Minimum Bias and Underlying Event Measurements with ATLAS

Michael Leyton

Humboldt-Universität zu Berlin

(on behalf of the ATLAS Collaboration)

Workshop on Multi-Parton Interactions at the LHC

DESY, Hamburg

21 November 2011

Outline

- LHC / ATLAS
- QCD at the LHC
- Charged particle distributions
- Two-particle correlations
- Azimuthal ordering of hadrons
- K^0_{s} and Λ production
- Underlying Event
- Summary

Multiple Partonic Interactions (MPI)

The LHC

ATLAS data collection

ATLAS pp collisions recorded thus far:

Integrated Luminosity	Center-of-mass Energy		
7 µb¹	900 GeV		
0.1 µb⁻¹	2.36 TeV		
0.25 pb⁻¹	2.76 TeV		
> 5 fb⁻¹	7 TeV		

ATLAS data collection

ATLAS pp collisions recorded thus far:

Integrated Luminosity	Center-of-mass Energy		
7 µb⁻¹	900 GeV		
0.1 µb⁻¹	2.36 TeV		
0.25 pb ⁻¹	2.76 TeV		
> 5 fb⁻¹	7 TeV		

All results presented here use only data from beginning of 2010 or before ($\leq 230 \ \mu b^{-1}$)

- √s = 0.9, 2.36, 7 TeV
- ~ 0.007 interactions / bunch crossing on average
- Need to trigger on inelastic interactions

ATLAS data collection

ATLAS pp collisions recorded thus far:

Integrated Luminosity	Center-of-mass Energy		
7 µb⁻¹	900 GeV		
0.1 µb⁻¹	2.36 TeV		
0.25 pb⁻¹	2.76 TeV		
> 5 fb⁻¹	7 TeV		

All results presented here use only data from beginning of 2010 or before ($\leq 230 \ \mu b^{-1}$)

- √s = 0.9, 2.36, 7 TeV
- ~ 0.007 interactions / bunch crossing on average
- Need to trigger on inelastic interactions

Collision event at 7 TeV

(Non-perturbative) QCD at the LHC

Essentially all physics at LHC connected to quark and gluon interactions

- Hard processes (high p_{τ}): well described by perturbative QCD
- Soft interactions (low p_{τ}): require non-perturbative phenomenological models
 - 'Minimum bias' (MB) interactions
 - Multiple Parton Interactions (MPI)
 - Underlying Event (UE) of hard scatter

(Non-perturbative) QCD at the LHC

Essentially all physics at LHC connected to quark and gluon interactions

- Hard processes (high p_{τ}): well described by perturbative QCD
- Soft interactions (low p_{τ}): require non-perturbative phenomenological models
 - 'Minimum bias' (MB) interactions
 - Multiple Parton Interactions (MPI)
 - Underlying Event (UE) of hard scatter

Phenomenological models need to be tuned to data

- Non-perturbative effects difficult to separate experimentally
- Must still preserve description of hard processes
- Difficult to describe MB + UE with same parameters

ATLAS soft-QCD measurements

- Charged-particle multiplicities, New J Phys 13 (2011) 053033
- Two-particle angular correlations, ATL-CONF-2011-055
- **NEW!** Azimuthal ordering of charged hadrons, not yet available
- **NEW!** Strange particle production, arXiv:1111.1297 [hep-ex]
- Underlying event with charged particles, Phys. Rev. D 83, 112001
- Underlying event with charged and neutral particles, EPJC 71 (2011) 1636
- ** Rapidity gap cross sections, ATL-CONF-2011-059
- ** Inelastic pp cross-section, Nature Comm. 2 (2011) 463

More can be found here:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults#Soft_QCD

