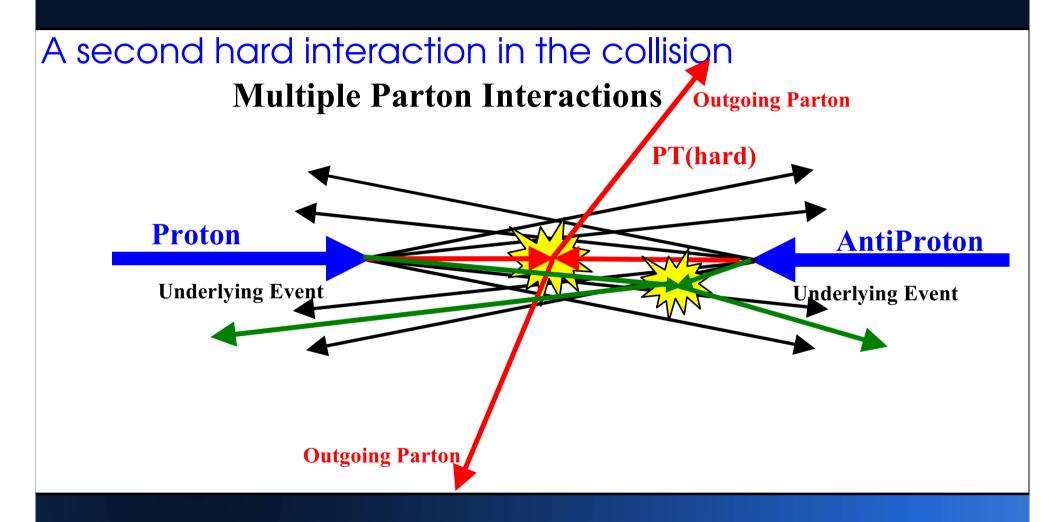
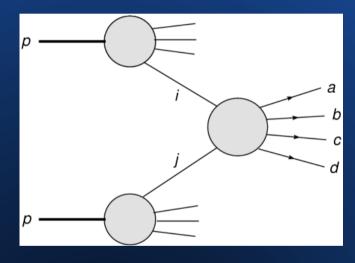
NLO Predictions for Wbb Production via Double Parton Scattering at the I HC

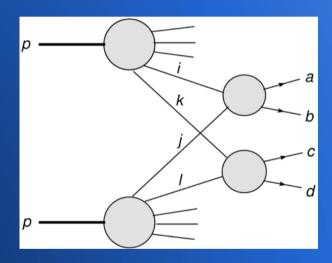

Edmond Berger Argonne National Laboratory

with C. Jackson, S. Quackenbush, and G. Shaughnessy arXiv: 1107.3150, Phys Rev D 84 (2011) 074021

Outline


- Role of Double Parton Scattering (DPS)
- Motivation
- Calculation, analysis details, and backgrounds
- Extraction of a DPS signal from Single Parton Scattering (SPS) and backgrounds
- Results
- Summary

Double Parton Scattering

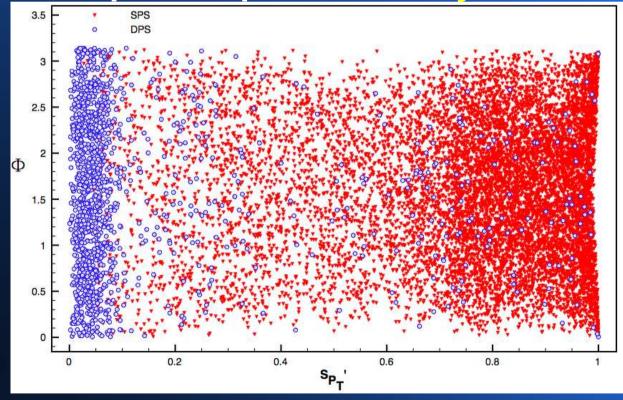


Single and Double Parton Scattering both Contribute

Single Parton Scattering (SPS)

Double Parton Scattering (DPS)

Goal: Measure the relative size of these two contributions


What are the distinguishing variables and regions of phase space that make this possible?

