Towards a new model for Minimum Bias and the Underlying Event in Sherpa

MPI 2011 - DESY - November 2011
Frank Krauss IPPP Durham
(with V Khoze, A Martin, M Ryskin, and K Zapp)

www.ippp.dur.ac.uk

Partonic picture

- Basic idea: Regge physics rules!
- define amplitudes/eikonals through pomeron exchange
- must sum over all possible exchanges and topologies - hard to do in a MC, only approximate solutions will be possible (see Bartels' talk)
- Simplified picture: start from a simple ladder
- Treat as amplitude for the production of N particles, homogeneously distributed in rapidity in [-Y/s, Y/s], where $\mathrm{Y}=\log \mathrm{s} / \mathrm{m}_{\mathrm{p}}{ }^{\text {s }}$
- $\sigma_{2-N}=\left|A_{2-N}\right|^{2}$
- Will connect to pomeron on next slide

Ladders and pomerons

- The amplitude (scalar particles) then reads

$$
A(Y)=\sum_{n} \frac{1}{n!} \prod_{i=1}^{N} \int_{-Y / 2}^{Y / 2} \mathrm{~d} y_{i} \alpha=\sum_{n} \frac{(\alpha Y)^{n}}{n!}=e^{\alpha Y}=s^{\alpha}
$$

- where the kernel is given by something like

$$
\alpha\left(q_{\perp}^{2}\right)=\frac{\bar{g}^{2}}{16 \pi^{2}} \bar{\int} \frac{\mathrm{~d}^{2} k_{\perp}}{\left[k_{\perp}^{2}-m^{2}\right]\left[\left(k_{\perp}-q_{\perp}\right)^{2}-m^{2}\right]}
$$

$$
\frac{\mathrm{d} A(y)}{\mathrm{d} y}=\alpha A(y)
$$

- write, as petore, $\alpha_{p}=\perp+\Delta$, with the perturbative pomeron intercept $\Delta=0.3-0.5$
- Note: also understood as evolution equation for parton densities $f(y)$.

Rescattering

- In high-density, strong-coupling regime rescattering becomes important
- In Regge language this is driven by the triple-pomeron vertex.
- Visible physical effect: high-mass dissociation
- Also: softening of total cross section (rescattering as "fusion" of two partons)
- Note: also more complicated cuts than example
- Can resum "fan" diagrams (Schwimmer model):

$$
\frac{\mathrm{d} f(y)}{\mathrm{d} y}=\Delta f(y)-g_{3 P} f(y)
$$

- But total cross section becomes too low, must resum all fans

$$
\frac{\mathrm{d} f(y)}{\mathrm{d} y}=\exp [-\lambda f(y)] \Delta f(y)
$$

Khoze-Martin-Ryskin model

- Eikonal as convolution of two" parton densities"

$$
\begin{array}{r}
\Omega\left(\vec{b}_{\perp}\right)=\frac{1}{2 \beta_{0}^{2}} \int \mathrm{~d}^{2} b_{\perp}^{(1)} \mathrm{d}^{2} b_{\perp}^{(2)} \delta^{2}\left(\vec{b}_{\perp}-\vec{b}_{\perp}^{(1)}-\vec{b}_{\perp}^{(2)}\right) \\
\cdot \Omega_{i(k)}\left(\vec{b}_{\perp}^{(1)}, \vec{b}_{\perp}^{(2)}, y\right) \Omega_{(i) k}\left(\vec{b}_{\perp}^{(1)}, \vec{b}_{\perp}^{(2)}, y\right)
\end{array}
$$

- Two channel eikonal, with two evolution equations

$$
\begin{aligned}
& \frac{\mathrm{d} \ln \Omega_{i(k)}(y)}{\mathrm{d} y}=+\exp \left\{-\frac{\lambda}{2}\left[\Omega_{i(k)}(y)+\Omega_{(i) k}(y)\right]\right\} \Delta \\
& \frac{\mathrm{d} \ln \Omega_{(i) k}(y)}{\mathrm{d} y}=-\exp \left\{-\frac{\lambda}{2}\left[\Omega_{i(k)}(y)+\Omega_{(i) k}(y)\right]\right\} \Delta
\end{aligned}
$$