** see talk by P. Newman, Wed. at 11 AM

Measurement commandments

CHARGED-PARTICLE MULTIPLICITIES

• New J Phys 13 (2011) 053033

Two-particle angular correlations

Azimuthal ordering of charged hadrons

Strange particle production

Underlying event with charged, neutral particles

Minimum bias at the LHC

$$\sigma_{_{\text{TOT}}} = \sigma_{_{\text{ELAS}}} + \sigma_{_{\text{SD}}} + \sigma_{_{\text{DD}}} + \sigma_{_{\text{ND}}} + \sigma_{_{\text{CD}}}$$

- "Minimum bias": experimentally defined to select events with the minimum possible requirements that ensure an inelastic collision occurred
- Exact definition depends on experiment (and analysis)

"Minimum bias" at ATLAS

- Select 'minimum bias' events: \geq 1 hit(s) anywhere in the MBTS
 - MBTS: 2.09 < |η| < 3.84
 - Consists of ND, SD and DD events
 - Relative contributions depend on event and track selection criteria
 - Predictions of relative fractions have large uncertainty
- Charged particles are measured from tracks reconstructed in the ID
 - Measure kinematics: multiplicity (n_{ch}), p_{T} and η spectra, $< p_{T} >$
 - Measure properties in various phase spaces

	Most inclusive		Diffraction suppressed		High pT	ALICE/CMS Comparison	
n _{ch} ≥	2	1	20	6	1	1	1
р _т [MeV] >	100	500	100	500	2500	500	1000
η <	2.5	2.5	2.5	2.5	2.5	0.8	0.8

Used for AMBT2b Pythia tune

Used for AMBT1 Pythia tune

21 November 2011

M. Leyton, MPI@LHC

Charged particle multiplicity vs. η

All models underestimate pseudorapidity density, both in inclusive and diffraction-suppressed samples

21 November 2011

Charged particle multiplicity

Excess of models over data at low n_{ch}

Highly influenced by modeling of diffractive events

21 November 2011

M. Leyton, MPI@LHC

Charged particle multiplicity vs. p₊

Simulation predicts significantly harder spectrum for $p_{\tau} > 3 \text{ GeV}$

Data lower than predicted

Pseudorapidity density vs. \sqrt{s}

- Charged particle distributions measured in various phase spaces and CM energies
 - Study energy dependence of particle production
 - Compare $1/N_{ev} dN_{ch}/d\eta$ at $\eta=0$ as a function of \sqrt{s}
- Pythia 6 AMBT1 tune gives good description of energy dependence for phase spaces without low-pT region
- See talk by D. Kar at 3:40 pm for latest results from tuning

21 November 2011

Charged-particle multiplicities

TWO-PARTICLE ANGULAR CORRELATIONS

• ATL-CONF-2011-055

Azimuthal ordering of charged hadrons

Strange particle production

Underlying event with charged, neutral particles

Two-particle correlations

- Sensitive to underlying mechanisms for soft particle production
 - Correlations between final states can indicate a common origin of production
 - Gives indication about multi-particle dynamics in HI
- Two-particle angular correlation function:

$$R(\Delta\eta,\Delta\phi) = \frac{\langle (N_{ch}-1)F(N_{ch},\Delta\eta,\Delta\phi)\rangle_{ch}}{B(\Delta\eta,\Delta\phi)} - \langle N_{ch}-1\rangle_{ch}$$

Foreground (F): all particle pairs in same event (correlated + uncorrelated pairs)

Background (B): particle pairs from different events (uncorrelated pairs)

Results

Pythia predicts a similar structure, but fails to reproduce the strength of the correlation

Narrow peak at $(\Delta \eta, \Delta \phi) \approx (0,0)$: contribution from higher p_{τ}

