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Many features of multi-parton interactions are present already in double parton scattering.
The two hard scatterings are connected via the double parton distributions, producing ef-
fects not present in the case of a single hard interaction. We examine the impact of
correlations between initial state partons on the differential cross section for the double
Drell-Yan process. The polarizations of the interacting quarks are found to induce corre-
lations between the decay planes of the vector bosons.

1 Introduction

Interactions where more than one of the partons take part in hard collisions can provide new
insights about the structure of the proton and also constitute important backgrounds to other
processes, such as Higgs production [1].

In studies of multi-parton interactions an often neglected feature are the correlations between
the hard collisions. Although such approximations can be partially motivated, under certain
conditions, it is still necessary to examine the correlation effects in greater detail. Double parton
scattering possess many properties of multi-parton interactions. As a first examination we study
the double Drell-Yan process (γ∗, Z,W±) [2, 3, 4]. It has the advantage of being theoretically
clean and well understood in the single parton scattering case. We assume that the cross section
can be factorized into hard parts, calculable by perturbation theory, and soft parts described by
parton densities. The first steps towards a proof of this assumption in the context of the double
Drell-Yan process has been taken in [5] and [6]. We calculate the differential cross section taking
many of the correlation effects into account, in order to examine how the correlations in the
distributions of the two partons propagate into measurable quantities.

2 Double parton interactions

Double parton interactions exhibit many features not present in single parton scattering. The
normal parton distribution functions are replaced by double parton distributions, DPDs, and
there can be interferences between the two hard collisions.

When more than one parton in the proton interacts, it is only the sum of the momenta and
quantum numbers which have to match between the amplitude and the conjugate amplitude
[7, 8, 9]. This is illustrated for the double Drell-Yan process in figure 1. Therefore, a parton in
the amplitude can have a different momentum than its partner in the conjugate. The momentum
difference r in one interaction has to be balanced by the other. Colors of the quarks can be
matched in the canonical way inside each hard interaction. But there is also the possibility to

MPI@LHC 2011 1MPI@LHC 2011 89



p p

p̄p̄

k1 − 1
2
r

q2

q1

k1 +
1
2
r

Figure 1: The double Drell-Yan process where two quarks in the right moving proton, with
momentum p, interact with two anti-quarks from the left moving proton, with momentum p̄.
q1 and q2 are the momenta of the vector bosons from interaction one and two, while k1 is the
averaged momentum carried by the parton, in interaction 1, from the right moving proton. r
is the momentum miss-match and has to be balanced by collision 2. Barred labels indicate
that the quantities are from the left moving proton and the two interactions are labeled by the
subscripts 1 and 2 respectively.

match the colors between the two collisions, producing color interference terms. Similarly there
can be interference in flavor when the two colliding partons from a proton are different. There
can even be fermion number interference between quarks/anti-quarks, but we will not consider
this in the following. For the cross section differential in the transverse momenta of the vector
bosons, qi, the double interactions are not power suppressed compared to single interactions
producing the same final state [8] and are important in certain regions of phase space [10]. The
power suppression arises when integrating over transverse momenta, due to the larger phase
space in the case of a single interaction. k1 and k2 are average momenta of the partons taking
part in hard interaction 1 and 2 respectively, where the average is taken over the amplitude and
its conjugate. Fourier transforming the transverse momentum difference r into position space,
we obtain the transverse distance y between the two hard interactions, i.e. from interaction 2
to 1.

3 Parton distributions

Interferences and spin correlations in double parton interactions are described by the DPDs
and give rise to a large number of different double parton distributions.

The DPDs depend on the momentum fractions x1 and x2 carried by the partons in the two
collisions, their average transverse momenta k1, k2 and the transverse distance y. Integrating
over the transverse momenta yields collinear double parton distributions [11, 12, 13, 14]. The
correlation between the spin of the two colliding quarks is reflected by parton distributions
describing the polarization of quarks inside a proton, similar to those in single parton distribu-
tions with polarized protons [15]. We denote unpolarized quarks by q, longitudinally polarized
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quarks by ∆q and transversely polarized quarks by δq. We take the DPDs, in equations (1)-(3),
in a right moving proton from [5]. For unpolarized and longitudinally polarized quarks the
possible combinations are

Fqq = fqq(x1, x2,k1,k2,y)

F∆q∆q = f∆q∆q(x1, x2,k1,k2,y)

Fq∆q = gq∆q(x1, x2,k1,k2,y)

F∆qq = g∆qq(x1, x2,k1,k2,y),

(1)

where f ’s are scalar- and g’s are pseudo scalar-functions. For transverse polarization the parton
distributions carry an open, transverse, index which corresponds to the transverse spin vector

F i∆qδq = M
(
yif∆qδq + ỹig∆qδq

)

F iqδq = M
(
ỹifqδq + yigqδq

)
.