Why study and measure DPS?

- QCD dynamics beyond SPS scattering
- Parton correlations
- Validate a (second) hard component in underlyling event modeling
- Additional background to interesting final states
 - Measuring one DPS final state gives insight into the size of DPS contributions elsewhere

Previous study done of b bbar jet jet

 Identified signature kinematic variables and regions of phase space, but only a LO calculation

Phys. Rev. D 81 (2010) 014014 arXiv:0911.5348

Why Wbb?

- New physics often has a W (isolated lepton plus missing energy) and/or bb final states.
 - W bb is a possible backgound
- bb has a large cross section (μb) → large probability of second scattering
- W → lepton easy to identify
- NLO calculation exists for SPS Wbb

Double parton (DPS) calculation

 Assume weak dynamic and kinematic correlations between the two subprocesses,

$$d\sigma_{pp}^{\text{DPS}} = \frac{m}{2\sigma_{\text{eff}}} \sum_{i,j,k,l} \int H_p^{ik}(x_1, x_2, \mu_A, \mu_B) H_p^{jl}(x_1', x_2', \mu_A, \mu_B)$$

$$\times d\hat{\sigma}_{ij}(x_1, x_1', \mu_A) d\hat{\sigma}_{kl}(x_2, x_2', \mu_B) dx_1 dx_2 dx_1' dx_2',$$

 Joint probabilities approximated as the product of single PDFs.

$$H_p^{i,k}(x_1, x_2, \mu_A, \mu_B) = f_p^i(x_1, \mu_A) f_p^k(x_2, \mu_B).$$

Double parton (DPS) calculation

Final expression:

$$d\sigma^{DPS}(pp \to Wb\bar{b}X) = \frac{d\sigma(pp \to WX)d\sigma(pp \to bbX)}{\sigma_{\text{eff}}}$$

Analysis details

- Signal and backgrounds, including Wbb DPS and Wbb SPS, generated with POWHEG-BOX
 - NLO calculation in a shower Monte Carlo code;
 fully differential so analysis cuts can be made
 - NLO improves reliability of distributions used to distinguish DPS from SPS and backgrounds
- Simple detector effects (b tagging and muon efficieencies, resolution, mistagging) included

Basic acceptance cuts

- $p_{Tb} > 20 \text{ GeV}$, $|\eta_b| < 2.5$
- 20 GeV < $p_{T\mu}$ < 50 GeV, $|\eta_{\mu}|$ < 2.1;
 - Upper cut on p_{Tu} to reject boosted W's (e.g., top decays)
- $E_t^{miss} > 20 \text{ GeV}$
- $\Delta R_{bb} > 0.4$, $\Delta R_{b\mu} > 0.4$
- Focus on W decays to muons
- Computations done for 7 TeV c.o.m energy

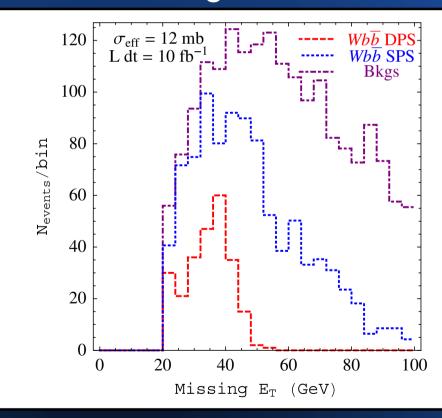
Backgrounds

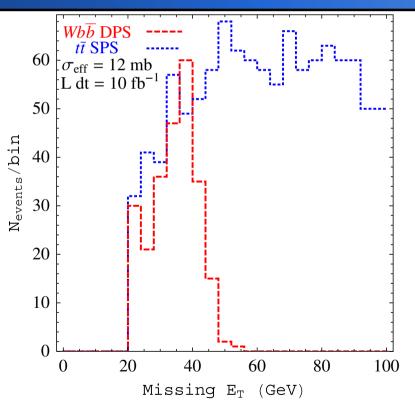
Other processes contribute to and/or fake the

 $Wb\bar{b} \rightarrow b\bar{b}\ell\nu$ final state.