Ridge at $\Delta \phi \approx \pi$: momentum conservation

Gaussian ridge at $\Delta \eta \approx 0$: decay of particles with lower p_{τ}

Charged-particle multiplicities

Two-particle angular correlations

AZIMUTHAL ORDERING OF CHARGED HADRONS

Strange particle production

Underlying event with charged, neutral particles

Azimuthal ordering

- Charged-particle measurements show limitations of phenomenological models
 - Models cannot describe measured observables in all regions of phase space)
 - Some discrepancies can be reduced by tuning, but
 - New formulation of certain components of models (e.g. fragmentation) is likely needed
- Two main hadronization models used in multi-purpose MC generators:
 - String (Lund) fragmentation model, e.g. PYTHIA, PHOJET
 - Cluster model, e.g. HERWIG
- Idea: replace standard Lund string with a helix-like ordered gluon chain
 - J. High Energy Phys. 9809 014 (1998)
 - p_T of direct hadron is entirely constrained by spiral structure of QCD string
 - Corresponds to optimal packing of soft gluons in phase space under helicity conservation requirements
 - Imposes correlations between adjacent breakup points along string
 - Observable effects in inclusive p_{τ} distribution and azimuthal ordering of direct hadrons

• Define two types of power spectra according to expected structure of helix field:

~ original proposal

$$\int \frac{1}{N_{ev}} \sum_{event} \frac{1}{n_{ch}} |\sum_{j} \exp(i(\xi \eta_j - \phi_j))|^2 \qquad S_E(\omega) = \frac{1}{N_{ev}} \sum_{event} \frac{1}{n_{ch}} |\sum_{j} \exp(i(\omega X_j - \phi_j))|^2 \\ X_j = 0.5 E_j + \sum_{k=0}^{k < j} E_k \quad \text{(energy distance along string)}$$

- Measure power spectra in 'inclusive' sample, as well as two sub-samples:
 - "Inclusive": $p_{T} > 100$ MeV, veto events containing any track with $p_{T} > 10$ GeV
 - "Low-pT enhanced": $p_{T} > 100$ MeV, veto events containing any track with $p_{T} > 1$ GeV
 - "Low-pT depleted": $p_{T} > 500$ MeV, veto events containing any track with $p_{T} > 10$ GeV

Results

Clear enhancement of data over models in S_F (0.5 < ω < 1 rad/GeV)

30

Pythia variations

Low-pT enhanced:

- Extreme variation of model parameters cannot provide reasonable description of data
- Modeling of diffractive events is major source of discrepancy between data and models
- MPI scheme pulls model prediction away from data

Pythia variations

Low-pT enhanced:

- Extreme variation of model parameters cannot provide reasonable description of data
- Modeling of diffractive events is major source of discrepancy between data and models
- MPI scheme pulls model prediction away from data

Low-pT depleted:

 Higher rate of MPI is required to describe the data

Pythia variations

Low-pT enhanced:

- Extreme variation of model parameters cannot provide reasonable description of data
- Modeling of diffractive events is major source of discrepancy between data and models
- MPI scheme pulls model prediction away from data

Low-pT depleted:

 Higher rate of MPI is required to describe the data Charged-particle multiplicities

Two-particle angular correlations

Azimuthal ordering of charged hadrons

STRANGE PARTICLE PRODUCTION

• arXiv:1111.1297 [hep-ex]

Underlying event with charged, neutral particles

K⁰_s production

 K_{s}^{0} mesons are required to have a flight distance between 4 mm and 450 mm and to decay to two charged pions with $|\eta| < 2.5$ and $p_{\tau} > 100$ MeV

M. Leyton, MPI@LHC

Λ production

A baryons are required to have $p_{\tau} > 500$ MeV, flight distance between 17 mm and 450 mm and to decay to a proton and a pion with $|\eta| < 2.5$ and $p_{\tau} > 100$ MeV

M. Leyton, MPI@LHC

Charged-particle multiplicities

Two-particle angular correlations

Azimuthal ordering of charged hadrons

Strange particle production

UNDERLYING EVENT WITH CHARGED, NEUTRAL PARTICLES

- Phys. Rev. D 83, 112001
- EPJC 71 (2011) 1636

Underlying Event

- Additional partons from the same proton interacting at the same time as signal (high-pT) interaction
 - Can include MPI, beam-beam remnants, ISR/FSR, etc.
 - Characterized by low momentum transfer \rightarrow rely on models tuned to data
- Modeling of UE important for precise high-pT measurements
 - Important ingredient for jet and lepton isolation, energy flow, jet tagging, etc

