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Tostudy Battiti atte endof a star's life
General stars including our Sun rely
on nuclear reactions inside their cores to counteract
gravitational collapsebygenerating thermal pressure

However stars eventually run out of nuclear fuel
a critical question howdo stars end their lives when
nuclear reactions are no longer sufficient to counteract
gravitational forces

To mantain stability a new source of pressure is required whenunclear reactions cease Thispressure sources mud he
non thermal because stare cool overtime

A non thermal pressure source emerges from Pauli exclusion
principle the degeneracy pressure makes a gas of cold

fermions resistant to compression

White Dwarfs Stars like our Sun where gravity is balanced
ud out by electrondegeneracy pressure ultimately

transform into white dwarfs
These are much denser than normal stars
Eg if mud mo Mamolto 2 re
Using Newtoniangravity it can be shownthat
a White dwarf cannot exceed a certain mass
limit Chandrasekhar limit if mstar 1 am
the star cannot and its life as and

Neutron stars Ns When the density of matter reaches
nuclear density neutron degeneracybecomes significantNs are supported by this pressure andare
very compact if mns.am ragnoGot ro






















































y my
Gravity encoded in theNewtoniangravitational
potential E is very strong Newtonian gravityis no longer valid and GR becomes necessary

GR predict a max mass forNS mmaxE3m
Ahotstarwittimas.s mma will undergo full gravitational
collapse and form a Black Hole

Spacetime symmetries

Sphere di drained Ffm
Isometriesof thespacetime belong to tu group Sol3

Aspacetime is spherically symmetric if it contains an so 3 subgroup
within the isometrygroup of the spacetimewhose orbits are 2 spheresthe symmetry ismanifest in tue spacetime geometry as the orbits

are spherical regions in spacetime

Abs Isometrygrouporbits are defined as the set ofpoints obtained
by acting on a referencepoint with all the diffeomorphism

coordinatetrasf generated by the sab subgroup
In essence these orbits are tue regions whithin tue spacetime

where the spherical symmetry is preserved

To work with spherical symmetry we define tu area radius
function r asor p epeg W Afp area of the s'orbit

through P
Qbs I passing through p induces metric ripida

A spacetime is stationary when it admits a timelike killingvector field la s t gabkakbso
Ore con always introduce a corresponding time coordinate t
such that site tiè and Ka corresponds to the

time derivative a at

As a result the metric is independent of time
de go.at goidtdsi gijdsidajgo9i9ii9ijft

Note t t ttf a
I E a
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Static spacetimes they are stationary and one can chose
t sit Hey are invariant under tu t const

L ds gao si at gigi ot daidai
Equivalently a stationary spacetime is static if ka slot
is orthogonal to a family of space like surfacesparametrized
by t and along which we can use coordinates si

Static spacetimes do not evolve while stationary spacetimes
evolve always in the same way

Let us matte this a Little hit

morenattanaticollyputakeE hypersurface nowhere tangent to la w ai coord on
We can assign tisi coord to a point an E parametrisold
by the distance t along tte integrare curve through the
point p on'E with coord si

Non take E specified by fa o w f M R w affo ont
the Inform of is normal vo E
take ta tangentvector to E afChe f trapif 0

since f is constant on E D

All other normal 1 forms con be written as megolf fr
w gelo smooth fact on E and n smooth 1 form

dn dgndftdfan.aefan and so du dg vi ad f
thus if his normal to I nada o

theorem Frobenius if his a non zero 1 form sit n ndr 0

am
and his normal to surfaces ofconst fhis hypersurfaces orthogonalSpacetime

is static if it admits an hypersurface orthogonal timelike
hikingvector field

t si on E where t o with normal dt
tra Kpn f ui o but lei gi o

Back to the physics In a static spacetime we
can gire a natural definition of symultanconsevent same t in static coordinates

me



Furltrermore the static time t con be identifiedWille the time obtained synchronizing static clock rates

through light signals

Èffiffi
Null trajectory go.fi di gijeidaidaj.de

ta fief dependsonly on thespatial
trajectory and not ontime

All static clocks see each otherticking atteesamerate
Ibs In stationary spacetimes the stationarydates are similarly

rate syncronized but there is no uniquedef ofglobalkillingtime

We consider STATIC and SPHERICALLY SYMMETRIC spacetimes
I

E
Foliate spacetimes
w surfaces Et orthogonal to la_

the abit of so 3 through pe Et lies on Et_
Ipericalpidar coord IO on 5 on Io then catena

thedeli of f tottu restofz
by taking then tobeconst

miste arearadius

along geodesic normal to

auto di e 244 di madri

Now we define t n 9,6
ds e 294 alta 2244 di Madre

o Matter in the star described by perfectfluid
Tab ftp.luaubtpgabw na4 velocityoftmflui

nuit timelike gabhaub I
and e p are energy density
and pressure measured in the fluid's local restframeIn a time independent and spherically symmetric spacetime

me assume the fluid is at rest so na is timelike

un e d 2
a

Staticità spherical symon implythat epdepend out
If R is the area radius often star p p o formar