(2)

M is the proton mass and ỹi = yjεij , i = 1, 2 is a transverse vector orthogonal to yi. In a
left moving proton the sign changes for the pseudo scalar functions g and also of ỹ, due to
the change of plus/minus components in the epsilon tensor. When both interactions contain
transversely polarized quarks the two open indices make the structure more involved

F ijδqδq = δijfδqδq +
(
2yiyj − y2δij

)
M2f tδqδq +

(
yiỹj + ỹiyj

)
M2gsδqδq

+
(
yiỹj − ỹiyj

)
M2gaδqδq.

(3)

The color interference doubles the number of DPDs since they appear as color singlet distribu-
tions 1fqq and as color octets 8fqq. Further, when the flavors of the two quarks are different,

there are both flavor square f
Sf
qq and flavor interference distributions f

If
qq . The DPDs for the

left moving protons are defined analogously and will be denoted by a bar, i.e. f̄qq for the unpo-
larized DPD. This is not to be confused with the bar appearing over subscripts which indicate
anti-particles.

4 Differential cross section

The different parton distributions are contracted with the appropriate parts of a polarization
dependent partonic cross section, yielding the final differential cross section for the double Drell-
Yan process. We will present the results of the calculation with focus on the angular structure,
and discuss how the cross section is affected by the correlations between the quarks.

To describe the final state kinematics we use a modified version of the Collins-Soper frame
[16], where the arbitrary x-axis is, for definiteness, chosen to point towards the center of the
LHC ring, see figure 2. The cross section is split into three parts, the first containing no
transverse polarization σ(0), the second σ(1) and third σ(2) containing one and two interactions
with transversely polarized quarks. The cross section with only unpolarized and longitudinally
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Figure 2: Reference frame for each boson, for simplicity displayed when the transverse momenta
of the vector bosons are zero. P is the momentum of the right moving proton while li is the
momentum of the lepton in interaction i. The x-axis is an arbitrary reference axis which we
chose to point towards the center of the LHC ring.

polarized quarks is

dσ(0)

dx1dx2dx̄1dx̄2d2q1d2q2dΩ1dΩ2
=
α4Q2

1Q
2
2

S

∑

q1,q̄1,q2,q̄2
V1,V

′
1 ,V2,V

′
2

∑

I

∑

a1ā1={q1q̄1,∆q1∆q̄1,q1∆q̄1,∆q1q̄1}
a2ā2={q2q̄2,∆q2∆q̄2,q2∆q̄2,∆q2q̄2}

×
[
KI
a1ā1(1 + cos2 θ1)−K ′Ia1ā1 cos θ1

]
(
Q2

1 −m2
V1

+ imV1ΓV1

) (
Q2

1 −m2
V ′
1
− imV ′

1
ΓV ′

1

)

×
[
KI
a2ā2(1 + cos2 θ2)−K ′Ia2ā2 cos θ2

]
(
Q2

2 −m2
V2

+ imV2ΓV2

) (
Q2

2 −m2
V ′
2
− imV ′

2
ΓV ′

2

)

×
∫
d2y I

[
F Ia1a2 F̄

I
ā1ā2 + F Ia1ā2 F̄

I
ā1a2 + F Iā1a2 F̄

I
a1ā2 + F Iā1ā2 F̄

I
a1a2

]

(4)

where we have used the short hand notation

I
[
F Ia1a2 F̄

I
ā1ā2

]
≡
∫
d2k1d

2k̄1δ
(2)(q1 − k1 − k̄1)

∫
d2k2d

2k̄2δ
(2)(q2 − k2 − k̄2)F Ia1a2 F̄

I
ā1ā2 (5)

for the momentum integrals over the DPDs. Q2
i is the squared momentum of vector boson i, S

is 2 when the final states of the two hard interactions are equal and 1 otherwise. The first sum
is over the flavors of quark qi and anti-quark q̄i for the two interactions and over the allowed
vector bosons in the amplitude Vi and in the conjugated amplitude V ′i , with mass mVi

and
mV ′

i
. The sum over I sums the color (singlet 1 and octet 8) and flavor (Sf and If ) squares

and interference terms. aiāi label the different combinations of unpolarized and longitudinally
polarized quarks which affect not only the parton distributions but also the combinations of
coupling constants K and K ′, which also depend on the flavor of the quarks and vector bosons.
K ′ is zero for photons but for a more detailed discussion we refer to [17]. Instead we want to
focus upon the angular structure. θi is the angle between the z-axis and the momentum of the
outgoing lepton from hard interaction i.

All the different terms have the same angular structures, thus, despite the proliferation of
DPDs they all contribute to the same structures in the cross section. However, the relative
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factors are different and hence longitudinal polarization as well as interferences in flavor and
color affects both the overall rate and the angular distribution.