Khoze-Martin-Ryskin model (cont'd)

- Boundary conditions involve form factors

$$
\begin{aligned}
& \Omega_{i(k)}\left(\vec{b}_{\perp}^{(1)}, \vec{b}_{\perp}^{(2)},-Y / 2\right)=F_{i}\left(b_{\perp}(1)^{2}\right) \\
& \Omega_{(i) k}\left(\vec{b}_{\perp}^{(1)}, \vec{b}_{\perp}^{(2)},+Y / 2\right)=F_{k}\left(b_{\perp}(2)^{2}\right)
\end{aligned}
$$

- Form factor as Fourier transforms of (dipole form with extra dampening)

$$
F_{1,2}\left(q_{\perp}\right)=\beta_{0}^{2}(1 \pm \kappa) \frac{\exp \left[-\frac{(1 \pm \kappa) \xi q_{\perp}^{2}}{\Lambda^{2}}\right]}{\left[1+\frac{(1 \pm \kappa) q_{\perp}^{2}}{\Lambda^{2}}\right]^{2}}
$$

- Parameters: $\Delta=0.3, \lambda=0.25, \beta_{0}^{2}=30 \mathrm{mb}, \mathrm{k}=0.5, \wedge^{2}=1.5 \mathrm{GeV}^{2}, \xi=0.225$

Inclusive results

- Total and elastic cross sections vs. data at various energies

Selecting the mode

- Select the mode according to cross sections:

$$
\begin{aligned}
& \sigma_{\text {tot }}^{p p}=2 \int \mathrm{~d}^{2} b_{\perp} \sum_{i, k=1}^{S}\left\{\left|a_{i}\right|^{2}\left|a_{k}\right|^{2}\left[1-e^{-\Omega_{i k}\left(b_{\perp}\right)}\right]\right\} \\
& \sigma_{\text {inel }}^{p p}=\int \mathrm{d}^{2} b_{\perp} \sum_{i, k=1}^{S}\left\{\left|a_{i}\right|^{2}\left|a_{k}\right|^{2}\left[1-e^{-2 \Omega_{i k}\left(b_{\perp}\right)}\right]\right\} \\
& \sigma_{\text {el }}^{p p}=\int \mathrm{d}^{2} b_{\perp}\left\{\sum_{i, k=1}^{S}\left[\left|a_{i}\right|^{2}\left|a_{k}\right|^{2}\left(1-e^{-\Omega_{i k}\left(b_{\perp}\right)}\right)\right]\right\}^{2}
\end{aligned}
$$

- Formula for single/double diffractive modes (low mass) pretty similar, will yield $N(1440)$ in the final state(s) + subsequent decays.
- If elastic is chosen, select momentum transfer according to FT
- If inelastic is chosen, select Good-Walker states i and k and impact parameter according to contributions in integrand.

Initialising the (primary) ladders

- Select flavours and (collinear) momenta according to IR-continued PDFs and Regge-motivated cross-section ($\left.\mathrm{s} / \mathrm{s}_{0}\right)^{1+7}$, where
- s_{0} is fixed to reproduce inelastic cross section in this channel $\mathrm{ik}, \mathrm{s}>\mathrm{s}_{0}$
- Exponent $\eta=\Delta \exp \left[-\lambda / 2\left(\Omega_{k}(b, 0)+\Omega_{k}(b, 0)\right)\right]=$ "effective intercept"
- IR-continued PDFs:
- assume $f(x, 0)=$ valence only
- keep norm of valence quarks, renormalise "valence" gluons to satisfy momentum sum rule
- switch off sea with Q
- Produce $N_{\text {kades }}$ pairs of incoming partons (one valence quark, rest will be gluons)
- Weight for each pair given by Regge expression times the PDFs

