Simulations of $N_{\rm f}=3+1$ QCD and first physical results

Roman Höllwieser, <u>Francesco Knechtli</u>, Tomasz Korzec

- Introduction
- Massive O(*a*) renormalization and improvement scheme for dynamical charm
- Tuning and scale setting
- Sytematics: Lattice artifacts, finite volume, decoupling
- Charmonium spectrum
- Conclusions & Outlook

based on 2002.02866, Eur.Phys.J.C 80 (2020)

Lattice Seminar, Humboldt-Universität zu Berlin & NIC, DESY Zeuthen, June 8. 2020

Part I

Introduction

Dymamical charm on the lattice

Dynamical charm: why?

- Appelquist-Carazzone decoupling theorem : heavy quarks decouple from low energy physics [T. Appelquist, J. Carazzone, Phys.Rev.D 11 (1975)]
- Effective theory [S. Weinberg, Phys.Lett.B 91 (1980)], 1/M² corrections make only 2 permille effects for charm [FK, T. Korzec, B. Leder, G. Moir, Phys.Lett.B 774 (2017)]
- But dynamical charm is essential for example to compute charm-annihilation effects in charmonium or the four-flavour Λ-parameter without perturbation theory for charm or string breaking

Dynamical charm: issues on the lattice

- Large lattice artifacts of order (*am_c*)² with improved or even *am_c* with unimproved Wilson fermions
- Cost and tuning of the simulations

Gradient Flow

[M. Lüscher, JHEP 08, 071 (2010); R. Narayanan, H. Neuberger, JHEP 03, 064 (2006)]

Flow equation

$$\partial_t B_\mu = D_
u G_{
u\mu}, \qquad B_\mu \big|_{t=0} = A_\mu$$

Correlators of B_{μ} at t > 0 are renormalized quantities [M. Lüscher, P. Weisz, JHEP 1102, 051 (2011)]

[M. Lüscher, 1308.5598]

Physical scales $\sqrt{t_0}$, $\sqrt{t_c}$ and w_0

Based on $\mathcal{E}(t) = t^2 \langle \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} \rangle$, together with

 $\begin{array}{rcl} \mathcal{E}(t_0) &=& 0.3\,,\\ \mathcal{E}(t_c) &=& 0.2\,,\\ w_0^2 \mathcal{E}'(w_0^2) &=& 0.3\,. \end{array}$

[M. Lüscher, JHEP 08, 071 (2010); S. Borsanyi et al., JHEP 1209, 010 (2012)]

Ensemble B

F. Knechtli (University of Wuppertal)

Decoupling $N_{\rm f} = 2 \rightarrow N_{\rm f} = 0$

Effective theory prediction $R(M) = R(\infty) + k\Lambda^2/M^2$ with fit parameter k

[FK, T. Korzec, B. Leder, G. Moir, Phys.Lett.B 774 (2017)]

Lattice artifacts

 $N_{\rm f}=2$ twisted mass fermions at maximal twist, $O((a\mu)^2)$ lattice artifacts

Isovector charmonium masses, continuum extrap. of $m_{Vector}/m_{Pseudoscalar}$ $\sqrt{t_0}m_P = 1.807463$ fixed (\approx charm mass) $\Rightarrow (am_P)^2 = 3.3a^2/t_0$ Continuum extrap. reliably starts at lattice spacings presently achievable in large-volume simulations with light quarks

F. Knechtli (University of Wuppertal)

$$N_{\rm f} = 3 + 1 \, {\rm QCI}$$

Decoupling in charmonium

Comparison $N_{\rm f} = 2$ charm quarks with pure gauge

Sea effects $([m_V/m_P]^{N_f=2} - [m_V/m_P]^{N_f=0})/[m_V/m_P]^{N_f=2} = 0.12(7)\%$ Difference with exp: no light quarks, charm annihilation, electromagnetism; one charm quark too many [S. Cali, FK, T. Korzec, Eur.Phys.J.C 79 (2019)]