We now turn towards the part where one interaction involves quarks with transverse polar-
izations. For the production of W bosons the transversely polarized part of the cross section is
zero since they only couple to left-handed particles and hence the only nonzero contribution is
for γ/Z bosons in the interaction with transverse polarizations. The cross section is

dσ(1)

dxidx̄id2qidΩi
=
α4Q2

1Q
2
2

S

∑

q1,q̄1,q2,q̄2
V1,V

′
1 ,V2,V

′
2

∑

I

1(
Q2

1 −m2
V1

+ imV1
ΓV1

) (
Q2

1 −m2
V ′
1
− imV ′

1
ΓV ′

1

)

× 1(
Q2

2 −m2
V2

+ imV2
ΓV2

) (
Q2

2 −m2
V ′
2
− imV ′

2
ΓV ′

2

)M2 sin2 θ2

∫
d2y y2

×
{ ∑

a1ā1={q1q̄1,∆q1∆q̄1}

[
KI
a1ā1(1 + cos2 θ1)−K ′Ia1ā1 cos θ1

]

×
([
CI cos 2(ϕ2 − ϕy)− C ′I sin 2(ϕ2 − ϕy)

]
I
[
gIa1δq2 ḡ

I
ā1δq̄2 − f Ia1δq2 f̄ Iā1δq̄2 + perm.

]

−
[
CI sin 2(ϕ2 − ϕy) + C ′I cos 2(ϕ2 − ϕy)

]
I
[
gIa1δq2 f̄

I
ā1δq̄2 + f Ia1δq2 ḡ

I
ā1δq̄2 + perm.

])

+
∑

a1ā1={q1∆q̄1,∆q1q̄1}

[
KI
a1ā1(1 + cos2 θ1)−K ′Ia1ā1 cos θ1

]

×
([

CI cos 2(ϕ2 − ϕy)− C ′I sin 2(ϕ2 − ϕy)
]
I
[
gIa1δq2 f̄

I
ā1δq̄2 − f Ia1δq2 ḡIā1δq̄2 + perm.

]

−
[
CI sin 2(ϕ2 − ϕy) + C ′I cos 2(ϕ2 − ϕy)

]
I
[
gIa1δq2 ḡ

I
ā1δq̄2 + f Ia1δq2 f̄

I
ā1δq̄2 + perm.

])

+ {1↔ 2}
}

(6)

where C and C ′ are coupling factors for transverse quarks (δq2δq̄2), similar to the K’s in the
previous part and ’perm.’ stands for permutations of the quark/anti-quark labels. The angular
dependence from interaction 1 is unchanged compared to σ(0) but for interaction 2 we now get
dependence on azimuthal angles. The angular structure however stays simple and we only have
dependence on one new angle, between the transverse momentum of the outgoing lepton from
interaction 2 and the vector y between the two hard interactions. The transverse dependence
originates in the breaking of the rotation symmetry around the z-axis caused by the transverse
spin of the partons. {1↔ 2} represents the contribution in which interaction 1 is transversely
polarized. It can be obtained by interchanging the labels for the two interactions and at the same
time swapping the positions of the subscripts on the DPDs (For example: fa1δq2 then becomes
fδq1,a2). y cannot be measured and performing the d2y integral relates the correlations to the
transverse momenta of the vector bosons. The cross section can also be displayed with the
quark and final state lepton dependencies separated by aid of an arbitrary x-axis, but we have
chosen to display the results in the above form since it gives formulas of shorter lengths.
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The doubly transversely polarized cross section is richer in structure

dσ(2)

dxidx̄id2qidΩi
=
α4Q2

1Q
2
2

S

∑

q1,q̄1,q2,q̄2
V1,V

′
1 ,V2,V

′
2

∑

I

1(
Q2

1 −m2
V1

+ imV1
ΓV1

) (
Q2

1 −m2
V ′
1
− imV ′

1
ΓV ′

1

)

× 1(
Q2

2 −m2
V2

+ imV2ΓV2

) (
Q2

2 −m2
V ′
2
− imV ′

2
ΓV ′

2

) sin2 θ1 sin2 θ2

∫
d2y

×
{ [
AI cos 2(ϕ1 − ϕ2)−A′I sin 2(ϕ1 − ϕ2)

]

× I
[
f Iδq1δq2 f̄

I
δq̄1δq̄2 − y4M4gaIδq1δq2 ḡ

aI
δq̄1δq̄2 + perm.

]

+
[
BI cos 2(ϕ1 + ϕ2 − 2ϕy)−B′I sin 2(ϕ1 + ϕ2 − 2ϕy)

]

× y4M4I
[
f tIδq1δq2 f̄

tI
δq̄1δq̄2 − gsIδq1δq2 ḡsIδq̄1δq̄2 + perm.

