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String theory:

‣ originally motivated by the goal of unifying the theory of general relativity with 
quantum mechanics

‣ has generated several tools leading to amazing new results and applications in 
various fields. In particular in mathematical physics

Introduction

These new results are often a consequence of string dualities: highly non-trivial relations 
which arise within a string theory context



Example: Mirror symmetry

Underlying intuition: string propagation in both spaces is identical.

Application: difficult computations on one manifold can be mapped into simpler 
problems on its mirror partner. 

manifold X manifold X̃

CP2

Introduction

Canonical bundle over  
(local )

ℂℙ2

ℂℙ2

 [Candelas-de la Ossa-Green-Parkes, Chiang-Klemm-Yau-Zaslow, ….]



Introduction

Example:  the TS/ST correspondence

topological string theory 
on toric CY manifolds

spectral theory of QM  
operators on the real line

Σg
ϕ

E1

E2

E3

‣ concrete toy model to study non-perturbative effects in string theory and the 
corresponding notion of quantum geometry

‣ surprising relation between enumerative geometry and spectral theory 

[AG-Hatsuda-Mariño, …..]



Summary

There have been many applications and tests of the TS/ST correspondence but 
eventually we would like to give a mathematical proof of it.

In a series of papers we have unveiled the role played by isomonodromic deformation 
equations toward a proof of this duality.

In addition, this led to new results in the spectral theory of Painlevé kernels and in the 
study of  four dimensional  theories at strong coupling.$ = 2

[Bonelli-AG-Tanzini 2016-2017, Gavrylenko-Hao-AG 2023, WIP]

[François-AG 2023]



Topological string theory

Topological string theory is a simplified model of string theory which we often 

use in mathematical applications. The free energies of this model   encode in 

a precise way the enumerative geometry of the target space X

Fg

Fg(t) = ∑
d≥1

Nd
g e−dt

 are the Gromov-Witten (GW) invariants: “count” holomorphic mapsNd
g

ϕ : →Σg X

t: Kähler parameter of X



‣ Gopakumar-Vafa functions 

‣ Nekrasov functions  

‣ Nekrasov-Shatashvili functions

. . .
Examples:

Special functions

An interesting aspect of topological string theory is that it geometrically engineers 
 supersymmetric gauge theories in four dimension. This interplay led to the 

discovery of new classes of special functions that today permeate many areas of 
theoretical and mathematical physics: from general relativity to integrable systems.

$ = 2



Special functions

Example 1: the Nekrasov partition function of  4-dim SU(2)  SYM at $ = 2 ϵ1 + ϵ2 = 0

‣ Let , then  is convergent 

‣ Physically  is the instanton counting parameter in SYM whereas vev of 
scalar in the vector multiplet 

‣  the  background parameters. We can set without loss of generality   

‣ Via the AGT correspondence this makes contact with Liouville CFT at 

2σ ≠ ℤ ℬ(σ, t)

t ∼ e−1/g2
YM σ ∼

ϵ1, ϵ2 Ω ϵ1 = 1 = − ϵ2

c = 1

where   with   ℬ(σ, t) = 1 + ∑
n≥1

cn(σ)tn c1(σ) = 1
2σ2 , c2(σ) = 8σ2 + 1

4σ2(4σ2 − 1) , . . .

Comments:

[Its-Lisovyy-Tykhyy 2014]

Z(σ, t) = tσ2 ℬ(σ, t)
G(1 + 2σ)G(1 − 2σ)



Example 2: the Nekrasov-Shatashvili free energy the for 4-dim SU(2)  SYM $ = 2

FNS(t, σ) = − ψ (−2)(1 − 2σ) − ψ (−2)(1 + 2σ) + σ2 log(t) + ∑
n≥1

tnbn(σ)

‣   is convergent 

‣ This corresponds to setting  in the  background  

‣ Via AGT this makes contact with Liouville theory at  

∑
n≥1

tnbn(σ)

ϵ2 = 0, ϵ1 = 1 Ω

c → ∞

where

Comments:

b1(σ) = 2
4σ2 − 1 , b2(σ) = (20σ2 + 7)

(4σ2 − 1)3 (4σ2 − 4)
, ⋯

 polygamma function of order -2  ψ (−2)(x) :

Special functions



‣  This partition function can be realized via 4d/2d systems 

‣ In AGT, the Fourier transform  has a natural interpretation in Liouville CFT 

@  as 5-point of four primaries with a degenerate field insertion (the  field)
∫ ei2xyZD(y, t, σ)

c = 1 Φ2,1(y)

ZD(y, t, σ) = Γ (−iy − σ + 1
2 ) Γ (−iy + σ + 1

2 ) Z(t, σ)(1 + t
1 + 2iy

4σ4 + (−2y + i)2σ2 + 1(t2))

Comments:

[Drukker et al, Alday et al, Gaiotto et al, Kozlowski et al,Gorsky et al , Bullimore  et al, Sciarappa, Jeong et al..]

