Workshop on Multiple Parton Interactions, DESY, November 2011

Parton Showers, Forward Physics and Multiparton Interactions

F. Hautmann (Oxford)

Thanks for collaboration to M. Deak (UAM/CSIC-Madrid), M. Hentschinski (UAM/CSIC-Madrid), H. Jung (CERN/DESY), K. Kutak (Cracow) • Multi-parton interactions increasingly important as parton densities grow with energy

Multi-jet production by (left) multiple parton collisions; (right) single parton collision.

• Effective picture of parton density evolution based on collinear DGLAP for inclusive observables

• MPI contribute primarily to highly differential cross section probing detailed distribution of the states produced by parton evolution

• How do high-energy corrections to parton shower evolution affect treatment of MPI

OUTLINE

I. Noncollinear corrections to shower evolution

II. Forward jets and energy flow

III. J/ψ and associated jet multiplicities

I.A TRANSVERSE MOMENTUM DEPENDENT INITIAL-STATE DISTRIBUTIONS

correlation of quark fields ('dressed' with gauge links) at distances $y, y_{\perp} \neq 0$

i) Single-scale hadron scattering

 $\sigma(Q,m) = C(Q, \text{parton momenta} > \mu) \otimes f(\text{parton momenta} < \mu, m)$

RG invariance
$$\frac{d}{d\ln\mu}\sigma = 0 \implies \frac{d}{d\ln\mu}\ln f = \gamma = -\frac{d}{d\ln\mu}\ln C$$

→ DGLAP evolution equations [Altarelli-Parisi Dokshitzer

Gribov-Lipatov]

$$f = f_0 \times \exp \int \frac{d\mu}{\mu} \gamma(\alpha_s(\mu))$$

 \nearrow resummation of $(lpha_s \ln Q / \Lambda_{
m QCD})^n$ to all orders in PT

Expansions $\gamma \simeq \gamma^{(LO)} \left(1 + b_1 \alpha_s + b_2 \alpha_s^2 + ...\right)$, $C \simeq C^{(LO)} \left(1 + c_1 \alpha_s + c_2 \alpha_s^2 + ...\right)$ give LO, NLO, ... logarithmic corrections

• more complex, potentially large corrections to all orders in α_s , $\sim \ln^k (q_i^2/q_j^2)$

e.g. $\gamma \simeq \gamma^{(LO)} \left(1 + c_1 \alpha_s + ... + c_{n+m} \alpha_s^m (\alpha_s \ L)^n + ... \right) \ , \ L = "large log"$

\hookrightarrow yet summable by QCD techniques that

generalize renormalization-group factorization
 extend parton correlation functions off the lightcone
 winitegrated (or TMD) pdf's

I.B FROM QCD TO MONTE CARLO EVENT GENERATORS

• Factorizability of QCD x-sections \longrightarrow probabilistic branching picture $\diamondsuit A$ QCD evolution by "parton showering" methods:

COHERENCE IN HIGH-ENERGY LIMIT

Soft vector-emission current from external legs \rightarrow

• leading IR singularities

[J.C. Taylor, 1980; Gribov-Low (QED)]

• fully appropriate in single-scale hard processes

Dokshitzer, Khoze, Mueller and Troian, RMP (1988); Webber, A. Rev. Nucl. Part. (1986)

 $\begin{array}{c} & \underset{(k,p)}{\overset{(n+1)}{\longrightarrow}} & \underset{(k,p)}{\overset{(n+1)}{\longleftarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftrightarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftrightarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftrightarrow} & \underset{(k,p)}{\overset{(n+1)}{\longleftrightarrow} & \underset{(k,p)}{\overset{(n+1)}{\ldots} & \underset{(k,p)}{\overset{(n+1)}{\ldots} & \underset{(k,p)}{\overset{(n+1)}{\overset{(n+1)}{\overset{(n+1)}{\ldots} & \underset{(k,p)}{\overset{(n+1)}{\ldots} & \underset{(k,p)}{\overset{(n$

• J depends on total transverse momentum transmitted \Rightarrow matrix elements and pdf at fixed k_⊥ ("unintegrated")

• virtual corrections not fully represented by Δ form factor \Rightarrow modified branching probability $P(z, k_{\perp})$ as well

 \triangleright K_{\perp}-DEPENDENT PARTON BRANCHING

▷ Monte Carlo implementations: CASCADE, LDC, ...