F. Knechtli (University of Wuppertal)

Part II

Massive O(*a*) renormalization and improvement scheme for dynamical charm

Symanzik improved 3+1 scheme for Wilson quarks

Mass-independent scheme

- Symanzik improvement for Wilson fermions: $\mathcal{O}(a) \longrightarrow \mathcal{O}(a^2)$
- Mass-independent renormalization scheme: renormalization and improvement factors do not depend on quark masses
- Improvement terms ∝ *am_q* M. Lüscher, S. Sint, R. Sommer, P. Weisz, Nucl.Phys.B 478 (1996); T. Bhattacharya, R. Gupta, W. Lee, S. R. Sharpe, J. M. S. Wu, Phys.Rev. D73 (2006)

$$\begin{aligned} \overline{g}^2 &= Z_g(\widetilde{g}_0^2, a\mu)\widetilde{g}_0^2, \quad \widetilde{g}_0^2 &= g_0^2(1 + ab_g(g_0)\operatorname{tr}[M_q]/N_{\mathrm{f}}) \\ \overline{m}_i &= Z_m(\widetilde{g}_0^2, a\mu) \left[m_{q,i} + (r_m(\widetilde{g}_0^2) - 1) \frac{\operatorname{tr}[M_q]}{N_{\mathrm{f}}} + a \left\{ b_m(g_0^2) m_{q,i}^2 + \overline{b}_m(g_0^2) \operatorname{tr}[M_q] m_{q,i} \right. \\ &+ \left. (r_m(g_0^2) d_m(g_0^2) - b_m(g_0^2)) \frac{\operatorname{tr}[M_q^2]}{N_{\mathrm{f}}} + (r_m(g_0^2) \overline{d}_m(g_0^2) - \overline{b}_m(g_0^2)) \frac{(\operatorname{tr}[M_q])^2}{N_{\mathrm{f}}} \right\} \right] \end{aligned}$$

bare subtracted quark masses of flavor *i*: $m_{q,i} = m_i - m_{crit}(g_0^2)$, $M_q = \text{diag}(m_{q,1}, \dots, m_{q,N_i})$

 Pratically almost impossible to determine all *b* coefficients non-perturbatively, usually low order perturbation theory is OK for light quarks but charm gives an order of magnitude larger contribution

Symanzik improved 3+1 scheme for Wilson quarks contd

Alternative: massive scheme

- Massive renormalization scheme with close to realistic charm mass m_c and $m_{uds} = \sum_{i=uds} m_i^{\text{phys}}/3$ P. Fritzsch, R. Sommer, F. Stollenwerk, U. Wolff, JHEP 06 (2018)
- mass-dependent renormalization and improvement factors

$$\overline{g}^2 = \widetilde{Z}_g(g_0^2, a\mu, aM)g_0^2$$

$$\overline{m}_i = \widetilde{Z}_m^i(g_0^2, a\mu, aM)[m_i - \widetilde{m}_{\rm crit}(g_0^2, a{\rm tr}[M_q])]$$

b- and *d*-terms are absorbed into \tilde{Z} ; $(r_m - 1)$ -term into $\tilde{m}_{crit} = m_{crit} - (r_m - 1)$ tr $[M_q]/N_f$

- clover action term Sheikholeslami and Wohlert (SW), Nucl.Phys.B 259 (1985) $S_{\rm SW} = a^5 \tilde{c}_{\rm sw}(g_0^2, aM) \sum_x \bar{\psi}(x) \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}(x) \psi(x)$
- non-perturbatively determined clover coefficient $\tilde{c}_{sw}(g_0^2, aM)$
- reduce the number of mass parameters via $M_{\rm q} = {\rm diag}(m_{{
 m q},l},m_{{
 m q},l},m_{{
 m q},l},m_{{
 m q},c})$

Part III

Tuning and scale setting

Action

 $\textit{S} = \textit{S}_{g} + \textit{S}_{f}$, open boundaries in time

Gauge action

Lüscher-Weisz M. Lüscher, P. Weisz Commun.Math.Phys. 97 (1985) and Phys.Lett.B 158 (1985)

$$S_{g}[U] = \frac{1}{g_{0}^{2}} \left\{ \frac{5}{3} \sum_{\rho} w(\rho) \operatorname{tr} \left[1 - U_{\rho}(x) \right] - \frac{1}{12} \sum_{r} w(r) \operatorname{tr} \left[1 - U_{r}(x) \right] \right\}$$

oriented plaquettes *p* and rectangles *r*; weights w(p) = w(r) = 1 except for spatial boundaries, there $w(p) = w(r) = 1/2 \leftrightarrow$ boundary improvement term $c_G = 1.0$

