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1 Recap of Black holes and Penrose diagrams

In this section we firstly recall the basics of black holes; in particular we proceed by using

as explicit case of study the Schwarzschild metric, i.e. the metric obtained by considering

a spherical (uncharged and non-rotating) black hole. We will describe the main feature

of this metric in the Kruskal coordinates and we will describe its Penrose diagram. The

Schwarzschild metric is derive in appendix B and it is given by

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1.1)

where M is the black hole mass and G is the Newton constant. At r = 0 the metric is

singular; this divergence can be understood in a coordinate independent way by considering

the divergence of the fully contracted Riemann tensor RαβγδR
αβγδ.

The radius rs = 2GM is called the Schwarzschild radius; the metric in equation (1.1) seems

to be divergent also for r = rs, however this last singularity is just due to a bad choice of

coordinates and indeed the fully contracted Riemann tensor is not singular in that point.

Nevertheless for r = rs one can easily observe that the sign of the coefficients in front of dt2

and dr2 switch. The coordinate r becomes timelike and any particle that falls in the region

r < rs proceed necessarily toward the singularity. For this reason the surface defined by
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r = rs is called the black hole horizon.

In order to study the near horizon physics it is convenient to choose different coordinates;

a null geodesic in Schawrzschild is given by t = ±r⋆ + C, where C is a constant and r⋆ is

the tortoise coordiante

r⋆ = r + log(r − 1) , (1.2)

where we choose from here on rs = 1. Let’s define the Kruskal coordinate

U = −e(r⋆−t)/2 , V = e(r⋆+t)/2 . (1.3)

By construction lines defined by U or V constant are null geodesic and the singularity is

when UV = 1, while the horizon is defined by either U = 0 or V = 0. The metric is now

ds2 = −4

r
e−rdUdV + r2dΩ2 , (1.4)

where r can be implicitly given by UV = (1−r)er. The off-diagonality of such a coordinates

can be removed by defining

U = T −X , V = T +X . (1.5)

Indeed in these coordinates

ds2 =
4

r
e−r(−dT 2 + dX2) + r2dΩ2 . (1.6)

Figure 1. The Schawzschild solution in the (T,X); the light blue region is the region defined

by r > 1, the r < 1 spacetime is the given by the green and the red (X2 − T 2 < 0); finally the

singularity is given by X2 − T 2 = −1. Figure taken by [1].

It is usually convenient to draw simplest diagrams to understand the causality proprieties
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of the black hole geometry. A way to do that is to observe that conformally equivalent

metric, i.e. metrics related by

g̃µν(x) = e2ω(x)gµν(x) , (1.7)

have the same null geodesics and timelike/spacelike curves in one metric will be time-

like/spacelike curves in the other. A skatch of the proof is given in appendix A but, with

this simple observation, it is possible to define the Penrose diagrams in the following way:

1. Choose a set of the coordinates of the sapcetime defined in a finite range such that

ds2 =
1

ω2(x)
dŝ2 , (1.8)

where dŝ2 is regular on the boundary, i.e. at the infinity of the previous spacetime

coordinates.

2. The spacetime defined by dŝ2 has the same causality proprieties of the spacetime

defined by ds2 and therefore we can study the causality proprieties of ds2 by studying

dŝ2. This spacetime is defined in a finite range.

Let’s apply this procedure to the Schwarzschild case; starting from the first region T and

X one can define

T ′ +X ′ = arctan(T +X) , T ′ −X ′ = arctan(T −X) , (1.9)

and these parameters are defined in a finite domain −π
2 < Ũ, Ṽ < π

2 ; the metric can be

written as

ds2 =

ω−2︷ ︸︸ ︷
e−r

4r cos2(T ′ +X ′) cos2(T ′ −R′)

dŝ2︷ ︸︸ ︷(
−(dT ′)2 + (dX ′)2 + r2dΩ2

)
(1.10)

The new coordinates are such that |X ′ ± T ′| ≤ π/2 (and throw out the region |T | > π/4).

Therefore we obtain the Penrose diagram in figure 2.

2 The Hawking radiation

The Hawking radiation is one of the most important phenomena in black hole physics [2].

It explains how a black hole can collapse even if it seems to violate the fact that the area

of the black hole cannot decrease. This violation must be caused by a flux of negative

energy across the event horizon which balances the positive energy flux emitted to infinity.

Just outside the horizon there would be pairs of particles, one with positive and one with

negative energy. The negative particle can tunnel inside the black hole where the Killing

vector which represents time translations is spacelike. In this region the particle can exists

as a real particle with a timelike momentum vector even if its energy relatie to infinity as

measured by the time translation Killing vector is negative. The other particle can escape

to infinity where it consitutes a part of the thermal emission we are going to describe. The
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Figure 2. Penrose diagram of a Schwarschild spacetime. i∓ is the past/future timelike infinity,

J∓ is the past/future null infinity and i0 is the spatial infinity. i± are where timelike geodesics

come from. The red zigzag lines are where the singularity is located.

probability of the negative energy particle tunnelling the horizon is governed by the surface

gravity κ1, which indeed measure how fast the Killing vector becomes spacelike.