Example 3: the Nekrasov partition function the for 4-dim SU(2)  SYM at   in 
presence of a half-BPS surface defect

$ = 2 ϵ1 + ϵ2 = 0

Special functions



Today we will see that these special functions play a central role in the in spectral theory of 
a certain class of quantum mechanical operators

Example: Schrödinger operators

Spectral theory is a branch of mathematics that is concerned with the study of the spectrum 
of operators, for example by finding their eigenvalues and eigenfunctions.

(−ℏ2∂2
x + V(x)) φ(x) = Eφ(x)

Exact analytic solutions for spectral theory are rare

➡ need new ideas and new tools

Special functions and spectral theory



Fruitful guideline: think of spectral theory geometrically.

Geometry allows us to make contact with supersymmetric gauge theory and 
topological string theory

[Balian, Parisi, Voros]

➡ new class of solvable spectral problems

Special functions and spectral theory



Today we will see that these special functions play a central role in the in spectral theory of 
a certain class of quantum mechanical operators

I. Quantum mirror curves of toric Calabi-Yau manifolds (brief) 

II. Four dimensional quantum Seiberg-Witten curves (brief) 

III. Painlevé kernels

Exact solutions via special functions starting from 2014

Exact solutions via special functions starting from 2009

New

[AG-Hatsuda-Mariño 2014+…..]

[Nekrasov-Shatashvili 2009+…..]

Special functions and spectral theory



To maintain concreteness and simplicity, today we will mainly focus on one illustrative example

I. Quantum mirror curves of local  

II.Four dimensional quantum Seiberg-Witten curve of SU(2)  SYM 

III. Painlevé kernels

ℂℙ1 × ℂℙ1

$ = 2

III3

Special functions and spectral theory



However is good to keep in mind that what we will discuss is part of a broader picture

Special functions and spectral theory

· · ·
· · ·

I. Quantum mirror curves of toric CYs

Nf = 4 Nf = 3 Nf = 1Nf = 2 SYM

II.Four dimensional quantum SW curves

III. Painlevé kernels

VI V III1 III2 III3



Quantum mirror curves

An example: local ℙ1 × ℙ1

Thanks to mirror symmetry we can relate such geometry to

The quantization of this curve leads to

m (ex + e−x) + ep + e−p + κ = 0

1 = m (e ̂x + e− ̂x) + e ̂p + e− ̂p [x̂, p̂] = iℏ

Terminology:  is the quantum mirror curve to local 1 ℙ1 × ℙ1

where  and  ep̂ϕ(x) = ϕ(x − iℏ) ex̂ϕ(x) = exϕ(x)  [Dijkgraaf et al,  Mironov-Morozov. . . ]. 

x, p ∈ ℂ
 complex modulim, κ

 mirror curve

 [Batyrev, Hori-Vafa, Katz-Klemm-Vafa,…]



Theorem:  The operator  has a discrete spectrum  and it is of trace class 
on  

ρ = 1−1 {E−1
n }n≥0

L2(7ℝ)

TrρN = ∑
n≥0

E−N
n < ∞

[AG-Hatsuda-Mariño, Kashaev-Mariño, Laptev-Schwimmer-Takhtajan]

Quantum mirror curves

The kernel of  is ρ
ρ(x, y) = e−u(x,m,b)−u(y,m,b)

cosh ( x − y
2 )

ℏ = πb2

u(x, m, b) = − xb2

4 − log
ϕb ( bx

2π + 1
2πb log m + ib/4)

ϕb ( bx
2π − 1

2πb log m − ib/4)
+ 1

8b2 log mwhere the potential is

 [Kashaev-Mariño]

and  is the Faddeev quantum dilogarithm ϕb

If  Im(b)>0 it reduces to Φb(x) = (e2πb(x+cb), e2iπb2)∞
(e2πb−1(x+cb), e−2iπb−2)∞

2cb = i(b + b−1)



Can we compute spectral quantities such as eigenvalues, Fredholm determinant, 
eigenfunctions explicitly?

