

Underlying Event, Minimum Bias and Forward Energy Flow Measurements with CMS

Sunil Bansal (Universiteit Antwerpen) on behalf of CMS Collaboration

3rd workshop on Multi-Parton Interactions at the LHC Hamburg, 21-25 November 2011

CMS Experiment

The Underlying Event

EPJ C70 (2010) 555 JHEP09 (2011) 109 CMS QCD-10-040

Everything except the hard scattering: UE = MPI +BBR (+ ISR and FSR contamination)

 \rightarrow Need to "tune" soft interactions MC model(s) to UE: previous and LHC data

The Underlying Event

EPJ C70 (2010) 555 JHEP09 (2011) 109 CMS QCD-10-040

Toward

Away

ransver

ransverse

Everything except the hard scattering: UE = MPI +BBR (+ ISR and FSR contamination)

Identify in the event an energy scale (and direction) reflecting the hard scattering:

- \rightarrow Di-jet events: Leading track-jet (cluster of tracks with highest pT)
- → Drell-Yan: di-muon final state

3 topological regions from the azimuthal difference w.r.t. the leading direction:

- \rightarrow away ($|\Delta \phi| > 120^{\circ}$): hard scattering and radiation
- → transverse ($60^{\circ} < |\Delta \phi| < 120^{\circ}$): suited for UE studies
- → towards ($|\Delta \phi| < 60^{\circ}$): same as "away" for track-jet approach suited for UE studies in DY process

Observables built from charged particles: $d^2 N_{chg} / d\eta \ d(\Delta \phi)$: charged multiplicity density $d^2 \Sigma p_T / d\eta d (\Delta \phi)$: scalar p_T sum density

UE transverse region: charge and Σp_T density

7 TeV and 900 GeV results for the reference charged multiplicity density and Σp_T density profiles including Z1 (solid) and 4C (dashed) predictions.

– Fast rise for pT < 8 GeV/c (4 GeV/c), attributed mainly to the increase of MPI activity, followed by a plateau-like region with \approx constant average number of selected particles and a slow increase of Σ pT, in a saturation regime.

– Increase of the activity with \sqrt{s} also corroborates MPIs (growth with PDFs).

– PYTHIA nicely re-tuned to describe the data, still differences of the order of 5 to 20% for different versions and tunes (even very recent PYTHIA8 tune 4C).

11/21/11

Comparison between 7 TeV and 900 GeV

– In the presence of a large energy scale, UE grows significantly with \sqrt{s}

- A factor 2 going from 900 GeV to 7 TeV to be compared with 1.7 for MB.
- MPI growth with \sqrt{s} well described by Z1 and 4C, too pronounced in D6T.

Charge and Σp_T density : Drell-Yan Events

Activity as a function of $M_{\mu\mu}$: for events with small recoil activity by requiring $p_T^{\mu\mu} < 10 \text{ GeV/c}$ \rightarrow close to true UE

– no dependence on energy scale ($M_{\mu\mu}$), as MPI saturates at these scale (also known from track-jet analysis).

- Pythia-8 4C, Pythia-6 DW and Z1 agrees with the measurements within 10-15%

11/21/11

Charge and Σp_T density : Drell-Yan Events

Activity as a function of $p_T^{\mu\mu}$: for events with $60 < M_{\mu\nu} < 120 \text{ GeV/c}^2$

– MPI saturates and $p_{T}^{\mu\mu}$ dependence gives radiation evolution (mainly initial state radiation).

– Transverse region: qualitatively similar as towards but has higher activity due to spill-over contribution from away side hard component.

– Pythia-8 4C underestimate the activity (except at small $p_T^{\mu\mu}$), Pythia-6 tunes agree with the measurements within 10-15%

11/21/11

11/21/11

Single Charged Particle Spectra: dN/dŋ

JHEP 02 (2010) 041 PRL 105 (2010) 022002

CMS -

104

Event Selection:

Single Charged Particle Spectra: dN/dpT

JHEP 02 (2010) 041 PRL 105 (2010) 022002 JHEP 08 (2011) 086

CMS

- from a wide range of collision energies onto a common curve at high x_T
- → Interpolated (x_T and p_T scaling) data provides a reference for PbPb studies of nuclear modification factors at LHC for $\sqrt{s_{NN}}=2.76$ TeV –

Charged Particle Multiplicities

JHEP 01 (2011) 079

(a)

[GeV]

CMS NSD

CMS NSD

KNO scaling: violate for $|\eta| < 2.4$

ml < 0.5

 $|\eta| < 2.4$

C. UA5

C NA22

CMS

UA5

CMS

UA5

UA1

NA22

C. UA5

C, CMS

C NA22

C₂ CMS C₂ NA22 C₂ UA5 C₃ CMS C₃ NA22

NA22

20

50

- Large multiplicity tail observed at 7 TeV
- $< p_T > v_S n$ scale with energy: weekly dependent on \sqrt{s}
- No Monte Carlo is able to describe all multiplicities at all energies (but PYTHIA 8 better)
- Most MC/tunes can not describe simultaneously the multiplicity and the p_T dependence (again PYTHIA 8 better)
- MC produce too few particles with low transverse momentum; PYTHIA 8 compensate for this by producing too many particle with high pT (semi hard MPI modelling)

JS

hold for $|\eta| < 0.5$

[GeV]

0

11/21/11

Strange Particle Production: K^0_{S} , Λ , Ξ^- JHEP 05(2010)064

K0 , Λ , Ξ^- : long-lived particles ($c\tau > 1$ cm) identified from their decay products originating from a displaced vertex.

