Impact of Mid-T Heat Treatments on the Sensitivity to Trapped Magnetic Flux

J. C. Wolff, J. Eschke, A. Goessel, W. C. A. Hillert, K. Kasprzak, D. Reschke, L. Steder, L. Trelle, M. Wiencek Cavity Meeting, 04.10.2023

HELMHOLTZ

Mid-T Heat Treatments: High Q₀ in Low Field Environment

Increased Sensitivity to Trapped Magnetic Flux S

mid-T heat treatments (~300 °C)

- ➢ highest Q₀ of up to $5 \cdot 10^{10}$ at 2 K achieved at FNAL, IHEP, KEK & DESY
- increased sensitivity to trapped magentic flux S observed at FNAL, KEK & DESY

- minimize B_{trap}
- consequently minimize increase of R_s by R_{flux}

Mid-T Heat Treatments: High Q₀ in Low Field Environment

Increased Sensitivity to Trapped Magnetic Flux S

mid-T heat treatments (~300 °C)

- ➢ highest Q₀ of up to $5 \cdot 10^{10}$ at 2 K achieved at FNAL, IHEP, KEK & DESY
- increased sensitivity to trapped magentic flux S observed at FNAL, KEK & DESY

to benefit from mid-T heat treatment:

- ➢ minimize B_{trap}
- consequently minimize increase of R_s by R_{flux}

spatial temperature gradient

for assumed technical extrema

Mid-T Heat Treatments: High Q₀ in Low Field Environment

Increased Sensitivity to Trapped Magnetic Flux S

mid-T heat treatments (~300 °C)

- ➢ highest Q₀ of up to $5 \cdot 10^{10}$ at 2 K achieved at FNAL, IHEP, KEK & DESY
- increased sensitivity to trapped magentic flux S observed at FNAL, KEK & DESY

to benefit from mid-T heat treatment:

- ➢ minimize B_{trap}
- consequently minimize increase of R_s by R_{flux}

- cool down velocity
- spatial temperature gradient

for assumed technical extrema

Spatial Dependency of Flux Expulsion Expected

> Magnetometric Mapping System used to Study Magnetic Flux Expulsion Behavior

based on first magnetometric mapping approach at HZB [B. Schmitz et al., F. Kramer et al.]

Temp 3

Digitize Sensor Signals Inside of Cryostat

> Avoid High Number of Cable Feed Throughs Through Cryostat Lid

supply- & digital signal lines

PID Controlled Cool Down Velocity

Ensure Test Comprehensive Consistent Conditions

PID Controlled Spatial Temperature Gradient

Suppress Stray Impact of a Changed Cool Down Velocity

PID Controlled Spatial Temperature Gradient

Suppress Stray Impact of a Changed Cool Down Velocity

PID Controlled Spatial Temperature Gradient

Suppress Stray Impact of a Changed Cool Down Velocity

> Obtain Fraction of Magnetic Flux Trapped

Akira Miyazaki:

high deviation between simulation and experimental data observed \rightarrow likelely caused by a neglected partial flux shielding by cavity flanges

alternative experimental approach (Kensei Unemori):

- 1. cool down cavity (Meissner state)
- 2. apply magnetic field by Helmholtz coil
- 3. measure B_{sc} (ideal Meissner state)
- 4. warm up cavity (normal conducting state)
- 5. measure B_{nc}

axially symmetrical problem:

- 2D magnetostatic solver Pandira (Poisson Superfish)
- high resolution mesh

Model 1: Cavity in Normal Conducting (nc) State \rightarrow obtain B_{nc}

Model 2: Cavity (simplified) in Superconducting (sc1) State \rightarrow obtain B_{sc1}

model 1: empty Helmholtz coil

model 2: single cell cavity (simplified)

Model 3: Cavity (detailed) in Superconducting (sc2) State \rightarrow obtain B_{sc2}

model 1: empty Helmholtz coil

model 3: single cell cavity (detailed)

Model 3: Cavity (detailed) in Superconducting (sc2) State \rightarrow obtain B_{sc2}

model 1: empty Helmholtz coil

model 3: single cell cavity (detailed)

Extract B_{nc}, B_{sc1} and B_{sc2} from Models for first 30 mm from Equator Surface