Yes,  by using (refined) topological strings partition functions.

Quantum mirror curves

Theorem:  The operator  has a discrete spectrum  and it is of trace class 
on  

ρ = 1−1 {E−1
n }n≥0

L2(7ℝ)

Let us start with the spectrum. A convenient way to encode the spectrum is via the 
Fredholm determinant

det (1 + κρ) = ∏
n≥0

(1 + κ
En )



Claim: let  the (inverse) quantum mirror curve to local . Thenρ = 1−1 ℙ1 × ℙ1

det (1 + κρ) = ∑
n∈ℤ

exp [9 (t1 + 2πin, t2, ℏ)]

9(t1, t2, ℏ) =
2

∑
i=1

ti
2π

∂
∂ti

FNS(t1, t2, ℏ) + ℏ2

2π
∂

∂ℏ ( FNS(t1, t2, ℏ)
ℏ ) + FGV ( 2π

ℏ t1,
2π
ℏ t2,

4π2

ℏ )

FGV :
examples of topological 
string functions

Goparkumar-Vafa function of local ℙ1 × ℙ1

FNS : Nekrasov-Shatashvili function of local ℙ1 × ℙ1

Topological String and Spectral Theory

where:

  quantum mirror mapt1 ≡ t1(κ, ℏ, m)
t2 ≡ 2 log m

[AG-Hatsuda-Mariño]

generalized theta function



This result has many practical applications and conceptual consequences. For example it 
gives a new interpretation of GW invariants from the point of view of spectral theory as well 
as a non-perturbative definition of the topological string partition function from quantum 
mirror curves.

det (1 + κρ) = ∑
n∈ℤ

exp [9 (t1 + 2π in, t2, ℏ)]

Z(N, m, ℏ) = ∮ dκ det(1 + κρ)κ−1−N

log Z(N, m, ℏ) ℏ , N , m→∞
∑
g≥0

Fg(t1, t2) ℏ2−2g

 genus g free energy of 

topological string on local  

Fg :
ℙ1 × ℙ1

t1 = N
ℏ , t2 = log m

ℏ fixed

Topological String and Spectral Theory



This result has many practical applications and conceptual consequences.

For example it gives a new interpretation of GW invariants from the point of view 
of spectral theory: they emerge from the spectral traces in the limit .ℏ → ∞

det (1 + κρ) = ∑
n∈ℤ

exp [9 (t1 + 2πin, t2, ℏ)]

Can we prove  ?( ⋆ )

 ( ⋆ )

Topological String and Spectral Theory



Let us start by looking at some simple but non-trivial limit.

Limit 1 (standard four dimensional limit)

t1 = β2πσ

t2 = − log β4t

m−1 = tβ2

κ = − 2
tβ2

+ E(σ)
t

ℏ = β

mirror mapSet

and send . In this limit we haveβ → 0

First limit 

[Katz-Klemm-Vafa, Klemm-Lerche-
Mayr-Vafa -Warner, Iqbal-Kashani 
Poor,..]

(m (e ̂x + e− ̂x) + e ̂p + e− ̂p + κ) ψ(x) = 0

quantum mirror curve to 
local  ℙ1 × ℙ1

β → 0 (−∂2
x + t cosh (x) + E) φ(x) = 0

four dimensional quantum 
Seiberg-Witten curve of SU(2) 
SYM



det (1 + κρ) = ∑
n∈ℤ

exp [9 (t1 + 2π in, t2, ℏ)]
Limit 1

In this limit we make contact with the work of Nekrasov and Shatashvili relating the modified 
Mathieu operator to 4d   SYM in the NS phase of the   background. Many aspect of 
this have been studied in details and proven.

$ = 2 Ω

: Nekrasov-Shatashvili functions for 
4-dim SU(2)  SYM
FNS

$ = 2

det (1 + E O−1
Ma) =

sinh (∂σFNS(t, σ))
sin (2πσ)

E = − t∂tFNS (t, σ)

First limit 

AG-Gu-Mariño

Many Many References

OMa φ(x) = (−∂2
x + t cosh (x)) φ(x)

Matone relation



det (1 + E O−1
Ma) =

sinh (∂σFNS(t, σ))
sin (2πσ)

E = − t∂tFNS (t, σ)

First limit 

Matone relation

Nekrasov-Shatashvili, Kozlowski-Teschner, …

En = − t∂tFNS (t, σn)

The energy spectrum is determined by the zeroes of the determinant

where  is determined by σn

∂σFNS(t, σ) = iπn, n = 0,1,2,⋯



There is another scaling limit which we can take obtain new results.