Top quark pair production $t\bar{t}$ Single top quark production (tb, $\bar{t}b$, tj, and $\bar{t}j$ Wjj, Wbj

Wbb Signal and Backgrounds


• Event rates for 10 fb^{-1} of integrated luminosity


	Generator-level	Acceptance	$\not\!\!E_T \le 45 \; \mathrm{GeV}$	$S'_{p_T} \leq 0.2$
Process	cuts	cuts		
$W^{\pm}b\bar{b}$ (DPS)	10 000	247	231	173
$W^{\pm}b\bar{b}$ (SPS)	44 000	1142	569	114
$tar{t}$	225 000	1428	290	13
$W^{\pm}jj$ (DPS)	476 000	43.5	37.7	27.3
$W^{\pm}jj$ (SPS)	20 300 000	101	55.7	19.6
Single top	20 000	492	168	15
$W^\pm b j$	153 000	152	53.1	8.2

After acceptance cuts, t tbar background is tough!

tt BACKGROUND REJECTION

 Upper cut on missing energy (45 GeV) is very effective for reducing t tbar

Wbb Signal and Backgrounds

Event rates

Process	Generator-level cuts	Acceptance cuts	$E_T \le 45 \text{ GeV}$	$S'_{p_T} \leq 0.2$
$W^{\pm}b\bar{b}$ (DPS)	10 000	247	231	173
$W^{\pm}b\bar{b}$ (SPS)	44 000	1142	569	114
$tar{t}$	225 000	1428	290	13
$W^{\pm}jj$ (DPS)	476 000	43.5	37.7	27.3
$W^{\pm}jj$ (SPS)	20 300 000	101	55.7	19.6
Single top	20 000	492	168	15
$W^{\pm}bj$	153 000	152	53.1	8.2

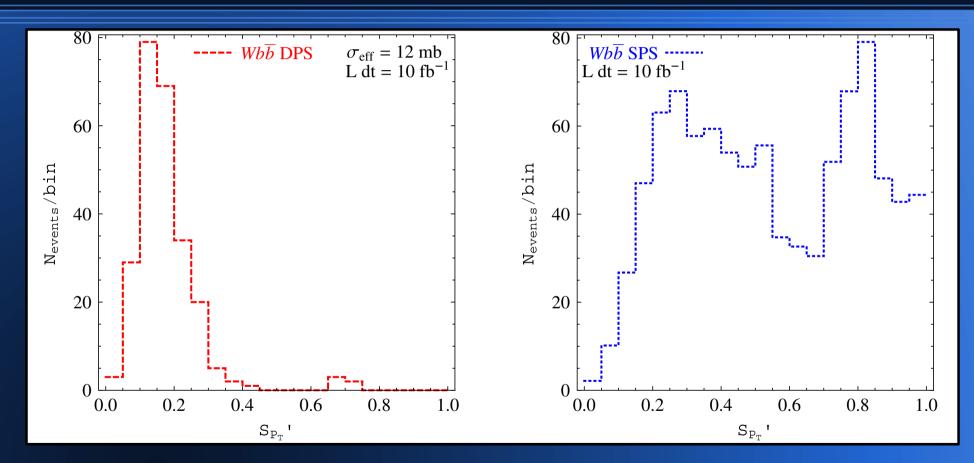
After missing E cut, t tbar background is reduced, as is Wbb SPS