Beyond quenched approximation: unintegrated quark evolution

[Hentschinski, Jung & H, in progress]

• sea: flavor-singlet evolution coupled to gluons at small x via

$$\mathcal{P}_{g \to q}(z;q,k) = P_{qg,\text{GLAP}}(z) \left(1 + \sum_{n=0}^{\infty} b_n(z)(k^2/q^2)^n\right)$$

all b_n known; $\mathcal{P}_{g \to q}$ computed in closed form (positive-definite) in [Catani & H, 1994; Ciafaloni et al., 2005-2006] by small-x factorization • valence: independent evolution (dominated by soft gluons $x \to 1$)

II. FORWARD JETS AT THE LHC

polar angles small but far enough from beam axis
measure correlations in azimuth, rapidity, p_T

 $p_\perp\gtrsim 20~{\rm GeV}$, $\Delta\eta\gtrsim 4\div 6$

central + forward detectors

azimuthal plane

High- $p_{\rm T}$ production in the forward region

• multiple hard scales

• asymmetric parton kinematics $x_A \rightarrow 1, x_B \rightarrow 0$

Forward jet production as a multi-scale problem

• summation of high-energy logarithmic corrections long recognized to be necessary for reliable QCD predictions \Rightarrow BFKL calculations

Mueller & Navelet, 1987; Del Duca et al., 1993; Stirling, 1994; Colferai et al., arXiv:1002.1365

• Large logarithmic corrections are present both in the hard p_T and in the rapidity interval

 \longrightarrow Both kinds of log contributions can be summed consistently to all orders of perturbation theory via QCD factorization at fixed k_T

Forward jets:

• High-energy factorization at fixed transverse momentum

$$\frac{d\sigma}{dQ_t^2 d\varphi} = \sum_a \int \phi_{a/A} \otimes \frac{d\widehat{\sigma}}{dQ_t^2 d\varphi} \otimes \phi_{g^*/B}$$

▷ needed to resum consistently both logs of rapidity and

logs of hard scale Deak, Jung, Kutak & H, JHEP 09 (2009) 121

Figure 1: Factorized structure of the cross section.

 $\Diamond \phi_a$ near-collinear, large-x; ϕ_{g^*} k_{\perp}-dependent, small-x $\Diamond \hat{\sigma}$ off-shell (but gauge-invariant) continuation of hard-scattering matrix elements [Catani et al., 1991; Ciafaloni, 1998]

FULLY EXCLUSIVE MATRIX ELEMENTS: BEHAVIOR AT LARGE K_\perp

Deak, Jung, Kutak & H, JHEP 09 (2009) 121

 $Q_t = \text{final-state transverse energy (in terms of two leading jets <math>p_t$'s) $k_t = \text{transverse momentum carried away by extra jets}$

• Matrix elements factorize for high energy

not only in collinear region but also at finite angle

 \Rightarrow effects of coherence across large rapidity intervals not associated with small angles

• Coupling to parton showers via merging scheme defined by factorization at high energy

<u>Remarks</u>

♦ Note difference from classic Mueller-Navelet approach

$$\sigma^{(MN)} = \sum_{a} \int \phi_{a/A} \otimes V_{jet1} \otimes \mathcal{G}_{gg} \otimes V_{jet2} \otimes \phi_{b/B}$$

[Colferai, Schwennsen, Szymanowski and Wallon, JHEP 12 (2010) 026] [D'Enterria, arXiv:0911.1273]

• non-collinear corrections to ϕ distributions

• no "vertex jet function" V_{jet}

• jets produced by either hard ME or

parton shower (taking account of k_{\perp})

Forward jet spectrum [CMS PAS FWD-10-006 (April 2011)]

Cross section as a function of the azimuthal difference $\Delta\phi$ between central and forward jet for different rapidity separations

MC models:

 CASCADE: non-collinear radiative corrections to single parton chain
 PYTHIA: multiple parton interactions, no corrections to collinear approximation

[Deak et al., arXiv:1012.6037]

Figure 5: ΔR distribution of the central ($|\eta_c| < 2$, left) and forward jets ($3 < |\eta_f| < 5$, right) for $E_T > 10$ GeV (upper row) and $E_T > 30$ GeV (lower row). The prediction from the k_{\perp} shower (CASCADE) is shown with the solid blue line; the prediction from the collinear shower (PYTHIA) including multiple interactions and without multiple interactions is shown with the red and purple lines. $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$, where $\Delta \phi = \phi_{jet} - \phi_{part}$, $\Delta \eta = \eta_{jet} - \eta_{part}$

• MPI contribute significantly to forward energy flow.