In this first limit 1 we make contact with well known results.

Limit 2:

2πt1
ℏ = β2πσ

4π2

ℏ = β

κ = log (1 + e4πiσ) − 4π
β

log (β4t)
log m = − 2π

β
log β4t

Second limit 

9(t1, t2, ℏ) =
2

∑
i=1

ti
2π

∂
∂ti

FNS(t1, t2, ℏ) + ℏ2

2π
∂

∂ℏ ( FNS(t1, t2, ℏ)
ℏ ) + FGV ( 2π

ℏ t1,
2π
ℏ t2,

4π2

ℏ )

2πt2
ℏ = − log β4t

mirror map
Set

And sent  .β → 0



det (1 + κρ) = ∑
n∈ℤ

exp [9 (t1 + 2πin, t2, ℏ)]
Limit 2

Z(σ, t) = tσ2 ℬ(σ, t)
G(1 + 2σ)G(1 − 2σ)

det (1 + cos(2πσ)
2π

K) = e4 tt−1/16 ∑
k∈ℤ

Z(σ + k, t)

K(x, y) = e−t1/4 cosh x−t1/4 cosh y

2 cosh ( x − y
2 )

We can prove  using an underlying connection with the theory of Painlevé equations( ⋆ )

Second limit 

Nekrasov partition function of  4-
dim SU(2)  SYM at $ = 2
ϵ1 + ϵ2 = 0

( ⋆ )

[Bonelli-AG-Tanzini]



By combining results from the '70s [McCoy et al., Widom] with more recent 
developments [Gamayun-Iorgov-Lisovyy, Iorgov-Lisovyy-Teschner, Bershtein-
Shchechkin], we can prove that both sides solve the Painlevé  equation with a 
particular choice of initial conditions.

III3

Second limit

This is one specific example (the starting point is local ) but it can be generalized 
to other geometries. For instance the so called   geometries that make contact with 
SU(N) gauge theories and non-autonomous Toda equations.

ℙ1 × ℙ1

YN,0

It would be great to prove the TS/ST in its full generality without taking any limit, but for 
this more is needed

det (1 + cos(2πσ)
2π

K) = e4 tt−1/16 ∑
k∈ℤ

Z(σ + k, t)

[Bonelli-AG-Tanzini]

[Gavrylenko-AG-Hao]

 [Bonelli-AG-Tanzini, Gavrylenko-AG-Hao + work in progress]



From the point of view of gauge theory & Nekrasov functions the identity 

is interesting because the lhs is exact in  (the instant counting parameter in Nekrasov 
function) and it can be used to extract the strong coupling version of Nekrasov function. 
We can write the determinant as:

t

Painlevé kernels and strong coupling 

( ⋆ )

Z(N, t) = 1
N! ∫ℝ

N

∏
i=1

dxie−8t1/4 cosh xi∏
j<i

tanh2 ( xi − xj

2 )

det (1 + cos(2πσ)
2π

K) = ∑
N≥0

( cos(2πσ)
2π )

N

Z(N, t)

where

det (1 + cos(2πσ)
2π

K) = e4 tt−1/16 ∑
k∈ℤ

Z(σ + k, t)



Z(N, t) = tN2/8G (1 + N ) 1 + ∑
ℓ≥1

Dℓ(N )

(t1/4)ℓ

By expanding the matrix model at large  we gett

In the small  expansion the first few coefficients agree with  [Klemm et al, D’Hoker-Phong,..] ϵ

aD

ϵ
∼ N Λ

ϵ
∼ t1/4

where  is a polynomial of degree . This is the analogous of Nekrasov function at 
strong coupling upon identification

Dℓ 2ℓ

[Bonelli-AG-Tanzini, Gavrylenko-Marshakov-Stoyan]

Rmk: analogous results hold for higher rank gauge theories, in such case we have a multi-cut 
matrix model 

Painlevé kernels and strong coupling 

[Gavrylenko-AG-Hao]



Let us now look at the spectral theory of the Painlevé  kernelIII3

K is of trace class on .  It has a discrete spectrum with square integrable 
eigenfunctions

L2(ℝ)

K(x, y) = e−t1/4 cosh x−t1/4 cosh y

4π cosh ( x − y
2 )

Can we compute spectrum and eigenfunctions explicitly using Nekrasov functions?