In the following we will study a free massless scalar theory so that computations can be

really be done explicitly, however let us just comment that a fully non-perturbative proof

of the Unruh effect (and similarly Hawking radiation) is possible for every field theory

satisfying the Wightmann axioms. For a case of a generic scalar theory (with arbitrary

potential) see [3].

Let’s be concrete and consider a free massless field satisfying the equation of motion 2

gµν∇µ∇νϕ = 0 . (2.1)

The field operator ϕ can be expanding as

ϕ =
∑
i

fiai + f ia
†
i , (2.2)

where fi satisfy the wave equations gµν∇µ∇νfi = 0 and, by choosing the fi so that they

satisfy the orthonormality condition

i

2

∫
J−

(
fi∇νf j − f j∇νfi

)
dΣν = δij , (2.3)

ai/a
†
i are the annihilation and construction operators for particle at past null infinity

(J −); those are ingoing particles. Observe that there is an ambiguity in the definition of

the ingoing particles because of the presence of the white hole solution from which particles

1Remember that, if ka is the properly normalized Killing vector, the surface gravity is defined as

ka∇ak
b = κkb. In the Schwarzschild case κ = 1/(4GM) = 1/(2rs).

2Same results can be obtained by using conformally invariant wave equation gµν∇µ∇νϕ+R/6ϕ = 0.
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Figure 3. Penrose diagram of a collapsing spherical body. i∓ is the past/future timelike infinity,

J∓ is the past/future null infinity and i0 is the spatial infinity. i± are where timelike geodesics

come from. The red zigzag lines are where the singularity is located.

can be consider[4]. However this ambiguity is eliminated by the fact that we will consider

a collapsing spherical body instead of the Schwarschild solution (see Penrose diagram in

Figure 3): in this case the white hole region simply does not exists are we conclude that

ingoing particles are only considering in J −. The field ϕ can be expressed everywhere as

in (2.2), however in the region outside the event horizion one can express it in terms of

future null infinity (J +) data:

ϕ =
∑
i

pibi + pib
†
i + qici + qic

†
i , (2.4)

where {pi} are solutions purely outgoing, i.e. with zero Cauchy data on the event horizon,

and {qi} are solution with zero Cauchy data on J +. This splitting is due to the fact that

the outgoing Hilbert space is given by

Hout = Hout,J+ ⊕Hout,BH . (2.5)

The pi and qi satisfy
i

2

∫
J+

(
pi∇νpj − pj∇νpi

)
dΣν = δij , (2.6)

and
i

2

∫
Event Hor.

(
qi∇νqj − qj∇νqi

)
dΣν = δij , (2.7)

respectively. To pass from the decomposition in equation (2.2) to the decomposition in

(2.4) we can apply the Bogolibov transformation

pi =
∑
j

αijfj + βijf j , qi =
∑
j

γijfj + ηijf j , (2.8)
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bi =
∑
j

αijaj − βija
†
j , ci =

∑
j

γijaj − ηija
†
j . (2.9)

It is known that the Bogolibov’s transformations ”do not preserve the vacuum”, in the

sense that the vacuum of J −, i.e. the vacuum defined by ai |0, in⟩, is not the vacuum in

J + since

⟨0, in| b†ibi |0, in⟩ =
∑
j

|βij |2 . (2.10)

The proof of the above equation is provided in appendix C. βij contain the information

about the particles created by the gravitation field and emitted to infinity and we then

want to estimate these quantities. Let us expand the solution in spherical harmonics

fω′lm ∼ r−1(ω′)−1/2Fω′(r)eiω
′vYlm(θ, φ) , (2.11)

pωlm ∼ r−1ω−1/2Pω(r)e
iωuYlm(θ, φ) , (2.12)

where v and u are andvaned and retarted coordinates

v/u = t± r ± 2M log
∣∣∣ r
2M

− 1
∣∣∣ . (2.13)

In general

pω =

∫ ∞

0

(
αωω′fω′ + βωω′fω′

)
dω′ . (2.14)

There are two-component of pω: one will be scattered outside the collapsing body and will

end up on J −; the other will enter in the collapsing body, call it p̃ω. In order to estimate

the last contribution near the latest time that a null geodesic could leave J −, v0, we can

define a null vector tangent to the horizon lµ and nµ the future directed null vector at x

which is directly radially and such that lµnµ = −1. A vector −ϵnµ connects a point x

on the event horizon with a nearby null surface of constant retarded time u. We have to

transport (lµ, nµ) back along the point in which future and past event horizon intersected.