Extract B_{nc}, B_{sc1} and B_{sc2} from Models for first 30 mm from Equator Surface

Visible Impact of Flux Shielding Effect by NbTi Flanges

- 3D CST mesh was chosen to coarse for accurate simulations
- cross-check simulation results by experimental approach

> High Resolution Mesh Crucial for Accurate Simulations

 $B_{sc} / B_{nc} = 1.51$

z axis of equator sensor group (group 5)

- mean value of all 23 boards
- error bar: 2σ
- > simulation: $B_{sc} / B_{nc} = 1.56$
- > measurement: $B_{sc} / B_{nc} = 1.53$

> High Resolution Mesh Crucial for Accurate Simulations

0

z axis of equator sensor group (group 5)

- mean value of all 23 boards
- \succ error bar: 2σ
- > simulation: $B_{sc} / B_{nc} = 1.56$
- > measurement: $B_{sc} / B_{nc} = 1.53$

Polar Plot of Equator Flux Expulsion Ratios

> Measured Expulsion Ratios as a Function of Card Identifier

Results: Impact of Cooldown Velocity on B_{sc} / B_{nc}

> (Likely) No Impact of Cool Down Velocity on Flux Expulsion Behavior

1DE03 fine-grain material before mid-T heat treatment

Results: Impact of Cooldown Velocity on B_{sc} / B_{nc}

> (Likely) No Impact of Cool Down Velocity on Flux Expulsion Behavior

1DE03 fine-grain material before mid-T heat treatment

13

Results: Impact of Cooldown Velocity on B_{sc} / B_{nc}

> (Likely) No Impact of Cool Down Velocity on Flux Expulsion Behavior

1DE03 fine-grain material before mid-T heat treatment

1DE09 fine-grain material

after mid-T heat treatment

25 1DE09 after mid-T ht: -5 K/h; 0 K/Δl: 1.06 0 -20 K/h; 0 K/Δl: 1.08 Δ 19 00 \2.0 A 1.5 9.0 0.5 0 0 13 37 13 \triangle Ø 0 0 8000 07 43 01 -5 K/h; 0 K/ΔI: - % 88 % -20 K/h; 0 K/ΔI: - % 84 %

1DE26 large-grain material

before mid-T heat treatment

➢ <u>Contradictory</u> to Flux Expulsion Results: Real ⊽T <u>Decreased</u> after Mid-T Heat Treatment

before mid-T heat treatment instant heater shutdown after mid-T heat treatment

soft heater shutdown

➢ <u>Contradictory</u> to Flux Expulsion Results: Real ∇T <u>Decreased</u> after Mid-T Heat Treatment

before mid-T heat treatment after mid-T heat treatment instant heater shutdown soft heater shutdown 16 16 **---** Temp 1 (T_1) **---** Temp 1 (T_1) Temp 2 (T_2) Temp 2 (T_2) 14 14 Temp 3 (T_3) Temp 3 (T_3) ΔL ΔL current (A) 10 Iheat Iheat ö critical temperature T_c $|T_1 - T_2||_{T_c} = 0.71 \text{ K}$ $|T_1 - T_2||_{T_c} = 0.99 \text{ K}$ decrease of real ∇T $|T_2 - T_3||_T = 0.82 \text{ K}$ $|T_2 - T_3||_{T_c} = 1.1 \text{ K}$ temperatu 6 4 2 2 **PID** setpoint PID setpoint 0 0 -15 -10 -5 10 -15-10 -5 10 -200 5 -200 5 time (min) time (min)

> Measured Temperature Lower Than Surface Temperature

- thermocouples & holders exposed to helium gas flow due to missing wind shields
- surface temperature 2 3 K higher than measured temperature!