Yes: the relevant Nekrasov functions will be specialized to the   phase of the  
background (i.e.  form the Liouville point of view).

ϵ1 = − ϵ2 Ω
c = 1

Spectral theory of Painlevé kernels 

∫ℝ
dy K (x, y) φn (y, t) = Enφn (x, t)



Let us start from the spectrum. The Fredholm determinant identity

implies that the spectrum of  isK

Spectral theory of Painlevé kernels 

E−1
n = − 1

2π
cos (2π ( 1

2 + iσn))
where  are solutions toσn ∈ ℝ

∑
k∈ℤ

Z (t, k + 1
2 + iσn) = 0

det (1 + cos(2πσ)
2π

K) = e4 tt−1/16 ∑
k∈ℤ

Z(σ + k, t)

Nekrasov partition function of  4-
dim SU(2)  SYM at  $ = 2 ϵ1 + ϵ2 = 0[Bonelli-AG-Tanzini]



Spectral theory of Painlevé kernels 

K(x, y) = e−t1/4 cosh x−t1/4 cosh y

4π cosh ( x − y
2 )

OMφn(x) = E(M)
n φn(x)∫ℝ

dy K (x, y) φn (y, t) = E(K)
n φn (x, t)

E−1
n = − 1

2π
cos (2π ( 1

2 + iσn))

∑
k∈ℤ

Z (t, k + 1
2 + iσn) = 0

En = − t∂tFNS (t, σn)

OM = (−∂2
x + t cosh (x))

1-1 correspondence 
via blowup equations

[Huang-Sun-Wang 2016, AG-Gu 2016]

sinh (∂σFNS(t, σn)) = 0



Spectral theory of Painlevé kernels 

What about eigenfunctions of ? We found that these are computed by the 
Nekrasov partition function of  4-dim SU(2)  SYM at  in presence 
of a surface defects.

K(x, y)
$ = 2 ϵ1 + ϵ2 = 0

ZD(y, t, σ) = Γ (−iy − σ + 1
2 ) Γ (−iy + σ + 1

2 ) (1 + t
1 + 2iy

4σ4 + (−2y + i)2σ2 + 1(t2))

Recall that



Spectral theory of Painlevé kernels 

More precisely we find that the eigenfunctions are

φn(x, t) = e4 t

t3/16 ∫ℝ
dy ei2yx ∑

k∈ℤ
(ZD (y, t, k + 1

2 + iσn) + ZD (−y − i
2 , t, k + iσn))

φ1

φ0

-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5

[François-AG]



Spectral theory of Painlevé kernels 

One can write explicit expression using matrix models

∫ℝ+iσ*

dσ
tan (2πσ)

(2 cos(2πσ))N ∫ℝ
dyei2yx (ZD (y, t, σ) + ZD (−y − i

2 , t, σ + 1
2 ))

ΨN(z, t) = 1
N! ∫ℝ+

N

∏
i=1

dzi

zi

z − zi

z + zi
e−4t1/4(zi + z−1

i )∏
j<i (

zi − zj

zi + zj )
2

= i t3/16

e4 t
e−4t1/4 cosh xex/2ΨN (ex, t)

as before, such expression can be used to extract the strong 
coupling version of Nekrasov function with a surface defect 

[François-AG]



Outlook & Future Directions

Today we focus on  example of string duality: TS/ST correspondence.

While working towards a proof, we discovered an intriguing connection to the theory 
of Painlevé equations. This connection has interesting consequences both on the 
Painlevé and the gauge/string theory sides.

Mathematics and physics have a long history of cross-fertilization, and string dualities 
currently play a major role in this interaction

Example: ‣ New results for the spectral theory of Painlevé kernels 

‣ New results for 4 dim  theories at strong coupling$ = 2



Outlook & Future Directions

Some questions directly related to what we discussed

‣ Painlevé kernels as for dimensional quantum curves with a different quantization 

scheme? 

‣ Connection with topological recursion? 

‣ is the tau function of Painlevé . What is the role of the 

eigenfunctions of K in the context of Painlevé equations? Relation with the linear 

system? 

‣ Combinatorial formula at strong coupling? 

det (1 + cos(2πσ)
2π

K) III3

⋯



Thank you!