Fermion action

 $\mathcal{O}(a)$ improved Wilson fermions

 $S_{f}[U,\overline{\psi},\psi] = a^{4}\sum_{f=1}^{4}\sum_{x}\overline{\psi}_{f}(x)\left[D_{W}+m_{f}\right]\psi_{f}(x) + S_{SW}$

with clover coefficient $\tilde{c}_{sw}(g_0^2, aM) = \frac{1+Ag_0^2+Bg_0^4}{1+(A-0.196)g_0^2}$, A = -0.257, B = -0.050 P. Fritzsch, R. Sommer, F. Stollenwerk, U. Wolff, JHEP 06 (2018) and boundary improvement term $c_F = 1.0$

Preliminary work

Scale setting in CLS $N_{\rm f} = 2 + 1$ QCD

- relation between bare coupling g_0 and lattice spacing in fm
- dimensionless quantity $\sqrt{t_0^{\star}}m_{had}$ in the continuum limit
- *m*_{had} experimentally accessible quantity of mass dimension 1
- t^{*}₀ (mass dimension -2) flow scale M. Lüscher, JHEP 08 (2010) at the symmetric mass point
- $\sqrt{8t_0^{\star}} = 0.413(5)(2)$ fm M. Bruno et al., Phys.Rev.Lett. 119 (2017); M. Bruno, T. Korzec, S. Schaefer, Phys.Rev.D 95 (2017)

Non-perturbative decoupling of the charm quark

• scale t_0^* is the same in $N_f = 3$ and $N_f = 3 + 1$ theories, up to small corrections $O(1/m_{charm}^2)$

• study of non-perturbative decoupling of the charm quark Bruno et al., Phys.Rev.Lett. 114 (2015); Knechtli et al., Phys.Lett.B 774 (2017); Athenodorou et al., Nucl.Phys.B 943 (2019); Calì et al., Eur.Phys.J.C 79 (2019)

Scale setting and tuning of $N_{\rm f} = 3 + 1$ QCD

• computation of t_0^*/a^2 at the mass point $m_{up} = m_{down} = m_{strange}$ and

$$\phi_4 \equiv 8t_0 \left(m_{\rm K}^2 + \frac{m_{\pi}^2}{2} \right) = 12t_0 m_{\pi}^2 = 1.11$$

$$\phi_5 \equiv \sqrt{8t_0} \left(m_{\rm D_s} + 2m_{\rm D} \right) = \sqrt{72t_0} m_{\rm D} = 11.94$$

 we use first tuning results from P. Fritzsch, R. Sommer, F. Stollenwerk, U. Wolff, JHEP 06 (2018)

 β = 3.24 (bare coupling)

- $\kappa_{\rm uds} = 0.134484$ (light quark mass)
 - $\kappa_c = 0.12$ (charm quark mass)
- $c_{\rm sw} = 2.188591$ (bulk improvement)

Simulations using openQCD-1.6 Lüscher, Schaefer

- start with algorithmic setup of CLS's H400 simulation Bruno et al., JHEP 02 (2015) and Bruno, Korzec, Schaefer, Phys.Rev.D 95 (2017) and add a charm quark
- u/d quark doublet in terms of even-odd prec. \hat{D} with weight

 $\propto \det[D^{\dagger}D] \rightarrow \det[(D_{oo})^2] \det \frac{\hat{D}^{\dagger}\hat{D} + \mu_0^2}{\hat{D}^{\dagger}\hat{D} + 2\mu_0^2} \det[\hat{D}^{\dagger}\hat{D} + \mu_0^2]$ (twisted mass

reweighting type 2 Lüscher, Palombi 0810.0946) and further factorization $det[\hat{D}^{\dagger}\hat{D} + \mu_0^2] = det[\hat{D}^{\dagger}\hat{D} + \mu_N^2] \times \frac{det[\hat{D}^{\dagger}\hat{D} + \mu_0^2]}{det[\hat{D}^{\dagger}\hat{D} + \mu_1^2]} \times \ldots \times \frac{det[\hat{D}^{\dagger}\hat{D} + \mu_{N-1}^2]}{det[\hat{D}^{\dagger}\hat{D} + \mu_1^2]}$ with an given by (0.0005, 0.005, 0.55, 0.55) we are a size of the second sec

with a_{μ_i} given by $\{0.0005, 0.005, 0.05, 0.5\}$ Hasenbusch, Phys.Lett.B 519 (2001)