]

+
[
AI sin 2(ϕ1 − ϕ2) +A′I cos 2(ϕ1 − ϕ2)

]

× y2M2I
[
f Iδq1δq2 ḡ

aI
δq̄1δq̄2 + gaIδq1δq2 f̄

I
δq̄1δq̄2 + perm.

]

−
[
BI sin 2(ϕ1 + ϕ2 − 2ϕy) +B′I cos 2(ϕ1 + ϕ2 − 2ϕy)

]

× y4M4I
[
f tIδq1δq2 ḡ

sI
δq̄1δq̄2 + gsIδq1δq2 f̄

tI
δq̄1δq̄2 + perm.

] }
,

(7)

where A, A′, B, and B′ are coupling factors. This part of the cross section depends on θ1 and θ2

but also on the transverse angle between the two outgoing leptons and the angles between them
and the direction y. These describe transverse correlations between the decay planes of the two
vector bosons and between the decay planes and the direction between the hard collisions.

5 Transverse dependence of DPDs

We employ a simple Gaussian model for the transverse dependence of the double parton dis-
tributions, and study how the interplay of longitudinal and transverse dependence affects the
cross section. Even though the transverse structure of the proton is much more complicated
than the model suggests, it can still provide some useful insights into what might be expected
in a more complete treatment.

The transverse dependence of the proton is approximated as a three quark Fock state [18]
and the wave function is separated into a purely longitudinal part and a mixed longitudinal
and transverse part

Ψ(x̂i, k̂i) = φ(x̂i)Ω(x̂i, k̂i). (8)

We take the Gaussian ansatz [19]

Ω(x̂i, k̂i) =
(16π2a2)2

x̂1x̂2x̂3
exp

{
−a2

(
k̂

2

1

x̂1
+

k̂
2

2

x̂2
+

k̂
2

3

x̂3

)}
, (9)

where a is a positive constant of dimension GeV−1, which allows us to carry out the integrations
analytically. The x̂i are the longitudinal momentum fractions and k̂i transverse momenta of
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the three quarks in the Fock state. After performing the transverse integrals, the transverse
dependence of the DPDs renders the unpolarized cross section proportional to

exp

{
− 1

8a2

(
b q2

1 + c q1q2 + d q2

)}
. (10)

b, c and d are positive functions of x1, x2, x̄1, x̄2. The cross section decreases with transverse
momenta of the two vector bosons, as expected since the quarks are more likely to be collinear
to their proton. But due to the q1q2 term equation (10) also shows that the cross section
increases when the two bosons have opposite transverse momentum. Since already this simple
model causes dependence on the azimuthal angle between the vector boson momenta, there is
reason to expect such effects to be present also in more realistic descriptions.

6 Conclusions

Spin correlations, color and flavor interference proliferate the number of double parton distri-
butions. Nevertheless, for the double Drell-Yan process many of them contribute to the same
angular structures in the differential cross section. Longitudinal polarization, color and flavor
interference does not introduce any new angular structures but affects both the overall rate
and the angular distribution. The spin vectors of the transversely polarized quarks break the
rotational invariance around the z-axis. This leads to a dependence of the cross section on the
transverse angle between the decay planes of the vector bosons, different from the dependence
when the two bosons are produced in one hard collision. The cross section also depends on
the angles between the decay planes and the transverse direction between the two collisions.
This direction is not measurable and integrating over it causes correlations with the transverse
momenta of the vector bosons. Effects appearing for double Drell-Yan process are also expected
in other types of processes, for example double dijet production should display similar features,
but the color structure of these processes increases their complexity dramatically. Finally, we
showed that even a simple model for the transverse dependence of the double parton distri-
butions causes a dependence on the azimuthal angle between the momenta of the two vector
bosons.

References
[1] A. Del Fabbro, D. Treleani, “A Double parton scattering background to Higgs boson production at the

LHC,” Phys. Rev. D 61 (2000) 077502 (arXiv:9911358 [hep-ph]).

[2] M. Mekhfi, “Multiparton Processes: An Application To Double Drell-yan,” Phys. Rev. D 32 (1985) 2371.

[3] J. R. Gaunt, C. -H. Kom, A. Kulesza, W. J. Stirling, “Same-sign W pair production as a probe of double
parton scattering at the LHC,” Eur. Phys. J. C 69 (2010) 53 (arXiv:1003.3953 [hep-ph].)

[4] C. H. Kom, A. Kulesza, W. J. Stirling, “Prospects for observation of double parton scattering with four-
muon final states at LHCb,” Eur. Phys. J. C 71 (2011) 1802 (arXiv:1109.0309 [hep-ph]).
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