is the order of the group. This operation is a projection in the mathematical sense.

There are two extreme cases:

If K is already invariant, then KG = K.

If the projection is null, only noise will be fitted.
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SVM
Symmetries in the case of the Ising model

In the case of the Ising model, the global symmetry is Z2

g~x = −~x

Odd homogeneous polynomial will be projected to 0, even homogeneous
polynomial will be projected to themselves.

In statistical learning theory, one can show that the expected error of classification
is reduced by the projection above if the dataset shares the symmetry.

R[PG [f ] ] ≤ R[f ]

where PG is the projection on the known symmetry group of the data.

The behaviour of the score S and of the ratio 〈nSV〉/m is a strong indication that
the symmetry of the model, which was a priori unknow to us, is Z2.

Disclaimer

The rigorous mathematical implication is:

Symmetry implies higher score

and not:

Higher score implies symmetry

This information can however be used comparatively.
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The 2D Ising model
The estimates of Tc (L) and χdmax (L)

Our strategy

Since d̃ ∝ m2, the variance (susceptibility) σd of d̃ must reach a maximum at the
pseudocritical temperture Tc (L). Thus:

At each volume L, compute 〈d̃〉 and its error/susceptibility σd over the range of
T ’s and extract the location and value of the maximum of σd .

Fit the scaling behaviour of Tc (L) and σd,max(L) with the appropriate power law.

Tc (L)− Tc (∞) ∝ L1/ν , Vσd,max(L) ∝ L
γ
ν
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The 2D Ising model
The estimates of Tc (L) and χdmax (L)

L Tc (L) Vσd

64 2.2852(31) 1.426(31) · 103

128 2.2792(12) 4.782(85) · 103

240 2.2753(11) 1.448(24) · 104

360 2.27204(51) 2.995(55) · 104

440 2.27194(46) 4.193(82) · 104

512 2.2712(13) 5.221(87) · 104

760 2.27098(31) 1.068(21) · 105

1024 2.27085(38) 1.740(26) · 105

Table: Position (Tc (L)) and volume-multiplied value (Vσd ) of the maximum of the decision
function error at each investigated lattice size L.
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Computation of Tc and ν

0 250 500 750 1000

L

2.270

2.275

2.280

2.285

2.290

T
c
(L

)

Tc =2.26968(66)
ν =0.95(18)
χ2
r =0.76

Tc =2.26952(25)
ν = 1, χ2

r =0.65

0 250 500 750 1000

L

0

25000

50000

75000

100000

125000

150000

175000

200000

V
σ
d
(L

)

γ/ν = 1.7329(94)
χ2
r =1.54

γ/ν = 7/4
χ2
r =2.06
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Summary

Tc ν χ2
r γ/ν χ2

r

2.26968(66) 0.95(18) 0.79 1.733(10) 1.54

2.26954(25) 1 (exact) 0.65 7/4 (exact) 2.06

Table: Results obtained with the SVM.

Tc ν χ2
r γ/ν χ2

r

2.26922(33) 1.004(48) 0.36 1.7634(68) 0.46

2.26925(11) 1 (exact) 0.3 7/4 (exact) 0.66

Table: Results obtained with the standard analysis.
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Conclusions and WIP

Conclusions

Tc , ν and γ could be estimated by interpreting the decision function.

The accuracy of these estimates is slightly worse than that obtained with the
multihistogram method.

A strong suggestion to the global symmetry of the model was given by comparing
the behaviour of the Score and of the number of support vectors over the possible
polynomial kernels.

Future directions & Improvements

Study the bias introduced by considering only 200 configurations.

Study what kind of order parameters can be identified with the above algorithm.
Especially interesting are the transitions for which no local order parameter can
be identified.

First order transitions?

Try other global symmetries (Potts Model, WIP).

Thank you for your attention
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SVM
Empirical Risk Minimization

Given a particular real valued non-negative convex loss function V(ŷ , y), the risk
associated to the model function f can be expressed as,

R[f ] = E[V(f (x), y ] =

∫
dP(x , y)V(f (x), y) , (3)

where P(x , y) is the underlying probability distribution of x and y . The solution to
the learning problem reads then

f ? = arg min
f∈F

R(f ) , (4)

where F is a class of model functions among which we expect to find f ?
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SVM
Symmetry and Statistical Learning Theory

We say that the underlying probability distribution P(x , y) is symmetric with respect
to some compact symmetry group G of elements g , if

P(g x , y) = P(x , y), ∀g ∈ G . (5)

We define the projection of a function f on the group G as

PG (f ) =
1

|G |
∑
g∈G

f (gx) (6)

where |G | is the order of the group, and g ∈ G .
The operator PG , called Reynolds operators in the mathematics litterature, is a
projector. Thus, it partitions F in a unique way,

H = HG ⊕H⊥ (7)

where HG is invariant. It follows that H⊥ ∼ Ker(PG ). For any function in H,

f (x) = f G
I (x) + f⊥(x) = PG (f ) + f⊥(x) (8)

with PG (f⊥(x)) = 0.
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Symmetry and Statistical Learning Theory

First, decompose X in the orbits of the group G ,∫
X

dP(x , y) =
∑
g∈G

∫
X/G

dP(gx , y) (9)

where X/G is the X space of orbits of G . Thus

R(f ) =
∑
g∈G

∫
X/G

dP(gx , y)V(f (gx), y) . (10)

Now if dP(gx , y) = dP(x , y), by letting the sum over the elements of G filter to the
right, we obtain

R(f ) =

∫
X/G

dP(x , y)
∑
g∈G

V(f (gx), y) =
1

|G |

∫
X

dP(x , y)
∑
g∈G

V(f (gx), y) . (11)

Since L is convex,

1

|G |
∑
g∈G

V(f (gx), y) ≥ V

 1

|G |
∑
g∈G

f (gx), y

 = V (PG [f ], y) , (12)

Thus, being V non-negative, the integrals of the quantities in the inequality lie in the
same order, and we obtain,

R(f G (x)) ≤ R(f ) . (13)

Thus, starting from F , the expected risk is lower if we pick f from the invariant
subspace FG
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