Tolman Oppenheimer Volkoffequations

One can obtain tu EM from Einsteinequations and since the
Einstein tensor inherits tu symmetriesof tue metric there
will be only three non trivial componente tt re 00

Bydefining m r via c 40 1 2mi
To mcr Ma

è troie a II III told pe

eqofstate p p e we assume peso anddi oatturwise
fluid is unstable

fluctuation increase decreasep
wouldcause tu fluid to more intothatregion and increase e
fluctuations would growthe Salmarschild sol

a outside tu star
m R p g O and me M const tt

From mm D I log 1 21m do do const

Redefine t chat and set da 0 mittantlossofgenerality
S t Goo 1 as Man

Schivaischild sol

de G 4 alta 1 21 di ridi

Singular at a 2m selvanschilal radius 9 0 grisa
therefore Meam must be inside HBA

R 2M

Cbs Is Ma 2m a proper ora coord singularity
We'll see that Is 2M will be interpreted as horizon
radius beyond which no signal con escape the
gravitational potential and the sol will be
interpreted as a Bit

Il



2 Interior solution
tt gives m a 45 e a n da ma ma const

the spacetime should be smooth at the center of the star
which means that measurements in a small region near

the centershould resemble those in Euclidian space
the properradius of a sphere with area radius r is

altri dai a e46 a far smaler
In Enel space tu proper radiusof a spherewith an arearadius r
is simply r

410 0 È m o O P Ma 0

Let us match the interior to the exterior at MR
for a R ma M const

Me 4h a madre

Difference with Newtonian gravity
Enclidion vol element on a surfare Gr vol element

of constat on Et
risintdradondy elmisinondandy

M E E 4A gelida
since e 1 formia 0 E m

Obs implies info's Ha nome Rian alreadyseen

Let us improve d implies déco and of so
one can show MIE 79 a 65 rip a ex Grip a 2 ta
Farrer pro Budachal inequality

R 9pm

the Tareq con be solved numerically given the centraldensity
Le after star these eq.com besolved to

determine R M and IG inthe star
In the contentofstate sphagnum coldstanco
the sol form a one parameter familyof solutionscharacterized by la



by
Maximum mase of a cold star
When one numerically evolves the Tovequations he will find
the mass of cold spherically symmetric stare increases upto mma
a maximum value as the central density increases beyondthis

point the mass decreases

I
the valueof mma

deflate
quation of state ofcoldmatter

e g ifyouconsider eq ofstate of white dwarf matter youobtainChandrasekharbound

Hower GR predicts a band onta mass independent outta form
of tu equation of state at high densities n 514.0

Def core ofthe star the region wilt palo where lo is tu
valueof the density up to which we experimentally

know the equation of state n nuclear density
Acre né have raro

envelope te region vi gelo where we know the g of stateHere MCMR

themass of the core ma meno AA ma Intrigo A
and from AAA ater

II Za 1 Gtr po agorà p w

Po pCro

For poco Mol Famo B

A and B define a finite region of the mo toplane

Upper band on themassofthecore mo PEI
Even if in the core we do not know lo

we know no cannot be indefinitely large
Largest go weknow is that of unclear matter lo 5.101491cm

therefore Mo 5M



Lo Given a core v1 ma andro the envelope can bedetermined
solving tt 0,0 Ing tu known eqiofstateatelo

B

q frangia of
marpione

Investigating numerically the behaviour of this function in motoplane
it is foundthat Mis man at maximumofma
At this man the contribution of the envelope to ttu total
man is Less than sta sotto matinum M is almost

identical to mo

Schwarschild BA

GR tells us a cold star with ma 5M will collapse to form
a BA The simplest sol is theschmanschild BA

We will investigate the geometryof spacetime assuming that
the Schwarschild sol is valid everywhere not just in the
exterior

Birkhoff theorem
In Schwanschild coord the felmonihild sol is

de 1 2Mt de 1 21 antani dai

We extend the Sol to Mam

In Schwanschild the static time t can then be interpreted
as the time obtained by syncronising static clocks withUn proper time of the observer at Ea

In fact one can prove that Selmanschild is the unique
spfrillysymmete vacuum solution without

assuming staticity or stationarity
Hence

any spherically symmetric process eventually ends upin Schwanschild in the vacuum regions

This is Birkhoff'stheorem and is a firstex of no hair forbits



Gravitational redshift

Lieti
the proper time between thephotonsemittedsoya
measured by A Will be

ITA FI At

Deb NÉ At

II l'III
no Since At 1 for c 1 8dB da no lightundergoes

a redshift
If Bis s.t RBS am

he te HEMI
Obs 177 a as Ma 2M We showed that a

spherical star must have R 9mA
max redshift is at E 2


