# MAX IV Bliss Workshop@DESY

Vincent Hardion, 22/11/2023

# MAXIV

- Experimental Control System at MAX IV
- Detector and Data Processing
- Bliss Context at MAX IV
- Pro/Cons of Bliss at MAX IV Laboratory
- Conclusion

## **Experimental System** at MAX IV

### HARD X-RAY: Mainly Command Line Interface Almost exclusively Continuous/Fly Scan:

- ascan, meshscan, custom macro
- Time Resolved
- Pulse based
- Tomography
- Energy scan
- Step Scan: mostly for alignment

# **HARDWARE**: more and more high-level responsibility Synchronisation Continuous/Fly Scan:

- PandaBox
- ACS

### Motors: Handle High level parameters/trajectories

- Icepap (standard)
- Piezo
- ACS

#### **SOFT X-RAY**: High need in GUI Almost exclusively Step by Step Scan:

- Scienta (WIP)
- Prodigy (WIP)
- Elmitec microscope

#### Continuous Scan

- Energy Scan
- NEXAFS

#### **SOFTWARE**:

Orchestration and macro management:

• Sardana

#### Data acquisition:

- Streaming to a dedicated compute cluster
- On-the-fly analysis(Azimuthal, ToT), Live view
- Hdf5
- Meta data: SciCAT



## DAQ data flow scheme





### **DCU streamer part**

- Detector interfaces to DCU in hardware specific way (fibre, CameraLink, USB...)
- Specific software layer written for that detector:

Gets frames, streams them off the DCU to the DAQ cluster (Won't talk about control)



• For a new detector, this is where most of the work must be done



### **DAQ receiver part**

- DAQ cluster managed by kubernetes
- Receiver = 1 process in 1 container in 1 pod
- Writes all frames to disk (hdf5 files in GPFS)

#### Internal Project Work Jan - June 2023:

- One standard receiver now handles all detectors
- With IT Infra fast to deploy the Receiver in k8s for any new detector
- Means live view is common, hdf5 writing is common

|            |                    |                      |                                                      |         | cosaxs-eiger | ×                    | ~        | 1 L      | <b>D</b> | Q | : 📕  |
|------------|--------------------|----------------------|------------------------------------------------------|---------|--------------|----------------------|----------|----------|----------|---|------|
| Deploymen  |                    |                      |                                                      |         |              |                      |          | Create   |          |   |      |
| C Redeploy | 보 Download YAML    | â Delete             |                                                      |         |              |                      |          |          |          |   |      |
| □ State ◇  | Name≎              | Namespace $\Diamond$ | Image 🗘                                              | Ready 🗘 | Up To Date 🗘 | Available $\Diamond$ | Restarts | Age 🗘    | Health   |   |      |
| Active     | coasxs-eiger-azint | cosaxs-eiger         | harbor.maxiv.lu.se/daq/azint-pipeline:2.0.1          | 1/1     | 1            | 1                    | 0        | 200 days |          |   | ••   |
| Active     | coasxs-eiger-ctl   | cosaxs-eiger         | harbor.maxiv.lu.se/daq/kubernetes/pipeline-ctl:0.2.0 | 1/1     | 1            | 1                    | 0        | 200 days |          |   | •• : |
| Active     | coasxs-eiger-daq   | cosaxs-eiger         | harbor.maxiv.lu.se/daq/streaming-receiver:3.3.0      | 1/1     | 1            | 1                    | 0        | 200 days |          |   | •• : |





## **On the fly Feedback**



- roi couting
- diffraction spot finding
- frame filtering
- image corrections (dark/flat field) ٠
- decompression
- segmentation
- phasing ٠
- tomographic reconstructions
- ML & AI prediction ٠







Courtesy of Zdenek Matej, MAX IV

## **Processing part**

- Processing step today often means azimuthal integration
- Provided by "azint" alogorithm • (Clemens Weninger)
- Runs at ForMAX, CoSAXS, DanMAX, FemtoMAX, NanoMAX, Balder





Courtesy of Paul Bell, MAX IV

30



## **Femtomax Scattering pipeline**





## **Pipelines machinery for general case**

Two requirements not addressed in simple scheme:

- Processing may have several steps
- Processing may take input from multiple sources
- New component the "ingester": matches inputs, assembles events
- Algorithms can then be written by scientists/other Sci Data members – standard interface for IO
- Scaled for few kHz or 10s of GB/s using the power of k8s
- (When confident could save only processed data)





### FemtoMAX case today

One day could allow closed loop feedback where the scan parameters are adjusted based on collected data (eg. Scan area of interest) !





# **Context for Bliss workshop**

• Project 2023: Evaluation of the Experiment Control System

- Sardana, Bluesky, Bliss, Contrast, ...
- Bliss: just started evaluation
  - First overview
  - Test of Daiquiri in 2021 (after ICALEPCS)
    - Try (quickly) to connect to sardana without success