Forward energy flow in minimum bias and central dijet sample:

• observed increase with increasing \sqrt{s}

• energy flow in forward region not well described by PYTHIA tunes based on charged particle spectra in central region, especially for minimum bias [Bartalini & Fanò, arXiv:1103.6201] 1 central + 1 forward jet: particle and energy flow in the inter-jet and outside regions

Transverse energy flow in the inter-jet region

[Deak et al., in progress]

 higher mini-jet activity in the inter-jet region from corrections to collinear ordering

Transverse energy flow in the outside region

 at large (opposite) rapidities, full branching well approximated by collinear ordering

• higher energy flow only from multiple interactions

III. J/ψ PRODUCTION AND ASSOCIATED JET MULTIPLICITIES

▷ underlying event analysis using gluonic probe [cfr. Z+ jets] ▷ perturbative calculation down to p_{\perp} of order m_{ψ}

▷ See also: J/ψ vs. charged particle multiplicity [Portebeuf & Granier, arXiv:1012.0719]
 ▷ J/ψ pairs as a probe of DPI [Kom, Kulesza & Stirling, arXiv:1105.4186]
 [LHCb Coll., LHCb-Conf-2011-009]

Inclusive J/ψ spectra: comparison with CMS measurement

CMS Coll, Eur.Phys.J. C71 (2011) 1575, e-Print: arXiv:1011.4193

Charged particle multiplicity associated with J/ψ

[Jung & H]

Mini-jet spectra $E_t > 5 \text{ GeV}$

Mini-jet spectra $E_t > 15 \text{ GeV}$

SUMMARY

• MPI increasingly important as parton densities grow with energy

• sensitive to detailed structure of final states produced by shower evolution

 \Rightarrow what level accuracy required in parton branching algorithms?

finite-k⊥ corrections to parton branching
 ▷ forward jets, angular correlations, energy flow

 \Rightarrow amount of MPI reduced by inclusion of non-collinear-ordered effects to showers?

- J/ψ associated multiplicities probe gluonic jets at low but perturbative p $_{\perp}$
 - complementary to underlying event studies in Z + jets

EXTRA SLIDES

CCFM evolution and quark emission

Consequences: (A) Evolution (exclusive radiative corrections!):

- only gluonic emissions, no quark \rightarrow jets purely gluonic
- DGLAP: naturally contained
- BFKL: through NLO corrections, not contained in (LO) CCFM evolution

Goal of this study: gluon \rightarrow quark splitting (P_{aa})

- supplement CCFM evolution by gluon \rightarrow quark splitting
- restrict to splitting in the last evolution step
- keep finite transverse quark momentum q_T
 - $\rightarrow k_T$ factorized seaguark
- correct high energy & collinear limits, \rightarrow similar to CCFM evolution

- probe proton at very small x, up to $3 \cdot 10^{-6}$
- investigate small x dynamics: BFKL, saturation, ...
- allows to compare exact versus factorized expression

Quark-gluon splitting and collinear factorization

• DGLAP: contains naturally splitting function $P_{qg}(z) = Tr(z^2 + (1-z)^2)$

- no k_T dependence for seaquark distribution $q(x,\mu^2)$ and partonic cross-section $\sigma_{q\bar{q}\to Z}$
- \bullet no small x dynamics included

$$\hat{\sigma}_{q\bar{q}\to Z}(\nu=\hat{s}) = \underbrace{\sqrt{2}G_F M_Z^2 (V_q^2 + A_q^2)}_{\mathcal{N}_c} \times \frac{\pi}{N_c} \delta(\nu - M_Z^2)$$

$$P_{qg}^{\mathsf{CH}}(z, \boldsymbol{k}^2, \boldsymbol{q}^2) = T_R \left(\frac{\boldsymbol{q}^2}{\boldsymbol{q}^2 + z(1-z)\boldsymbol{k}^2}\right)^2 \left[P_{qg}(z) + 4z^2(1-z)^2\frac{\boldsymbol{k}^2}{\boldsymbol{q}^2}\right]$$

