Direct measurements of DPI in ATLAS

Ellie Dobson On behalf of the ATLAS collaboration*

> MPI 2011 22/11/11

*https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-159/atlas_authorlist.pdf

Motivation and method

Motivation: To quantify the probability of hard secondary scatter

- ? Hard DPI (double parton interactions) forms an irreducible BG to new physics searches and is not modelled well in MC generators
- ? Is DPI rate process independent?
- ? (How) does DPI rate depend on the collision energy?

Method: Exploit kinematic difference in DPI events to measure fraction of W +DPI contamination in W+2jet events, and use to extract σ_{eff}

These two will both pass W+2jet selection (in what fraction?)

Samples and selection

Sample	Details	
Pythia inclusive	v6, AMBT tune 1	
Sherpa inclusive	v1.3.1, default UE	
Alpgen+Herwig+Jimmy inclusive	MLM matching, Jimmy v4.31, AUET tune, Herwig v6.510	
Sherpa MPI off	As above + MI_HANDLER=NONE	
Alpgen+Herwig+Jimmy MPI off	As above + remove events where both jets' closest outgoing parton with $P_T > 3.5$ GeV is not primary	
Data (W sample)	All 2010 data run	
Data (jet sample)	All 2010 data run	

W selection Single lepton trigger 1 lepton (e, μ) P_T > 20 GeV, $\eta < 2.5$ MET > 25 GeV, M_T > 40 GeV 2 jets, P_T > 20 GeV, y < 2.8 **Jet selection** Minimum bias trigger 2 jets, P_T > 20 GeV, y < 2.8

Wjj topology I

$$\Delta_{jets} = \left| \vec{P}_T^{J1} + \vec{P}_T^{J2} \right|$$

Wjj topology II

$$\Delta_{jets}^{n} = \frac{\left|\vec{P}_{T}^{J1} + \vec{P}_{T}^{J2}\right|}{\left|\vec{P}_{T}^{J1}\right| + \left|\vec{P}_{T}^{J2}\right|}$$

Extracting DPI rate f_{DP}^R

$$f_{DP}^{R} = \frac{N_{W_0 + 2j_{MPI}}}{N_{W+2j}}$$

Template A: DPI Off

Template B: DPI only

Dijet selection in data

Extraction of f^R_{DP}

Overall distribution = $(1-f^{R}_{DP})$ •Template A + f^{R}_{DP} •Template B \uparrow X^{2} minimisation

Translation to parton level

Variation of f^{R}_{DP} with phase space

Both predicted and extracted DPI rate decrease as P_T cut is raised

f^R_{DP} results

Source of uncertainty	Method of evaluation	Fractional uncertainty / %
Generator modelling	AlpGen+Herwig+Jimmy vs Sherpa	12
Transition to parton level	Monte Carlo studies	10
Jet reconstruction	Jet energy scale shift	10
Pileup	Varying vertex number requirement	8
Trigger bias	Comparison of data streams	5
Background modelling	Varying multi jet background normalisation	1
Total systematic	Quadratic sum of the above	21
Total statistical	$\chi^2 + 1$	7

Table 2: Summary of the uncertainties on the extraction of f_{DP}^{R} .

 $f_{\rm DP}^{\rm R} = 0.16 \pm 0.01 \text{ (stat.)} \pm 0.03 \text{ (sys.)}.$

Converting to σ_{eff}

Taking input definitions
$$f_{\mathrm{DP}}^{\mathrm{R}} = \frac{N_{W_0+2j_{\mathrm{DPI}}}}{N_{W+2j}}, \quad \sigma_{\mathrm{eff}} = \frac{\sigma_{W_0} \cdot \sigma_{2j}}{\sigma_{W_0+2j_{\mathrm{DPI}}}},$$
writing i.t.o cross sections $\sigma_{\mathrm{eff}} = \frac{1}{f_{\mathrm{DP}}^{\mathrm{R}}} \cdot \frac{N_{W_0} N_{2j}}{N_{W+2j}} \cdot \frac{A_{W_0+2j_{\mathrm{DPI}}}}{A_{W_0} A_{2j}} \cdot \frac{\epsilon_{W_0+2j_{\mathrm{DPI}}}}{\epsilon_{W_0} \epsilon_{2j}} \cdot \frac{\mathscr{L}_{W_0+2j_{\mathrm{DPI}}}}{\mathscr{L}_{W_0} \mathscr{L}_{2j}}.$ and using input
assumptions of analysis* $A_{W_0+2j_{\mathrm{DPI}}} = A_{W_0} \cdot A_{2j_{\mathrm{DPI}}},$
 $A_{2j_{\mathrm{DPI}}} = A_{2j}.$ Yields** $\sigma_{\mathrm{eff}} = \frac{1}{f_{\mathrm{DP}}^{\mathrm{R}}} \cdot \frac{N_{W_0} N_{2j_D}}{N_{W+2j}} \cdot \frac{1}{\epsilon_{2j_D}} \cdot \frac{1}{\mathscr{L}_{2j_D}}.$ * need small correction for
overlap removal
** include additional

systematic for trigger bias

σ_{eff} results

Quantity	Systematic source	Method of evaluation	Fractional uncertainty /%
$rac{N_{W0}/N_{W2}\cdot N_{jj}}{N_{W0}/N_{W2}}$	Acceptance cancellation Background modelling	Section 6.1 Reference [53]	< 3 5
\mathscr{L}_{jj}	Luminosity	Beam parameters [52]	11
fdp	Total	As in Table 2	21

Table 3: Summary of the systematic uncertainties on σ_{eff} .

$$\sigma_{\rm eff}(7 \,{\rm TeV}) = 11 \pm 1 \,({\rm stat.}) \,{}^{+3}_{-2} \,({\rm sys.}) \,{\rm mb.}$$

Putting the result into context....

Results consistent with other measurements - no real evidence for variation of σ_{eff} with channel or E_{COM}

Conclusions

The relative DPI rate is extracted for W+2jet events in the ATLAS detector:

$$f_{\rm DP}^{\rm R} = 0.16 \pm 0.01 \text{ (stat.)} \pm 0.03 \text{ (sys.)}.$$

From this, the effective cross section is measured in 7 TeV pp collisions

$$\sigma_{\text{eff}}(7 \,\text{TeV}) = 11 \pm 1 \text{ (stat.)}^{+3}_{-2} \text{ (sys.) mb.}$$

This is consistent with results obtained in different channels at the Tevatron.

The analysis provides a powerful tool in constraining models for DPI as encoded in the commonly used event generators.