### Scan configuration

- Full configuration management
- Session/Technic
- metadata
- Include/exclude instruments
- Macro/hook

| 🛵 🖆 📰 🗞 📎 💲 Search files or names | Clear + Add file CReload config                                   | Beaco |
|-----------------------------------|-------------------------------------------------------------------|-------|
| × × C C C E Ó                     | sessions/demo_session.yml Save 🖺 Revert 🕽                         |       |
| 🕀 🖿 ewoks                         | 20 - beamviewer                                                   |       |
| 🕀 🖿 motors                        | 21 - lima_simulator                                               |       |
| 🖯 🏲 sessions                      | 22 - tomocam<br>23 - diffcam                                      |       |
| 🕀 🖿 scripts                       | 24 - diffcam2                                                     |       |
|                                   | 25 - dt f l d b b<br>26 - mca1                                    |       |
| 🕀 🖹 demo_session.yml              | 27 - mca2                                                         |       |
| ldemo_session_setup.py            | 28 - MG1<br>29 - sim_ct_aauss                                     |       |
|                                   | 30 - sim_ct_gauss_noise                                           |       |
| li init .vml                      | 31 - transfocator<br>32 - wcid00a                                 |       |
|                                   | 33 - white_beam_attn                                              |       |
|                                   | 34 - regulation<br>35 - beam shutter                              |       |
|                                   | 36 - sample_shutter                                               |       |
|                                   | 37 · icat-metadata:                                               |       |
|                                   | 39 secondary_slit: \$secondary_slits                              |       |
| te lei misc.yml                   | 40 sample.positioners: [\$sy, \$sz]                               |       |
| 🕀 🖹 regulation.yml                | 42 optics.positioners: [\$robx, \$roby]                           |       |
| ⊞ 🖹 shutters.yml                  | 43 detector05: \$lima_simulator                                   |       |
| ⊞ simulators.yml                  | 44 detector/bi speamvlewer<br>45 detector/07:\$fluo diode.counter |       |
|                                   | 46 detector08: \$diode1                                           |       |
|                                   | 47 detector09: \$diode2<br>48 attenuator01: \$dit1                |       |
|                                   | 49 - techniques:                                                  |       |
|                                   | 50 - TOMO:<br>51 detector@1: \$tomocom                            |       |
|                                   | 52 × XRPD:                                                        |       |
|                                   | 53 detector02: \$diffcam                                          |       |
|                                   | 54 • FLUU:<br>55 detector03: \$mca1                               |       |
|                                   | 56 detector04: \$mca2                                             |       |
|                                   | 57 - class: measurementuroup<br>58 name: MG1                      |       |
|                                   | 59 counters:                                                      |       |
|                                   | 60 - diode1<br>61 - diode2                                        |       |
|                                   | 62 - beamviewer                                                   |       |
|                                   | 63                                                                |       |



### **Bliss data**

- Independent Agent => not blocking the scan
- Possibility to easily distribute the data to different consumer







### **UI Mapping**

- Microscopy UI
- 2D Mapping management
- Sample management



### Data processing

- Online data processing pipeline with **Ewoks**
- Live Feedbackto Experiment **Control System**

#### research papers



ISSN 1600-5775

Received 21 June 2023

Accepted 26 August 2023

XRR; closed-loop control.

Edited by U. Jeng, NSRRC, Taiwan

Keywords: machine learning; reflectometry;

autonomous experiments; beamline control;

supporting information at journals.iucr.org/s

Supporting information: this article has

Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments

Linus Pithan,<sup>a</sup>\* Vladimir Starostin,<sup>a</sup> David Mareček,<sup>b</sup> Lukas Petersdorf,<sup>c</sup> Constantin Völter,<sup>a</sup> Valentin Munteanu,<sup>a</sup> Maciej Jankowski,<sup>d</sup> Oleg Konovalov,<sup>d</sup> Alexander Gerlach,<sup>a</sup> Alexander Hinderhofer,<sup>a</sup> Bridget Murphy,<sup>c</sup> Stefan Kowarik<sup>b</sup>\* and Frank Schreiber<sup>a</sup>\*

<sup>a</sup>Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany, <sup>b</sup>Physikalische und Theoretische Chemie, Universität Graz, Heinrichstrasse 28, 8010 Graz, Austria, <sup>c</sup>Institut für Experimentelle und Angewandte Physik, Universität Kiel, Leibnizstrasse 19, 24118 Kiel, Germany, and <sup>d</sup>ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France. \*Correspondence e-mail: linus.pithan@desy.de, stefan.kowarik@uni-graz.at, frank.schreiber@uni-tuebingen.de

Recently, there has been significant interest in applying machine-learning (ML) techniques to the automated analysis of X-ray scattering experiments, due to the increasing speed and size at which datasets are generated. ML-based analysis presents an important opportunity to establish a closed-loop feedback system, enabling monitoring and real-time decision-making based on online data analysis. In this study, the incorporation of a combined one-dimensional convolutional neural network (CNN) and multilayer perceptron that is trained to extract physical thin-film parameters (thickness, density, roughness) and capable of taking into account prior knowledge is described. ML-based online analysis results are processed in a closed-loop workflow for X-ray reflectometry (XRR), using the growth of organic thin films as an example. Our focus lies on the beamline integration of ML-based online data analysis and closed-loop feedback. Our data demonstrate the accuracy and robustness of ML methods for analyzing XRR curves and Bragg reflections and its autonomous control over a vacuum deposition setup.





# Bliss at MAX IV? (As wip of 11/2023)

### PRO:

- Integrated framework as Sardana
- Modern design
- Documentation, cheatsheet
- Configuration management + web interface
- Data handling Based on broker
- Concept similar as Sardana
- Notion of Proposal/Collection/DataSet
- Pythonic
- Better error handling

### Challenges:

- Community
- Specific Integration to ESRF service: Lima, ICAT, logbook
- Integration with our system: zmq streaming, SciCAT
- Limited UI framework
- Multiple synchronisation schema
- Hardware scanning orchestration
- Not Simple as Bluesky
- Sharing session with TMUX
- CLI with"(" ;-)

- TO BE CHECKED:
- Control of pseudo motor (case undulator)
- Run just as library (Bluesky-like)
- FlyScan

# Conclusion

- Experiment System at MAX IV:
  - Continuous/FLY Scan with more HW
  - Analysers with more UI
- Data Handling and Processing
  - ZMQ
  - Kubernetes cluster
- Next steps
  - Detailed evaluation at MAX IV
  - If possible in-situ