 $\bullet~\otimes$ gluon Green's function: high energy resummed splitting

- universal \rightarrow defines small x-resummed seaquark distribution
- full k_T (gluon) dependence, but integrate out q_T (quark)

gauge invariant off-shell factorization: reggeized quarks

- reggeized quarks (in analogy to reggeized gluons for BFKL):
 - at high energies, effective d.o.f. in *t*-channel processes with quark exchange [Fadin,Sherman, 76,77], [Lipatov,Vyazovsky,'00], [Bogdan, Fadin, 06],
 - \bullet here applied to $qg^* \to Zq$ process at Born level
- effective vertices: re-arrangment of QCD diagrams

$$\begin{array}{c} & & \\ & &$$

gauge invariant definition of off-shell Matrix Elements

$$\hat{\sigma}_{q\bar{q}^* \to Z}(\nu, \boldsymbol{q}^2) = \underbrace{\sqrt{2}G_F M_Z^2 (V_q^2 + A_q^2)}_{\text{Z-coupling}} \times \frac{\pi}{N_c} \delta(\nu - M_Z^2 - \boldsymbol{q}^2)$$

• gluon-quark splitting = T_R : Multi-Regge-Kinematics sets z = 0

Forward DY from

 $\operatorname{CASCADE}$ MC implementation of TMD sea quark distribution

angular ordering scale :
$$\mu^2 = \frac{\mathbf{q}^2 + (1-z)\mathbf{k}^2}{(1-z)^2}$$

hard scale : $\mu^2 = \mathbf{p}^2 + M^2$

_____**_**____

Agreement best for large p_T region

'Renormalized' $qg^* \to Zq$ cross-section

$$\bar{\sigma}(\nu, \boldsymbol{k}^2) \equiv \hat{\sigma}(\nu, \boldsymbol{k}^2) - \int_x^1 \frac{dz}{z} \int \frac{d\boldsymbol{q}^2}{\boldsymbol{q}^2} \hat{\sigma}_{q\bar{q}^* \to Z} P_{qg}^{\mathsf{CH}}$$

yields finite (7% - 16%) correction to factorized expression, free of large collinear logarithms

II. Gauge links, lightcone divergences and TMD factorization

 $\widetilde{f}(y) = \langle P \mid \overline{\psi}(y) \; V_y^{\dagger}(n) \; \gamma^+ \; V_0(n) \; \psi(0) \mid P \rangle \quad , \qquad y = (0, y^-, y_{\perp})$ $V_y(n) = \mathcal{P} \exp\left(ig_s \int_0^\infty d\tau \; n \cdot A(y + \tau \; n)\right) \quad \text{eikonal Wilson line in direction } n$

• works at tree level [Mulders, 2002; Belitsky et al., 2003]

- subtler at level of radiative corrections [Collins, Zu; H; Cherednikov et al.] $\hookrightarrow x \rightarrow 1 \Rightarrow$ explicit regularization method (unlike inclusive case)
- non-abelian Coulomb phase \rightarrow spectator effects possibly non-decoupl. [Rogers, Mulders, Bomhof; Collins, Qiu; Vogelsang, Yuan; Brodsky et al]

LIGHTCONE DIVERGENCES

 \Diamond Physical observables:

$$egin{array}{rll} \mathcal{O} &=& \int dx \; dk_\perp \; f_{(1)}(x,k_\perp) \; arphi(x,k_\perp) \ &=& \int dx \; dk_\perp \; \left[arphi(x,k_\perp) - arphi(1,0_\perp)
ight] P_R(x,k_\perp) \end{array}$$

inclusive case: φ independent of $k_{\perp} \Rightarrow 1/(1-x)_{+}$ from real + virtual general case: endpoint divergences (incomplete KLN cancellation)

 \bullet Distributions at fixed k_{\perp} are no longer protected by KLN against uncancelled lightcone divergences

• Only after supplying matrix element with a regularization prescription is distribution well defined.