Filling the ladders

- Generate emissions in between, according to "Sudakov form factor"

$$
\begin{aligned}
\mathcal{S}\left(y_{0}, y_{1}\right)= & \exp \left\{-\int_{y_{0}}^{y_{1}} \mathrm{~d} y \int \mathrm{~d} k^{2} \frac{\alpha_{s}\left(k_{I}^{2}+K_{0}^{2}\right)}{\left(k_{I}^{2}+K_{0}^{2}\right)}\right. \\
& \times\left[\frac{K_{0}^{2}}{q^{2}+K_{0}^{2}}\right]^{\frac{3 s\left(q^{2}+K_{0}^{2}\right)}{\pi}\left|y-y_{0}\right|} \\
& \left.\times \exp \left[-\frac{\lambda}{2}\left(\Omega_{i(k)}(y)+\Omega_{(i) k}(y)\right)\right]\right\}
\end{aligned}
$$

- dynamical pomeron intercept
- Reweight ladder with ME $\sim 1 / t_{\text {madest }}$ for hardest emission
- Note: At this point strictly t-channel, filling stops when either no more y can be "squeezed" in, or when "active" y-interval goes to singlet colour config.

Treatment of colours

(\rightarrow hard diffraction)

- In principle, BFKL equation resums "ladders in ladders"
- In as purely gluonic picture, this means that each t-channel propagator at LO is a (reggeised) gluon, but at all orders it is in a colour state given by something like $\mathrm{C}=[8]+[8]^{*}[8]+[8]^{*}[8]^{*}[8]$...
- Take a look at the [8] * [8]: Its decomposition is something like
$[8]$ * $[8]=[27]+[10]+[10]+[8]+[8]+[1]$,
i.e. containing a singlet state.
- Will treat anything else as octet. Decision of whether singlet or octet based on eikonals \rightarrow singlet if elastic scattering between two rapidities y_{1} and y_{2}

$$
P_{\text {singlet }}=\left\{1-\exp \left[-\lambda\left(\Omega\left(y_{1}\right)-\Omega\left(y_{2}\right)\right) /\left(2 \Omega\left(y_{1}\right)\right)\right]\right\}^{2}
$$

Rescattering

- Consider configurations like
- Partons from ladder may rescatter
- Additional feature (not shown):

FS parton shower attached to ladders ...

- Question: How to decide if rescattering or not?
- Answer: Same as before
- Iterate over all pairs of partons at some place in transverse plane
- Construct rescattering probability for each pair as

$$
P_{\text {resatater }}=1-\exp \left\{-\lambda / 2\left[\Omega\left(y_{1}\right)-\Omega\left(y_{2}\right)\right) /\left(\Omega\left(y_{1}\right)\right]\right\}
$$

- Check each pair (compare with random number)
- Respect previously produced singlets (or not?)
- Open question: Is this consistent with AGK cutting rules?

Some example results @ 7 TeV

In the following:

- Untuned run (10 kEvents): $\mathrm{Q}_{0}=2 \mathrm{GeV}, \Delta=0.4, \lambda=0.5$

$$
\Lambda=1.5 \mathrm{GeV}, \xi=0.225, \mathrm{k}=0.55
$$

Inclusive Quantities:

- $\sigma_{\text {tot }}=99.2 \mathrm{mb}, \sigma_{\text {inel }}=68.5 \mathrm{mb}, \sigma_{\mathrm{el}}=24.5 \mathrm{mb}, \sigma_{\mathrm{SD}}=5.6 \mathrm{mb}$
- $\Delta_{\text {naive }}=3.59, \Delta_{\text {kin }}=0.55, \Delta_{\text {fin }}=0.14$
- 3.26 primary ladders/event, 5.2 in total (incl. Rescattering)
- 22\% of ladders have singlet, out of which 45\% are hardest
- Colour reconnections switched off (can enable some if necessary)

Some example results @ 7 TeV

Some example results @ 7 TeV

Some example results @ 7 TeV

Some example results @ 7 TeV

Conclusions \& outlook

- Implementation of the KMR model
(as 2 state model)
- Could add further states/reggeons
(more important for low energies)
- Added dynamical picture of the gluon ladders
(including rescattering, showering, ...)
- By now we're halfway happy with the results
- Model needs tuning (2 steps)
- Still to come: quarks in ladders, photons, mesons (quarkonia)
... framework for doing so is clear
- Still to do: transformation into UE model

