
1st Hackathon – Summary of Constellation 3.11.2023

Table of Contents
Outline of the framework...2
Satellite states..3
 Communication channels..3

A) Controlling...3
B) Logging..5
C) Data:...6
D) Heartbeating...6
CHIRP protocol...7
 Config files:..7

Outline of the framework

network of satellites that have a state and
listen to commands

listeners that are passive components that
can appear and disappear as they like

last part is a controller that has no state =
not a satellite
but is something that can disconnect and
reconnect
its the only component that can send
commands to the satellites
(e.g. a user interface)

question: what happens if we have a
problem, e.g. network outrage, satellite
goes down, ...
for this we came up with heartbeat system
when the controller distributes setup information, all controllers are told which componentes they
need to care about
if one goes into error state or its heartbeat stops, the satellite goes into a safe state

the heartbeat channel is also useful because after reconnecting the controller it will know about the
state of the entire network after one heartbeat cycle

so the system is not autonomous, but on their own each component can go into a safe state when
another has a problem

Satellite states

a satellite is started in idle, the controller can initiate state transiions

regular order of things idle-init-orbit-run and back

extra steps: reconfiguring (e.g. change a voltage) without going all the way down to init
--> fast way to do scans
dashed line = optional, i.e. programmer of a satellite can chose to implement this or not

other special states: error state. only resetable to idle by manual intervention of user (reset the error
after fixing the problem - might be something in software, could also be a hardware interlock switch
if implemented by user).
when the other satellites in orbit or run state detect this, they go to safe state

Communication channels

A) Controlling

command request: consist of multiple parts
1) command , e.g. “load”
2) header (time, sender)
3) optional parameters, e.g. config options and parameter values for a configure commands

reply
1) one of a number of possible acknowledgments (see below)
2) header (time, sender)
3) optional payload in return

B) Logging

two other channels, work similar
1. monitoring channel , e.g. trigger rates,
temperatures – auxiliary information that
helps the user monitor the state of the system
contains first an idenfitication
then a header – time, sender, type of data to
follow
2. log channel, that contains a log level (e.g.
trace, debug, info, warning, error, status)
also a header, then a log message

the listeners can chose which topic to
subscribe to (“LOG/DEBUG”, “STAT/TEMP)
only messages which have a subscriber will
be distributed over the network

example implementations: mattermost logger
that collects log messages and sends them to
the network

Other example: first hacky implementation: python code to read stat of raspberry cpu temp and
publish on a grafana dashboard

C) Data:

always a pipeline, ie point-to—point connection
satellite that delivers data, another satellite that writes it to disk

very fast transfer for message blocks >1kb
(just for very small data blocks the network overhead takes over)

D) Heartbeating

two classes
a) a thread that every second broadcasts the state of the satellites
b) a heartbeat checker that listens to other’s heartbeats

Tested implementation
once you go into orbit state, you listen to the heartbeats of the other satellites
screenshot example:
once one of them is gone or failure triggered, the other two go into safe state

CHIRP protocol

for network discovery – don’t want to have to enter all IPs and ports by hand when setting up a
measurement environment

when a satellite o.ä starts it will send a message offering up what it is and what services it offers

If a satellite starts later, it can send a request, e.g. for a logging service, and all logging services on
the network that offer this service will reply again

https://gitlab.cern.ch/constellation/constellation/-/blob/master/docs/protocols/chirp.md

Config files:

Two example ideas (toml, yaml)
Need to establish a way that the config is provided to the satellites
then the rest can also be opened to user implementations

	Outline of the framework
	Satellite states
	Communication channels
	A) Controlling
	B) Logging
	C) Data:
	D) Heartbeating
	CHIRP protocol
	Config files:

