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Theorem 1 (Penrose singularity theorem 1965 [9]). Let (M, g) be a smooth,
4-dimensional spacetime. Assume that

(i) (M, g) is globally hyperbolic and contains a non-compact Cauchy hyper-
surface,

(ii) the Einstein Equations hold for a matter model that satisfies the null en-
ergy condition,

(iii) (M, g) contains a (codimension 2) trapped surface T .

Then there is at least one future-incomplete null geodesic starting from T .

Interpretation:

• Historical (see also Nobel prize text1): proves that under generic condi-
tions, black holes are formed.

• Alternative/modern (see Senovilla [10]): proves that black holes have sin-
gularities inside. The argument of Senovilla is that assuming the existence
of a trapped surface is almost like assuming from beforehand that there
is a black hole (as in a region where even light cannot escape). Note that
trapped surfaces usually (e.g. in Schwarzschild or Kerr) occur behind
the event horizon, but in an arbitrary spacetime, it’s not known if there
will be an event horizon (according to Penrose’s weak cosmic censorship
conjecture, there should be, but it has not been proven).

The other very famous singularity theorem is due to Hawking.

Theorem 2 (Hawking singularity theorem [7]). Let (M, g) be a smooth, 4-
dimensional spacetime. Assume that

(i) (M, g) is globally hyperbolic,

(ii) the Einstein Equations hold for a matter model that satisfies the Strong
Energy Condition (SEC), meaning Tab − 1

2TgabX
aXb ≥ 0 for every time-

like vector X.
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Figure 1: A trapped surface

(iii) (M, g) contains a (codimension 1) Cauchy hypersurface Σ with expansion
H ≥ ϵ > 0 for some constant ϵ.

Then every timelike geodesic in M is past incomplete.

Here both the assumption and the conclusion are of a cosmological nature.
Condition (iii) tells us that the Universe is expanding at some moment in time,
with a uniform lower bound on the expansion rate. The conclusion is a Big
Bang type singularity: it lies in the past and represents the beginning of the
whole spacetime. Some more comments on Hawking’s theorem:

• The SEC is stronger than the NEC (this can be seen by approximating
null vectors by timelike ones). The SEC + Einstein Equations implies
RabX

aXb ≥ 0, which is all that is used in the proof. Mathematicians
often directly refer to this inequality for the Ricci as SEC (or NEC when
X is null).

• A cosmological constant Λ (interpreted as part of the energy-momentum)
violates SEC. The theorem can be adapted to allow for Λ, but then ϵ =
ϵ(Λ) is no longer arbitrary small.

Hawking and Penrose also joined forces for a singularity theorem that does
not assume global hyperbolicity:

Theorem 3 (Hawking–Penrose singularity theorem [7]). Let (M, g) be a smooth,
4-dimensional spacetime. Assume that

(i) (M, g) contains no Closed Timelike Curves (CTCs) and is generic, mean-
ing that for every causal geodesic γ, there exists at least one parameter
value where γ̇[αRβ]πδ[ργ̇σ]γ̇

πγ̇δ ̸= 0

(ii) the Einstein Equations hold for a matter model that satisfies the Strong
Energy Condition (SEC),

(iii) (M, g) contains a (codimension 2) trapped surface T .
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(a) Formation of a black hole in the
Oppenheimer–Snyder model. The shaded
region contains matter, the outside is vac-
uum.

(b) A black hole that forms and then evap-
orates

Then there is some past- or future-incomplete causal geodesic in M .

Here assumption (iii) can also be replaced by a cosmological assumption as
in Hawking’s theorem. The problem with Hawking–Penrose is that it does not
tell us if the singularity is to the future or to the past, which makes it difficult
to interpret. On the other hand, not assuming global hyperbolicity is a great
advantage, especially if we want to take into account black hole evaporation due
to Hawking ratiation. A spacetime containing evaporated black holes is believed
to be non-globally hyperbolic (this is related to the informaton-loss paradox).