➤ Cavity Partially Above T_c – Instant Heater Shutdown Results in Lower VT

DESY. | Impact of Mid-T Heat Treatments on the Sensitivity to Trapped Magnetic Flux | Jonas Christian Wolff | 04.10.2023 |

➤ Cavity Partially Above T_c – Instant Heater Shutdown Results in Lower VT

DESY. | Impact of Mid-T Heat Treatments on the Sensitivity to Trapped Magnetic Flux | Jonas Christian Wolff | 04.10.2023 |

Results: Impact of Mid-T Heat Treatment on B_{sc} / B_{nc}

M

0

 \triangle Ø

> (Likely) No Impact of Mid-T Heat Treatment on Flux Expulsion Behavior

19

07

-5 K/h; 0 K/ΔI:

1DE03 fine-grain material before mid-T heat treatment

1DE09 fine-grain material

after mid-T heat treatment 25

00000

01

88 %

- %

-20 K/h; 0 K/ΔI: - % 84 %

0

 Δ

00

0.5

1DE09 after mid-T ht:

9.0

0

0

0

1.5

43

1DE26 large-grain material

before & after mid-T heat treatment

Results: Impact of Spatial Temperature Gradient on B_{sc} / B_{nc}

> Large Impact of Spatial Temperature Gradient on Flux Expulsion Behavior

1DE03 fine-grain material before mid-T heat treatment

1DE09 fine-grain material

after mid-T heat treatment

1DE26 large-grain material

before & after mid-T heat treatment

DESY. | Impact of Mid-T Heat Treatments on the Sensitivity to Trapped Magnetic Flux | Jonas Christian Wolff | 04.10.2023 |

Results: Impact of Spatial Temperature Gradient on B_{sc} / B_{nc}

> Large Impact of Spatial Temperature Gradient on Flux Expulsion Behavior

1DE03 fine-grain material before mid-T heat treatment

1DE09 fine-grain material

after mid-T heat treatment

1DE26 large-grain material

before & after mid-T heat treatment

DESY. | Impact of Mid-T Heat Treatments on the Sensitivity to Trapped Magnetic Flux | Jonas Christian Wolff | 04.10.2023 |

> 1DE26: Five Times Larger Sensitivity to Trapped Magnetic Flux S after Mid-T Heat Treatment

1DE03 fine g.	fr. trapped	
-5 K/h; 0 K/ΔI:	90 %	
-5 K/h; 4 K/∆l:	73 %	
-20 K/h; 0 K/ΔI:	89 %	
-20 K/h; 4 K/Δl:	74 %	
1DE09 fine g.		fr. trapped
-5 K/h; 0 K/∆l:		88 %
-5 K/h; 4 K/∆l:		60 %
-20 K/h; 0 K/ΔI:		84 %
-20 K/h; 4 K/∆l:		58 %
1DE26 large g.	fr. trapped	fr. trapped
-5 K/h; 0 K/ΔI:	68 %	68 %
-5 K/h; 4 K/∆l:	15 %	16 %
-20 K/h; 0 K/ΔI:	(96 %)	64 %
-20 K/h; 4 K/∆I:	17 %	17 %

> 1DE26: Five Times Larger Sensitivity to Trapped Magnetic Flux S after Mid-T Heat Treatment

1DE03 fine g.	fr. trapped	
-5 K/h; 0 K/ΔI:	90 %	obtain R _s
-5 K/h; 4 K/ΔI:	73 %	record QE curve
-20 K/h; 0 K/∆l:	89 %	$\succ \text{ calculate } R_s = G/Q_0$
-20 K/h; 4 K/∆I:	74 %	F interpolate $R_s(4 MV/m)$
1DE09 fine g.		fr. trapped
-5 K/h; 0 K/ΔI:		88 %
-5 K/h; 4 K/ΔI:		$\begin{array}{c} \textbf{60 \%} \\ \textbf{8} \\$
-20 K/h; 0 K/∆l:		84 % $R_{flux} = R_s - R_s \text{ baseline}$
-20 K/h; 4 K/ΔI:		58 %
1DE26 large g.	fr. trapped	fr. trapped
-5 K/h; 0 K/ΔI:	68 %	68 %
-5 K/h; 4 K/ΔI:	15 %	16 %
-20 K/h; 0 K/∆l:	(96 %)	64 %
-20 K/h; 4 K/∆l:	17 %	17 %

> 1DE26: Five Times Larger Sensitivity to Trapped Magnetic Flux S after Mid-T Heat Treatment

