Constraints for the Modeling of Multi Parton Interactions in Astroparticle Physics

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für KernPhysik, Karlsruhe, Germany

MPI 2011, Hamburg

November the 24th 2011

Outline

- Introduction
- Hadronic Models for CR
 - Cross section
 - Multiplicity
 - Forward spectra
- Constraints from EAS
- Comparison to LHC
- Summary

MPI needed to reproduce data at all energies with a single set of parameters. EAS simulations improve models' predictive power.

Air Shower Simulation

Hadronic models for simulations :

- mainly soft physics + diffraction (forward region)
- should handle p-, π-Air, K-Air and A-Air interactions
- should be able to run at 10⁶ GeV center-of-mass (cms) energy
- Single set of parameters
- models used for EAS analysis :
 - QGSJET01/II
 - SIBYLL 2.1
 - EPOS 1.99

Thickness = amount of energy

Introduction

Hadronic Interaction Models

- Theoretical basis :
 - ➔ pQCD
 - Gribov-Regge
 - energy conservation
- Phenomenology (models) :
 - string fragmentation
 - diffraction
 - higher order effects
- Comparison with data to fix parameters :
 - the more parameters, the more data you need

... or ...

the more data, the more parameters you need !

Pb : CR physic dominated by soft interactions Pb : Gribov-Regge do not take into account energy conservation ...

Need Parameters !

Hadronic Interaction Models in CORSIKA

Cross Section Calculation : SIBYLL / QGSJET

Interaction amplitude given by parameterization (soft) or pQCD (hard) and Gribov-Regge for multiple scattering :

- Image: elastic amplitude : -2χ(s,b)
 Image: sum n interactions :
 Image: optical theorem : $\frac{(-2\chi)^n}{n!} \rightarrow \exp(-2\chi)$ Image: sum n interactions :
 Image: optical theorem : $\frac{(-2\chi)^n}{n!} \rightarrow \exp(-2\chi)$ Image: sum n interactions :
 Image: optical theorem : $\frac{(-2\chi)^n}{n!} \rightarrow \exp(-2\chi)$ Image: optical theorem : $\frac{(-2\chi)^n}$
 - $\rightarrow \chi(s,b)$ parameters for a given model fixed by pp cross-section
 - pp to pA or AA cross section from Glauber
 - energy conservation not taken into account at this level

Cross Section Calculation : EPOS

Different approach in EPOS :

- Gribov-Regge but with energy sharing at parton level : MPI with energy conservation !
- amplitude parameters fixed from QCD and pp cross section
- cross section calculation take into account interference term

$$\Phi_{\rm pp}\left(x^+, x^-, s, b\right) = \sum_{l=0}^{\infty} \int dx_1^+ dx_1^- \dots dx_l^+ dx_l^- \left\{ \frac{1}{l!} \prod_{\lambda=1}^l -G(x_\lambda^+, x_\lambda^-, s, b) \right\}$$

$$\times F_{\rm proj}\left(x^+ - \sum x_\lambda^+\right) F_{\rm targ}\left(x^- - \sum x_\lambda^-\right).$$

 $\sigma_{\text{ine}}(s) = \int d^2b \left(1 - \Phi_{\text{pp}}(1, 1, s, b)\right) \Rightarrow \text{can not use complex diagram like QII}$ with energy sharing

non linear effects taken into account as correction of single amplitude G

Cross Section

- Same cross section at pp level and low energy (data)
- extrapolation to pA or to high energy
 - different amplitude and scheme : different extrapolations
- multiple scattering + screening (=MPI) needed to use pQCD hard amplitude in inelastic cross section calculation (σ_{hard}>σ_{ine})

Comparison to LHC

Particle Production in SIBYLL and QGSJET

Number n of exchanged elementary interaction per event fixed from elastic amplitude (cross section) :

➡ n from :

$$P(n) = \frac{(2\chi)^n}{n!} \cdot \exp(-2\chi)$$

- no energy sharing accounted for (interference term)
- \bullet 2n strings formed from the n elementary interactions
 - In QGSJET II, n is increased by the sub-diagrams
 - energy conservation : energy shared between the 2n strings
 - particles from string fragmentation
- inconsistency : energy sharing should be taken into account when fixing n
 - EPOS approach