Recently, Minguzzi has shown a singularity theorem compatible with black
hole evaporation which gives us more information about the structure of the
singularity (at least as much as Penrose).

Theorem 4 (Minguzzi 2020 [8]). Let (M, g) be a smooth, 4-dimensional space-
time. Assume that

(i) (M, g) is past reflecting (I+(x) ⊂ I+(y) =⇒ I−(y) ⊂ I−(x)) and does
not contain any compact spacelike hypersurfaces,

(ii) the Einstein Equations hold for a matter model that satisfies the null en-
ergy condition,

(iii) (M, g) contains a (codimension 2) trapped surface T and there are no
CTCs crossing T .

Then there is at least one future-incomplete null geodesic starting from T .

Some comments:
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• Here I+(x) := {p ∈ M | ∃ future-directed causal curve from x to p}, and
I− the same with past-directed.

• Globally hyperbolic spacetimes are past- and future reflecting (I+(x) ⊂
I+(y) ⇐⇒ I−(y) ⊂ I−(x)), but for the evaporating black hole, the
implication ⇐= is false.

• Asking that there are no compact spacelike hypersurfaces in M is weaker
than sasking that there is one non-compact Cauchy hypersurface (this is
not obvious; it turns out that global hyperbolicity puts topological restric-
tions on M).

• We even allow for CTCs (such as inside maximally extended Kerr) as long
as they do not touch the trapped surface T .

We have discussed how to relax the causality assumption in Penrose’s theo-
rem. There are also reasons to relax the other assumptions:

• The Null Energy Condition, because it is violated by e.g. quantum fields.
This is meant in the following sense (cf. semi-classical Einstein Equation):
If one takes a fixed background spacetime and a QFT on it, the expecta-
tion value of the energy-momentum tensor generally does not satisfy the
NEC (it can even go to −∞). However, some “averaged” or “smeared”
versions of NEC hold, where some integral of the energy momentum is
non-negative. Multiple works including [1, 2, 3, 4].

• The dimension (e.g. because of string theory extra dimensions). It is
trivial to extend to higher spacetime dimension as long as the trapped
surface is still of codimension 2. But if one wants different codimension
(for example, if one wants dimension 2), then not trivial. The Hawking–
Penrose theorem has been proven in this context [5], but there are some
caveats about the energy condition.

• The smoothness of the spacetime metric g. We discuss this in a bit more
detail now.

From a physical point of view, there is no reason to assume that the space-
time metric is smooth:

• Experimentally testing for (non-)smoothess is impossible, because it would
require infinite resoultion.

• Some interesting spacetimes are non-smooth. For example Oppenheimer–
Snyder, where it is assumed that the matter density is constant inside the
star and 0 outside, causing a non-smooth transition at the surface.

This poses a problem: what if the geodesics predicted by Penrose’s theorem
are incomplete only because they encounter a point where the metric is non-
smooth? Could it be that our incomplete smooth spacetime can be extended
to a compete, non-smooth one? This would ruin the conclusion since non-
smoothness is not per se a singularity (in the physical sense).

Theorem 5 (Graf 2020 [6]). The Penrose singularity theorem holds for C1

metric tensors.
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The metric tensor g is C1 if it is continuous and ∂
xk gab exists and is con-

tinuous for any coordinate xk. In general, the second partial derivatives could
be discontinuous or even ill-defined. The callenges of considering C1 metrics
include:

• While the Christoffel symbols (which involve ∂g) are well-defined and
continuous, they are not necessarily Lipschitz-continuous (as they would
be in the smooth case). As a consequence, while the geodesic equation
still has solutions for every initial condition, these solutions are no longer
unique.

• The Riemann curvature tensor (which involves ∂2g) is not well-defined in
the usual sense. However, it is still possible to define it in a distributional
sense (think of Dirac δ). In this way, we can make sense of the NEC.

• The proof is based on approximating the metric by a family of smooth
metrics.
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