1DE03 fine g.	fr. trapped	R _s (nΩ)	R _{flux} (nΩ)	S (nΩ/μT)
-5 K/h; 0 K/ΔI:				4.2
-5 K/h; 4 K/ΔI:				3.7
-20 K/h; 0 K/∆l:				4.2
-20 K/h; 4 K/∆l:				3.7

1DE09 fine g.					fr. trapped	R _s (nΩ)	R _{flux} (nΩ)	S (nΩ/μT)
-5 K/h; 0 K/ΔI:	sensiti	ivity to trapped			88 %	166.5	159.4	18.1
-5 K/h; 4 K/ΔI:	magne	magnetic flux S [H. Ito et al.]: $S = R_{flux} / B_{trap}$				96.5	89.3	15.0
-20 K/h; 0 K/ΔI:	$S = R_f$					158.9	151.8	18.0
-20 K/h; 4 K/∆l:					58 %	95.3	88.2	15.2
				bef. mid-T				aft. mid-T
1DE26 large g.	fr. trapped	R _s (nΩ)	R _{flux} (nΩ)	S (nΩ/μT)	fr. trapped	R _s (nΩ)	R _{flux} (nΩ)	S (nΩ/μT)
-5 K/h; 0 K/ΔI:				3.8	68 %	137.8	130.7	19.3
-5 K/h; 4 K/ΔI:				6.5	16 %	5 x	49.0	30.4
-20 K/h; 0 K/ΔI:				4.3	64 %	130.6	1 <mark>∠</mark> 3.4	19.3
-20 K/h; 4 K/∆I:				6.0	17 %	56.0	48.8	29.2

DESY. | Impact of Mid-T Heat Treatments on the Sensitivity to Trapped Magnetic Flux | Jonas Christian Wolff | 04.10.2023 |

> 1DE26: Five Times Larger Sensitivity to Trapped Magnetic Flux S after Mid-T Heat Treatment

			bef. mid-T				
fr. trapped	R _s (nΩ)	R _{flux} (nΩ)	S (nΩ/μT)				
			4.2				
			3.7		4 x		
			4.2				
			3.7				
							aft. mid-T
				fr. trapped	R _s (nΩ)	R _{flux} (nΩ)	S (nΩ/μT)
sensiti	vity to trapped			88 %	166.5	159.4	18.1
magne	etic flux S [H. Ito	o et al.]:		60 %	96.5	89.3	15.0
$S = R_f$	_{lux} / B _{trap}			84 %	158.9	151.8	18.0
				58 %	95.3	88.2	15.2
			bef. mid-T				aft. mid-T
fr. trapped	R _s (nΩ)	R _{flux} (nΩ)	S (nΩ/μT)	fr. trapped	R _s (nΩ)	R _{flux} (nΩ)	S (nΩ/μT)
			3.8	68 %	137.8	130.7	19.3
			6.5	16 %	5 x	49.0	30.4
			4.3	64 %	130.6	1∠3.4	19.3
			6.0	17 %	56.0	48.8	29.2
	fr. trapped 90 % 73 % 89 % 74 % sensiti magne $S = R_f$ fr. trapped 68 % 15 % (96 %) 17 %	fr. trapped $R_s (n\Omega)$ 90 % 50.1 73 % 38.9 89 % 49.8 74 % 39.7 sensitivity to trapped magnetic flux S [H. ltd magnetic flux S [H. ltd magnetic flux S [H. ltd flux S [H	fr. trappedRs (nQ)Rfux (nQ)90 %50.138.173 %38.926.989 %49.837.774 %39.727.7sensitivity to trapped magnetic flux S [H. Ito et al.]: $S = R_{flux} / B_{trap}$ fr. trappedRs (nQ)Rfux (nQ)68 %37.926.115 %21.49.6(96 %)(52.6)(40.8)(17 %)21.910.1	bef. mid-Tfr. trapped $R_s (n\Omega)$ $R_{flux} (n\Omega)$ S $(n\Omega/\mu T)$ 90 %50.138.14.273 %38.926.93.789 %49.837.74.274 %39.727.73.7sensitivity to trapped magnetic flux S [H. Ito et al.]: $S = R_{flux} / B_{trap}$ bef. mid-Tfr. trappedR_s (n\Omega) $R_{flux} (n\Omega)$ 68 %37.926.115 %21.49.665 (96 %)(52.6)(40.8)17 %21.910.1	fr. trapped $R_s (n\Omega)$ $R_{flux} (n\Omega)$ S ($n\Omega/\mu T$)90 %50.138.14.273 %38.926.93.789 %49.837.74.274 %39.727.73.7fr. trapped magnetic flux S [H. lto et al.]: $S = R_{flux} / B_{trap}$ fr. trapped 88 %60 %fr. trapped 88 %60 %g %100 Kfr. trapped 88 %S (nQ) S (nQ/µT)fr. trapped 88 %S (nQ) S (nQ/µT)68 %37.926.115 %21.49.665 %4.364 %16 %4.364 %17 %21.910.1	bef. mid-Tfr. trapped $R_s (n\Omega)$ $R_{flux} (n\Omega)$ S ($n\Omega/\mu$ T)90 %50.138.14.273 %38.926.93.789 %49.837.74.274 %39.727.73.7fr. trappedR_s (n\Omega)sensitivity to trappedmagnetic flux S [H. lto et al.]: $S = R_{flux} / B_{trap}$ 56.060 %96.584 %15 %21.49.66.54.315 %21.49.617 %21.910.16.017 %56.0	Ibef. mid-Tfr. trapped $R_s (n\Omega)$ $R_{flux} (n\Omega)$ S $(n\Omega/\mu T)$ 90 %50.138.14.273 %38.926.93.789 %49.837.74.274 %39.727.73.7fr. trapped magnetic flux S [H. Ito et al.]: $S = R_{flux} / B_{trop}$ fr. trapped R_s (n\Omega) $R_{flux} (n\Omega)$ 60 %96.589.384 %166.5159.460 %96.589.384 %158.9151.858 %95.388.2fr. trapped R_s (n\Omega) $R_{flux} (n\Omega)$ 68 %37.926.115 %21.49.6(96 %)(52.6)(40.8)17 %21.910.16.017 %56.048.8