- strange and charm quarks are simulated with RHMC, Zolotarev rational functions have degrees 12 and 10
- rational function of the strange is further decomposed (partial fraction decomposition)
- both, doublet and rational parts need reweighting
- gauge + 13 pseudo-fermion fields on 3 different time scale integration levels: $N_0 = 2, N_1 = 1, N_2 = 8$
- 2nd and 4th order Omelyan, Mryglod, Folk, Comp.Phys.Comm. 151 (2003) integrators
- SAP preconditioning and low-mode-deflation based on local coherence

Lüscher, Comp.Phys.Comm. 156 (2004), JHEP 07 (2007); Frommer et al. SIAMJ.Sci.Comp. 36 (2014)

Tuning of $\phi_4 = 1.11$ (A1)

Tuning of $\phi_5 = 11.94$ (A1)

Tuning Results: $\kappa_l = 0.13440733$, $\kappa_c = 0.12784$

ens.	$\frac{T}{a} \times \frac{L^3}{a^3}$	Lm_{π}^{\star}	N _{ms}	t_0/a^2	$am_{\pi,K}$	am _{D,Ds}	ϕ_4	ϕ_5
A0	$96 imes 16^3$	1.7	700	8.8(2)	0.310(6)	0.614(17)	10.2(9)	15.5(4)
A1	$96 imes 32^3$	3.5	1954	7.43(4)	0.1138(8)	0.5251(7)	1.16(2)	12.17(4)
A2	128×48^3	5.3	1934	7.36(3)	0.1108(4)	0.5236(4)	1.087(6)	12.06(2)

- The integrated autocorrelation time of t_0 is $\tau_{\text{int},t_0} \approx 20 \pm 10$ [4 MDU].
- Assuming decoupling, our value of $t_0/a^2 \approx 7.4$ corresponds to a lattice spacing $a \approx 0.054$ fm.
- In φ₄ and φ₅ the mass dependence of t₀ and the masses go in opposite directions.
- The sampling of the topology is sufficient.

Tuning of ensemble B and mis-tuning corrections

ens.	$rac{T}{a} imes rac{L^3}{a^3}$	β	<i>a</i> [fm]	Lm_{π}^{\star}	<i>N_{ms}</i> [4 MDU]	$ au_{\it exp}$
A2	128×48^3	3.24	0.0536(11)	5.354(13)) 1934	25
В	144×48^3	3.43	0.0428(7)	4.282(14)) 2000	40
	$rac{d\langle \mathcal{O}_i angle_{QCD}}{dm} =$	$\left\langle \frac{\partial \mathcal{O}_i}{\partial m} \right\rangle$	$\left. \right\rangle_{QCD} - \left\langle \mathcal{O}_i \frac{\partial}{\partial} \right\rangle$	$\left \frac{\partial S}{\partial m}\right\rangle_{QCD} + \langle$	$\mathcal{O}_i\rangle_{QCD}\left\langle \frac{\partial S}{\partial m} \right\rangle_{QCD}$	
	1.11 =	$\phi_4 + \Big($	$\left(\frac{d\phi_4}{dm_u}+\frac{d\phi_4}{dm_d}+\frac{d\phi_4}{dm_d}\right)$	$+ \frac{d\phi_4}{dm_s} \bigg) \Delta d$	$m_l + rac{d\phi_4}{dm_c}\Delta m_c$	
	11.94 =	$\phi_5 + \Big($	$\left(\frac{d\phi_5}{dm_u}+\frac{d\phi_5}{dm_d}+\frac{d\phi_5}{dm_d}\right)$	$+ \frac{d\phi_5}{dm_s} \bigg) \Delta b$	$m_l + rac{d\phi_5}{dm_c}\Delta m_c$	
	f =	$f(\langle \mathcal{O}_1 angle$	$_{QCD},\ldots,\langle\mathcal{O}_{N} angle$	_{QCD} , m)		
	$f_{\text{corrected}} =$	$f + \left(\frac{1}{\alpha}\right)$	$\frac{df}{dm_u} + \frac{df}{dm_d} + $	$\left(\frac{df}{dm_s}\right)\Delta m$	$u_l + rac{df}{dm_c} \Delta m_c$	
ens.	a∆m _l	a∆	m _c			
A2 B	0.00031(6) -0.00001(5)	-0.00 -0.000	43(9) 04(12)			
F. Knec	chtli (University of Wuppertal)		$N_c = 3 + 1 Q$	CD		19/31