 \implies Need for infrared subtraction factors

[more on this in Cherednikov's talk]

Example: Sudakov form factor of quarks

Collins & H, PLB 472 (2000) 129

Soft collinear effective theory (SCET): Hoang, Manohar et al., arXiv:0901.1332

• Theory well-known. Enters Drell-Yan production, W-boson p_{\perp} distribution, etc.

Look for decomposition of the amplitude Γ

$$\Gamma = \sum_{\text{regions } R} M_{\Gamma}(R) + \text{ nonleading}$$

such that i) term for hard region be integrable; ii) splitting be defined gauge-invariantly

$$\sigma[\Gamma] = \int [dk] S \otimes C_A \otimes C_B \otimes H + \text{nonleading}$$

Example: Soft-region term
$$S$$

 P_A
 P_B
 P_B

automatically gauge-invariant) [Manohar & Stewart, 2007]

II.A CUT-OFF APPROACH

▷ cut-off in Monte-Carlo generators using u-pdf's

- S. Jadach and M. Skrzypek, arXiv:1002.0010; arXiv:0905.1399 (DGLAP)
- S. Höche, F. Krauss and T. Teubner, EPJC 58 (2008) 17 (KMR/BFKL)
- Lönnblad & Sjödahl, 2005; Gustafson, Lönnblad & Miu, 2002 LDCMC (LDC)
- Jung, 2004, 2002; Jung and Salam, 2001 (CCFM) CASCADE

 \triangleright cut-off from gauge link in non-lightlike direction n:

Collins, Rogers & Stasto, PRD 77 (2008) 085009 Ji, Ma & Yuan, PRD 71 (2005) 034005; JHEP 0507 (2005) 020 earlier work from 80's and 90's: Collins et al; Korchemsky et al

finite $\eta \Rightarrow$ singularity is cut off at $1 - x \gtrsim \sqrt{k_{\perp}/4\eta}$

* Note: Subtractive regularization is possible alternative to cut-off [Collins & H, 2001]

II.B UPDF's BY SUBTRACTIVE APPROACH

• Endpoint divergences $x \rightarrow 1$ from incomplete KLN cancellation

Subtractive method: more systematic than cut-off. Widely used in NLO calculations. Formulation suitable for eikonal-operator matrix elements: Collins & H, 2001. [See also "SCET" analog: Manohar and Stewart, 2007; J. Chiu et al, arXiv:0905.1141]

 \bullet gauge link still evaluated at n lightlike, but multiplied by "subtraction factors"

 $\diamondsuit u$ serves to regularize the endpoint; drops out of distribution integrated over k_{\perp}

FULL TMD FACTORIZATION IS YET TO BE ACHIEVED

Mulders & Rogers, arXiv:1102.4569; arXiv:1001.2977; Xiao & Yuan, arXiv:1003.0482

• soft gluon exchange with spectator partons

Mert Aybat & Sterman, PLB671 (2009) 46 Boer, Brodsky & Hwang, PRD 67 (2003) 054003

 \Rightarrow factorization breaking in higher loops?

Collins, arXiv:0708.4410

Vogelsang and Yuan, arXiv:0708.4398

Bomhof and Mulders, arXiv:0709.1390

 \Diamond likely suppressed for small-x, small- $\Delta\phi$

♦ could affect physical picture near large x, back-to-back region

• Note: Coulomb/radiative mixing terms also appear to break coherence in di-jet cross sections with gap in rapidity [Forshaw & Seymour, arXiv:0901.3037]

TMD FACTORIZATION AT SMALL X

A physical probe: *(in analogy with DIS/inclusive pdfs)*

TMD pdf factorization from heavy quark photo-production in high-energy limit:

 \diamondsuit single gluon polarization dominates $s \gg M^2 \gg \Lambda_{\rm OCD}^2$

 \hookrightarrow gauge invariance rescued (despite gluon off-shell)

[Lipatov; Ciafaloni; Catani, H; ...]

 \diamond energy evolution equations / corrections down by $1/\ln s$ rather than 1/Q \hookrightarrow BFKL (+ its variants)

 \Diamond Note: it works to arbitrarily high k_{\perp} in the UV \Rightarrow

- suitable for simulations of jet physics at the LHC
- well-defined summation of higher-order radiative corrections