Take Home Messages

accurate simulations of ideal Meissner state possible:

- detailed simulation model
- high mesh resolution

flux expulsion behavior (for used conditions):

- no significant impact of cool down velocity
- large impact of spatial temperature gradient

mid-T heat treatment:

- > no impact of mid-T heat treatment on flux expulsion behavior
- five times larger sensitivity to trapped magnetic flux after mid-T heat treatment

Thank You For Your Attention!

We would like to thank our colleagues – A. Miyazaki from Universite Paris-Saclay, F. Kramer and O. Kugeler from Helmholtz-Zentrum Berlin, I. Flick, R. Ghanbari, I. Gonzalez Diaz-Palacio, S. Harder, G. Kacha Deyu, C. Saribal and M. Wenskat from University of Hamburg as well as the DESY groups MDI, MKS1, MSL and ZE - for their support of this work.

References

[B. Schmitz et al.] B. Schmitz, J. Köszegi, K. Alomari, O. Kugeler, and J. Knobloch, "Magnetometric Mapping of Superconducting RF Cavities," Rev. Sci. Instrum., vol. 89, 2018. doi:10.1063/1.5030509

[F. Kramer et al.] F. Kramer, O. Kugeler, J.-M. Köszegi, and J. Knobloch, "Impact of geometry on flux trapping and the related surface resistance in a superconducting cavity," Phys. Rev. Accel. Beams, vol. 23, no. 12, p. 123 101, 2020. doi:10.1103/PhysRevAccelBeams.23.123101

[F. Kramer et al. 22] F. Kramer, S. Keckert, J. Knobloch, and O. Kugeler, "Systematic Investigation of Flux Trapping Dynamics in Niobium Samples," in Proc. IPAC'22, Bangkok, Thailand, 2022, pp. 1200–1203. doi:10.18429/JACoW-IPAC2022-TUPOTK006

[H. Ito et al.] H. Ito, H. Araki, K. Takahashi, and K. Umemori, "Influence of furnace baking on Q–E behavior of superconducting accelerating cavities," Prog. Theor. Exp. Phys., vol. 2021, no. 7, 2021, 071G01. doi:10.1093/ptep/ptab056