Particle Production in EPOS

m number of exchanged elementary interaction per event fixed from elastic amplitude taking into account energy sharing :

→ m from :

$$\Omega_{AB}^{(s,b)}(m,X^+,X^-) = \prod_{k=1}^{AB} \left\{ \frac{1}{m_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+, x_{k,\mu}^-, s, b_k) \right\} \Phi_{AB} \left(x^{\text{proj}}, x^{\text{targ}}, s, b \right)$$

m and X fixed together by a complex Metropolis (Markov Chain)

- → 2m strings formed from the m elementary interactions
 - energy conservation : energy fraction of the 2m strings given by X
- consistent scheme : energy sharing reduce the probability to have large m
- modified hadronization due to high density effect
 - statistical hadronization instead of string fragmentation
 - Iarger Pt (flow)

Pseudorapidity and p_T

Multiplicity

Forward Spectra

The inelasticity is closely related to diffraction and forward spectra

- SIBYLL
 - No remnant except for diffraction
 - Leading particle from string ends
- ➡ QGSJET
 - Low mass remnants
 - Leading particle similar to proj.
- ➡ EPOS
 - Low and high mass remnants
 - Any type of leading particle
 - from resonance
 - from string
 - from statistical decay

Diffraction and x Distributions

MPI – November 201⁻

T. Pierog, KIT - 14/24

Xmax Auger

- EPOS and SIBYLL (almost)
 - consistent light mix to heavy mix <Xmax> and RMS
- QGSJETII
 - very light at low E, but inconsistent <Xmax> and RMS at high E
- QGSJET01
 - inconsistent description of <Xmax> and RMS

EPOS 2006 problems with KASCADE

➡ Large muon number :

- proton flux to high: not enough electron at ground
- not enough energy per hadron

Showers develop to fast using EPOS 1.6

Comparison to LHC

KASCADE Hadron Correlation

Jörg R. Hörandel, RU Nijmegen Jens Milke, IWR, FZK

•EPOS 1.6 is not compatible with KASCADE measurements → can not be recommended for air shower simulations

•QGSJET-II has some deficiencies
 → should be used for simulations with care

•QGSJET 01 and SIBYLL 2.1 still most compatible models

- EPOS 1.99
 - these data used to understand problem with cross section and inelasticity
 - KASCADE results should come soon
 - preliminary tests OK.

Pseudorapidity Distributions

No model with perfect prediction : but data well bracketed

Predictions ! ... newest model released in march 2009

Multiplicity Distributions

Pt @ LHC

MPI – November 2011

T. Pierog, KIT - 20/24

Identified Pt @ LHC

Preliminary results from ALICE : (a)proton looks strange ???

MPI – November 2011

T. Pierog, KIT - 21/24

Forward Spectra

● Fitting of LHCf data → effect on air shower development under investigation

Predictive Power ?

Summary

Hadronic models used for CR physics need a consistent treatment:

- correlation between inelastic cross section and particle production
 - soft/hard/semi-hard included in amplitude
 - same parameters at all energy
- need multiple scattering + non-linear effect (MPI=NOT independent multiple interaction)
- general implementation in CR models such that min bias results OK
 - "soft" particle production
 - underlying events
- effect on specific hard topology probably limited
 - only effective correction to PDF (EPOS) or soft triple Pomeron vertex (QII)
 - min bias models and only 2 to 2 pQCD cross section implemented

MPI needed to reproduce data at all energies with a single set of parameters. EAS simulations improve models' predictive power.

Remnants in SIBYLL

In SIBYLL : valence quarks attached to main string

- limited quark exchange
- very hard baryon and meson spectra
- string fragmentation
 - forward particle can be anything

dN/dy

Remnants in QGSJET

In QGSJET : One quark exchange and leading remnant

- Limited quark exchange
 - forward particle same type than proj/targ
- Iow mass remnant (resonances)
- soft spectra

Remnants in EPOS

In EPOS : any possible quark/diquark transfer

- Diquark transfer between string ends and remnants
- Baryon number can be removed from nucleon remnant :
 - Baryon stopping
- Baryon number can be added to pion/kaon remnant :
 - Baryon acceleration

Baryon Forward Spectra

- Large differences between models
- Need a new remnant approach for a complete description (EPOS)
- Problems even at low energy
- No measurement at high energy !