2

З

5 6 p_{_} [GeV/c] the amount of strangeness suppression (w.r.t. u and d quarks) is an important component in MC models
 interesting for new physics (e.g. strange enhancement in QGP formation)

Production yields in function of rapidity y and p_T :

- <pT> increasing with particle mass and \sqrt{s} : agreement with predictions
- \sqrt{s} increase in production consistent with inclusive charged particles
- production ratios , Λ / K0 and Ξ^- / Λ (versus y and pT) independent of $\sqrt{s:no}$ clear sign of QGP formation

MC underestimating total yield (both \sqrt{s} 0.9 and 7TeV) and \sqrt{s} scaling

Two-particles correlation in $\Delta\eta$ and $\Delta\phi$

JHEP 09 (2010) 091

MinBias Results: Independent Cluster Model

Independent Cluster Model (ICM)

- Clusters are produced independently
- Each cluster decay isotropically into hadrons in its own c.m.s.
- Short range correlations in $\Delta \eta$ can be characterized by 2 parameters:
 - cluster size $K \rightarrow \#$ correlated particles
 - cluster width $\delta \rightarrow \Delta \eta$ correlation size

- K_{eff} increase with \sqrt{s} (more jets at high \sqrt{s} ?)
- δ constant with \sqrt{s} (isotropic cluster decay)
- CMS results follow trend from lower \sqrt{s} data
- PYTHIA (D6T) shows similar energy dependencies for K_{eff} and δ as data
- PYTHIA (D6T) predicts too low K_{eff}

High Multiplicity Results at $\sqrt{s} = 7$ TeV

Intermediate $pT : 1 < p_T < 3$ GeV/c

→ Observation of a Long-Range, Near-Side angular correlations at high multiplicity in pp events at intermediate p_T (Ridge at $\Delta \phi \sim 0$)

... not reproduced in PYTHIA 8 (and PYTHIA 6, HERWIG++, madgraph)

Multiplicity and p_T dependence

p_T range

(d) N>110, 1.0GeV/cr<3.0GeV/c

→ Study dependence on p_T and multiplicity for 2 < $|\Delta \eta|$ < 4.8 for R($\Delta \phi$) :

$$R(\Delta\phi) = \left| (N-1) \left| \frac{\int_{2}^{4.8} S_N(\Delta\eta, \Delta\phi) d\Delta\eta}{\int_{2}^{4.8} B_N(\Delta\eta, \Delta\phi) d\Delta\eta} - 1 \right| \right|_N$$

"Ridge" maximal for high multiplicity and intermediate p_T : 1 < p_T < 3 eV/c

"Ridge" not reproduced by PYTHIA 8

See talk by Sara Alderweireldt

Forward Energy Flow

CMS FWD-10-011 (Submitted to JHEP) hep-ex: 1110.0181 (submitted EPJC)

- High energy collisions large parton densities important:
 → MPI, low x physics and possible saturation effects.
- Energy flow in the forward region
 - \rightarrow Information about color (re)connections to the proton remnant
- $\rightarrow\,$ High sensitivity to underlying events and important for the tuning of MC generators
- Forward particle production important in air shower models
 - \rightarrow Majority of the energy carried by the forward particles
 - $\rightarrow\,$ Test of cosmic ray MC: QGSJET, SIBYLL and EPOS

Forward Energy Flow in Minimum Bias Events

- Strong dependence of forward energy flow with \sqrt{s} reproduced by all MC
- Strong contributions from MPI (PYTHIA6-no MI fails)
- PYTHIA 6 (Z2,CW,D6T,P0,..) and PYTHIA 8 with MPI fails at high η (color reconnection)
- HERWIG++ describes the data (but different tunes for both \sqrt{s})

Forward Energy Flow in di-jet Events

- Significantly higher forward energy flow in dijets events than in MinBias

- Activity increase ~2-3 as collision energy change from 900 GeV to 7 TeV.
- Good description by PYTHIA6 and PYTHIA8
- MPI required: PYTHIA6-no MI & CASCADE failing
- HERWIG++ describes the data (but different tunes for both \sqrt{s})
- \rightarrow High sensitivity to MC and tunes

Forward Energy Flow: cosmic ray generator

Cosmic ray generators providing a good description of data

Forward Energy Flow in W/Z Events

Correlation between central track multiplicity and energy deposit in forward region provide additional information for the understanding of MPI

– Identify the W and Z candidate with leptonic final state

- Central Track Multiplicity: $p_T > 0.5 \text{ GeV/c}, 1 \text{ GeV/c}$ and $|\eta| < 2.5$ (excluding tracks from W/Z)

 Forward Energy: sum of tower deposit in HF with at least 4 GeV energy (to reduce the noise)

 Track multiplicity and forward energy is Sensitive to underlying event.

– Pythia6 Z2 provide good description of multiplicity

large differences in small and large energy region

Forward Energy Flow in W/Z Events

Correlation between Forward Flow and Central Track Multiplicity

– track multiplicity, energy distribution in forward and backward region strongly correlated.
– energy spectra and correlations are not well modeled.

11/21/11

Summary

- Charged particle spectra measured at various energies.
- Missing strangeness in MCs.
- Unexpected long range correlation (similar to heavy-ion collisions). MCs don't describe this observation.
- Underlying Event:

 \rightarrow important to understand the UE modeling for precision measurements and new physics searches.

- \rightarrow measurement performed at various energies and with different processes.
- Forward Energy Flow: important for understanding of the MPI and low-x physics. Energy flow measured using various processes i.e MinBias, dijet, W/Z.

Many measurements are available and large MC tuning effort going on to describe these measurements