Underlying Event at ATLAS

- UE characterized by activity in φ region transverse to the leading particle (= highest pT track or cluster)
 - # particles
 - $\Sigma p_{_T}$
 - _ <p_>
- Track-based measurement:
 - Reconstruct ID tracks of charged particles
 - Corrections for vertex, trigger and tracking efficiency similar as for minimum bias studies
- Cluster-based measurement:
 - Use energy depositions in calorimeters associated to charged and neutral particles
 - Correct cluster distributions to stable-particle level using correction factor derived from MC
 - Cross-check using data/simulation comparison of N(clusters) vs. N(tracks)

21 November 2011

M. Leyton, MPI@LHC

Particle density vs. $\Delta \phi$

Cluster method

- Development of 'jet-like' region of higher density as p_T of leading track/particle increases (toward, away)
- Particle density is higher and has a different angular distribution than predicted by MC

Track method

21 November 2011

M. Leyton, MPI@LHC

 Σp_{τ} is higher than predicted by any of the MC tunes

lead

 $\Sigma p_{T} vs. p_{T}$

Cluster method

21 November 2011

$<p_{T}>$ is overestimated in toward region

Particle density versus p_{τ}^{lead}

New Pythia tunes from ATLAS tuning group to improve description of UE results.

See talk by D. Kar at 3:40 pm today.

Ongoing studies

- Forward-backward correlations
- Forward energy flow
- UE with track jets
- UE in Z events
 - High statistics 2011 data sample
 - $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ channels
 - Leading jet up to 1 TeV

Stay tuned for new results!

Summary

- LHC data provides a new energy scale for studying non-perturbative QCD
- Charged particle multiplicities measured by ATLAS in various regions of phase space
 - Measurements indicate a deficit of activity in models tuned to Tevatron data
- New measurement of the azimuthal ordering of charged hadrons
 - Shows features consistent with string fragmentation represented by a helix-like ordered gluon chain
- Underlying Event activity measured using track-based and cluster-based methods, providing statistically independent results
 - Activity measured in data is above predictions from current model tunes
- MB + UE measurements expose limitations in models that prevent a simultaneous description of all regions of phase space

There is still much to learn about non-perturbative QCD at $\sqrt{s} = 7$ TeV!

References

- "Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC", published 18 May 2011 in New J Phys 13 (2011) 053033
- Common plots from LHC MB & UE working-group: http://lpcc.web.cern.ch/LPCC/index.php?page=mb_ue_wg_docs
- "Measurement of inclusive two-particle angular correlations in proton-proton collisions at √s=900 GeV and 7 TeV", 6 April 2011, ATL-CONF-2011-055
- "Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector", reference not yet available
- "K⁰_s and Λ production in pp interactions at $\sqrt{s} = 0.9$ and 7 TeV measured with the ATLAS detector at the LHC", arXiv:1111.1297 [hep-ex], submitted to Phys. Rev. D
- "Measurements of underlying-event properties using neutral and charged particles in pp collisions at √s=900 GeV and √s=7 TeV with the ATLAS detector at the LHC", published 10 May 2011 in EPJC 71 (2011) 1636
- "Measurement of underlying event characteristics using charged particles in pp collisions at \sqrt{s} =900 GeV and 7 TeV", published 31 May 2011 in Phys. Rev. D 83, 112001

BACKUP SLIDES

The LHC

Minimum bias: Measurement strategy

• Event selection

- Single-arm MBTS trigger (≥ 1 hit anywhere)
- Pile-up veto: reject events with a second primary vertex with 4 or more tracks
- Number of selected tracks within given phase space
- Track selection
 - p_{τ} and η within given phase space
 - A minimum of one hit in first layer of pixel detector, if expected
 - A minimum of one pixel hit and 2/4/6 strip hits (p₁-dependent)