Separation of DPS and SPS

- Kinematic variables that exploit 2 to 2 nature of the underlying DPS subprocesses
 - (i) Back to back in transverse momentum, so vector sum is small, for each subprocess
 - (ii) Back to back in azimuthal angle
- Look at both, separately and then together

i. Transverse momentum balance

- Useful kinematic variables to exploit different character of 2 to 2 from 2 to 4 processes
- Define


$$S'_{p_T} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|p_T(b_1, b_2)|}{|p_T(b_1)| + |p_T(b_2)|}\right)^2 + \left(\frac{|p_T(\ell, \cancel{E}_T)|}{|p_T(\ell)| + |\cancel{E}_T|}\right)^2}.$$

$$|p_T(b_1, b_2)|$$

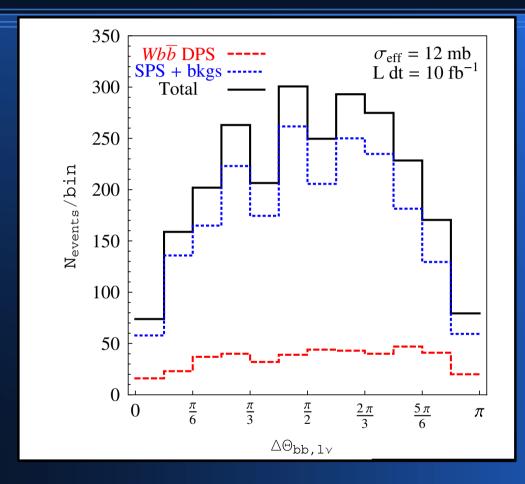
$$|p_T(\ell, E_T)|$$

and $p_T(\ell, E_T)$ go to zero for 2-2 in LO limit

S_{pT}'

DPS is peaked at low values, even after NLO;
 contrast with broad distribution for SPS (2 to 4) 18

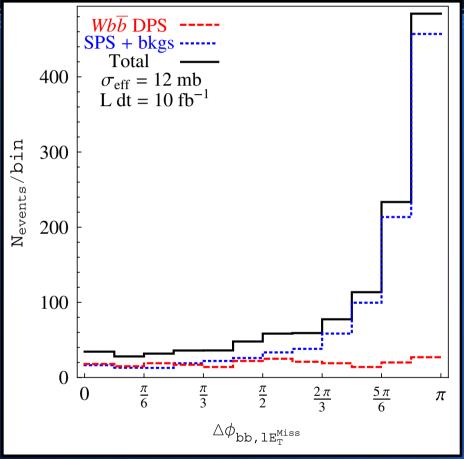
ii. Angle observables


Interplane angle was used in b b jet jet study

$$\cos\Delta\Theta_{b\bar{b},\ell\nu} = \hat{n}_3(b_1, b_2) \cdot \hat{n}_3(\ell, \nu)$$

angle between the normals to the planes defined by the two subsystems

- Requires reconstruction of neutrino longitudinal momentum in the W bb case
- Azimuthal angle between bb and lv systems is more useful in the W bb case
 - Systems tend to be back-to-back in SPS (momentum conservation), but not in DPS


Interplane angle observable

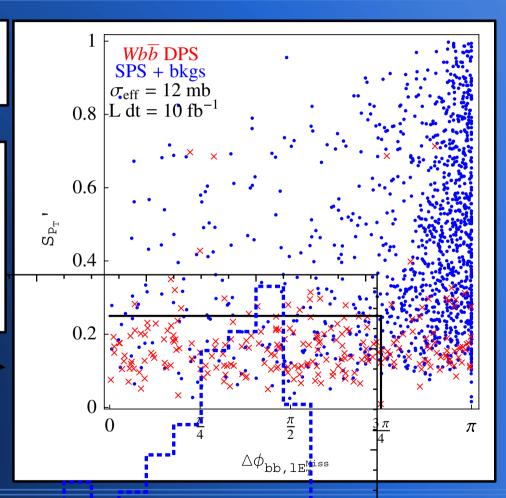
DPS is relatively flat (except for cut suppressions near 0 and 180 degrees) but SPS is peaked near 90 degrees