History of the topological charge $Q(t \approx t_0)$ (ens. B)

History of $t^2 E(t)$ where $E(t) = \frac{1}{4}G^a_{\mu\nu}(t)G^a_{\mu\nu}(t)$ (ens. B)

Part IV

Sytematics: Lattice artifacts, finite volume, decoupling

Finite volume scaling effect of am_{π}

*: Gasser and Leutwyler, Phys.Lett.B 184 (1987); Colangelo, Dürr, Haefeli, Nucl.Phys.B 721 (2005)

Effects of open boundaries (ens. B)

Continuum limit, 1.7 permille non- a^2 lattice artifacts

Test of decoupling $\textit{N}_{\rm f}=3+1 \rightarrow \textit{N}_{\rm f}=3~\text{CLS}$

Charm sea effects far below 1% Continuum extrapolations by constrained linear fits to plaq and clov definitions Zeuthen: Symanzik-improved flow and observable A. Ramos, S. Sint, Eur.Phys.J.C 76

Part V

Charmonium spectrum

Meson spectrum (ens. B)

 $f_{\mathcal{OO}}(x_0, y_0) = a^6 \sum_{\mathbf{x}, \mathbf{y}} \langle \mathcal{O}(\mathbf{x}) \mathcal{O}^{\dagger}(\mathbf{y}) \rangle, \, \mathcal{O} = \bar{q}_1 \Gamma q_2$

Charmonium Spectrum

	$\eta_{c}~(0^{-+})$	J/ψ (1 $^{}$)	χ_{c0} (0 ⁺⁺)	χ_{c_1} (1 ⁺⁺)	$h_{c} (1^{+-})$
m _{eff} A2 [GeV] m _{eff} B [GeV]	2.990(4) 2.973(4)	3.104(4) 3.086(5)	3.445(91) 3.458(22)	3.605(13) 3.538(37)	3.683(12) 3.650(41)
PDG [GeV]	2.9834(5)	3.096900(6)	3.4148(3)	3.51066(7)	3.52538(11)
		A2	В	cont.	PDG
hyperfine sp	plitting $\frac{m_{J/\Psi} - r}{m_{\eta_c}}$	^{<i>n</i>_{ηc}} 0.0382	(3) 0.0380(3	3) 0.0376(11) 0.038

Chiral trajectories for charmonia X

- choice ϕ_4 , $\phi_5 \leftrightarrow$ sum of light quark masses and charm mass physical
- chiral trajectories: lines $\phi_4 = \text{const.} (\leftrightarrow \text{constant tr}(\bar{m}) \text{ M. Bruno, T. Korzec, S. Schaefer, Phys.Rev.D 95 (2017)}, \phi_5 = \text{const.}$
- approach the physical point by decreasing $\bar{m}_u = \bar{m}_d$ and increasing \bar{m}_s
- no light quarks in the valence sector, hence the derivatives $dm_x/d\bar{m}_u = dm_x/d\bar{m}_d = dm_x/d\bar{m}_s$ at the symmetric point
- $m_x^{\text{phys}} = m_x + (\Delta \bar{m}_u + \Delta \bar{m}_d + \Delta \bar{m}_s) \frac{dm_x}{d\bar{m}_u} + O(\Delta^2)$
- linear term vanishes along trajectories with tr $(\bar{m}) = const$.

Part VI

Conclusions & Outlook

Conclusions & Outlook

Conclusions

- scale setting and tuning of $N_{\rm f} = 3 + 1$ QCD
- massive renormalization and improvement scheme with a non-perturbatively determined clover coefficient
- two ensembles with a = 0.054 fm and a = 0.043 fm
- ratios of flow scales and test of decoupling
- charmonium spectrum and hyperfine splitting

Outlook

- further states, smearing, distillation, charm-annihilation, string breaking
- continuum limit
- $N_{\rm f} = 2 + 1 + 1$
- Λ, α_S in $N_f = 4$

ens.	$rac{T}{a} imes rac{L^3}{a^3}$	a [fm]	Lm_{π}^{\star}
A1	$96 imes 32^3$	0.054	3.5
A2	$128 imes48^3$	0.054	5.3
В	$144 imes48^3$	0.043	4.3
C ?	$192 imes 64^3$	0.032	4.2