- $|d_0^{PV}|$, $|z_0^{PV}|$ sin $\theta < 1.5$ mm (impact parameters w.r.t. primary vertex)

Apply corrections at event and track level to measure distributions of stable charged particles coming from the primary pp interaction

Minimum bias: Event-level corrections

- Correct for missing events due to trigger and vertex requirements
- Both vertex and trigger corrections derived from data
 - Measure trigger efficiency of MBTS w.r.t. control trigger using ID
 - Vertex reconstruction efficiency measured using all triggered events

Minimum bias: Track-level correctioms

- Tracking efficiency (ϵ_{trk}) derived from MC with GEANT detector simulation
 - Systematic uncertainty determined from comparisons with data
- Correction is applied in 2D (pT, η) to remove model dependence
 - Also correct for non-primaries and particles outside of kinematic range

Pythia 6 Tunes

- ATLAS MC09
 - Main reference before ATLAS measurements at \sqrt{s} = 7 TeV
- ATLAS MBT1
 - Tuned using diffraction-suppressed phase-space
 - $n_{ch} \ge 1$, pT > 500 MeV, $|\eta| < 2.5$
 - ATL-PHYS-PUB-2010-002
- ATLAS MBT2, MBT2B, UET2B
 - Not discussed here
 - See talk by D. Kar at 3:40 pm today

Minimum bias: ATLAS/ALICE/CMS comparison

- Common phase spaces chosen by the LHC Minimum Bias & Underlying Event working group:
 - $n_{ch} \ge 1, p_{T} > 500 \text{ MeV}, |\eta| < 0.8$
 - $n_{ch} \ge 1, p_{T} > 1 \text{ GeV}, |\eta| < 0.8$
- Good agreement on measured charged particle multiplicity between LHC experiments!

Angular correlations: Correction strategy

- 1) Apply event-level corrections (track + vertex)
- 2) Compute observable $R(\Delta \eta, \Delta \phi)$
- Randomly throw away tracks according to tracking efficiency
- 4) Repeat 6 times (ϵ_{trk}^{6})
- In each bin, extrapolate back to -1th iteration: "truth"

21 November 2011

Angular correlations: Correlations in $\Delta \eta$

Near-side correlation

Away-side correlation (Integrated over $\pi/2 < \Delta \phi < \pi$)

21 November 2011

Angular correlations: Correlations in $\Delta \phi$

Azimuthal ordering: Measurement strategy

- Event selection (inclusive sample)
 - At least one triggered counter in MBTS (minimum bias)
 - Exactly one reconstructed vertex with at least three tracks
 - At least six tracks passing slightly modified minimum bias selection ($p_{\tau} > 100 \text{ MeV}$)
 - n_{tr} is stochastically unfolded to $n_{ch} \rightarrow n_{ch} > 10$
 - Veto events containing any track with $p_{\tau} > 10 \text{ GeV}$
- Low-pT enhanced sample
 - Veto events containing any track with $p_{\tau} > 1 \text{ GeV}$
 - Effects of parton showering and lateral boost are diminished
 - Transverse activity in these events expected to be sensitive to hadronization
- Low-pT depleted sample
 - Use higher track p_{T} cut, $p_{T} > 500 \text{ MeV}$
 - Significantly reduced contribution from diffractive pp interactions

Correct for detector effects using deconvolution technique similar to 2-particle correlation study

Underlying Event: Σp_{T} vs. $\Delta \phi$

21 November 2011

M. Leyton, MPI@LHC

Underlying Event: Particle density vs. p lead

Particle density is higher than predicted by any of the MC tunes

Cluster method

Underlying Event: Particle density vs. p₁^{lead}

Underlying Event: $\Sigma p_{T} vs. p_{T}^{lead}$

Underlying event: <p_>versus p_<^lead

<p_> is overestimated in toward region