Liability in this case is that neutrino longitudinal momentum must be reconstructed

Azimuthal angle observable

DPS relatively flat (uncorrelated) but SPS peaked strongly near 180 degrees

 $E_{\rm T}$

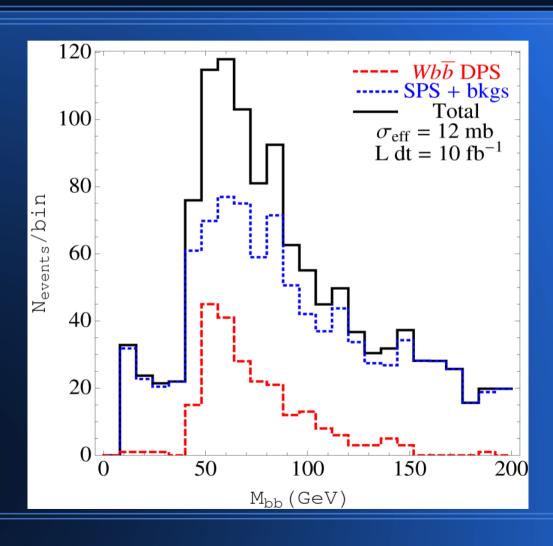

Sharp distinction in azimuthal angle, even with NLO included, between the transverse momentum vectors of the $b\bar{b}$ and ℓE_T

2D distribution

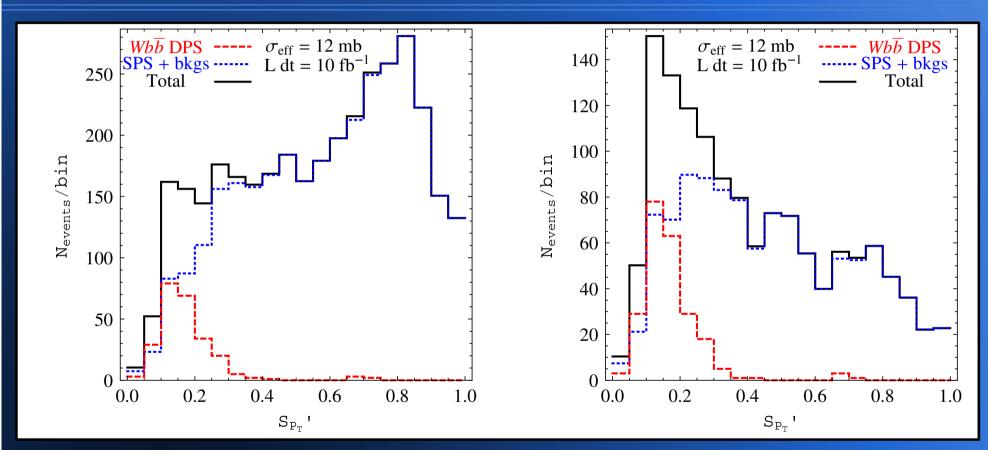
 S'_{p_T} and $\Delta \phi_{bb,\ell E_T}$.

DPS (red X) is well separated from SPS and backgrounds (blue dots) in this 2 D plot

$$S/\sqrt{B} = 15.2$$
 inside the box area



Summary


- Double parton production can be important relative to the single parton rate in specific parts of phase space
- Calculation of W b bbar done here at NLO
- Variables designed to exploit nature of 2 to 2 subprocesses can be used to differentiate DPS from SPS at excellent significance (12-15 σ)
- Once DPS is isolated, can determine σ_{eff}
- Data (and analyses) are needed!

Backup figures

New physics searches?

S_{pT}' (with all backgrounds)

Missing transverse energy cut (on the right)
 reduces backgrounds; leaves signal at low S_{DT} 26