Define the affine parameter λ 3 which is related to the retarded time u on the part horizon

by

λ = −Ce−κu = (v1 − v0) , (2.15)

where C is a constant and κ is the surface gravity. Therefore

u = −1

κ
log(v − v0) , (2.16)

which means that

e−iωu ∼ (v − v0)
iω/κ , (2.17)

therefore

p̃ω ∼ ω−1/2r−1Pω(2M)(v − v0)
iω/κ . (2.18)

3The affine parameter is that it satisfies the geodesic equation. Another way is to say that if the

parametrization is affine, parallel transport preserves the tangent vector.
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The Frourier transform of p̃ω will give us α̃ωω′ and β̃ωω′ ; in particular for large ω′

α̃
(2)
ωω′ ∼ ei(ω−ω′)v0

(
ω′

ω

)1/2

Γ

(
1− iω

κ

)
(−iω′)−1+iω/κ , (2.19)

β̃ωω′ ∼ −iα̃ω(−ω′) . (2.20)

The logarithmic singularity of (−iω′)−1+iω/κ in ω′ = 0 can be cured analytically continue

α̃ anticlockwise round the singularity. Therefore

|α̃ωω′ | ∼ eπω/κ|β̃ωω′ | . (2.21)

The total number of created particle in J + in the frequency range ω + dω is given by

dω
∫∞
0 |βωω′ |dω′ which is divergent. However this divergence is due to the fact that there

is a finite steady rate of emission continuing for an infinite time. Construct then the

wave-packets

pjn =
1√
ϵ

∫ (j+1)ϵ

jϵ
dω e2πinω/ϵpω , (2.22)

where j and n are integers. For ϵ small these wavepackets have frequency jϵ and are

peacked around u = 2πn/ϵ (with width ϵ−1). We can express pjn in terms of the fω as

pjn =

∫ ∞

0
(αjnω′fω′ + βjnω′fω′)dω′ , (2.23)

where

|αjnω′ | =

∣∣∣∣∣ 1√ϵ
∫ (j+1)ϵ

jϵ
dω e2πinω/ϵαωω′

∣∣∣∣∣ ∼ ω−1/2Γ

(
1− iω

κ

)
(ϵκ)−1(ω′)−1/2 sin(ϵ/(2κ)) .

(2.24)

The expectation value of the number of particles created and emitted to infinity (J +) in

the wavepacket mode pjn is given by ∫ ∞

0
dω|βjnω|2 , (2.25)

and this quantity can be computed by considering the fraction Γjn of wavepacket that will

enter in the collapsing body

Γjn =

∫ ∞

0
dω

(
|α̃jnω|2 − |β̃jnω|2

)
, (2.26)

where the minus sign is because negative frequency contribution make negative contribution

to the flux. From (2.21) it’s clear that

|α̃jnω′ | = eπω/κ|β̃jnω′ | . (2.27)

Therefore the total number of particle created in the mode pjn is given by

Γjn

e2πω/κ − 1
. (2.28)
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Observe that this is the emission cross-section is exactly that for a body with a temperature

of T = κ/2π. This temperature is called Hawking temperature and observe that it is related

to the mass of the black hole, unintuitively, as T ∼ 1/M4. Therefore the temperature of the

black hole increase when the black hole is collapsing; or in another way the smaller is the

black hole mass the more it emits particles. Further observe that all this calculation can be

repeted for a massless free fermions (e.g. an approximation for neutrinos) and it gives the

very same result up to equation (2.26) where the sign in front of |βjnω| is the opposite (i.e.

a plus); this is because negative frequency components gives, due to the spin-statistics, a

positive contribution to the flux. The number of particles emitted is therefore

Γjn

e2πω/κ + 1
, (2.29)

which is the Fermi-Dirac statistics. To better interpret this phenomena simply recall that

the ingoing Hilbert space is just Hin,J− , whereas the outgoing Hilbert space is given in

equation (2.5); the outgoing Fock-space is then given by

F(Hout) = F(Hout,J+)⊗F(Hout,BH) . (2.30)

This means that the out-states are ”joint” (entangled) states of particles that reach J +

and particles that will fall down in the black holes.

3 Back reaction on the metric

The back reaction on the metric due to the particle creation implies the slow decreasing

of the black hole mass. Unfortunately it is not meaninful to talk about local energy-

momentum of creating particles; this is similar to the problem of defining gravitational

energy in classical general relativity. Nevertheless we can define an total flux, by integrating

over a suitable surface. The stress energy tensor of a free scalar is given by5

Tµν = ∇µϕ∇νϕ− 1

2
gµνg

ρσ∇ρϕ∇σϕ . (3.1)

let kµ be a time parameter defined along the generators of the horizon in the final quasi-

stationary state. We are interesting in the quantity

1

u1 − u2

∫ u2

u1

ddx ⟨0, in| : Tµν : |0, in⟩ kµdΣν , (3.2)

where the integration is performed by fixing r, considering two retarded times u1 and u2 and

|0, in⟩ is the vacuum of J −. For convenience let’s define the wave-packets xjn = p
(2)
jn + q

(2)
jn

and yjn = p
(1)
jn + q

(1)
jn ; the first quantity represents the part of pjn and qjn passes through

the collapsing body, the second quantities do not contain any negative frequencies and

therefore do not contribute to the flux of the stress tensor. On the other hand

xjn =

∫ ∞

0
dω
(
χjnωfω + ξjnωfω

)
, (3.3)

4Reintroducing also ℏ, c and G we have T = ℏc3/(8πGM)
5In general we have to renormalize this quantity; however every tensor which is stationary, satisfies

∇µT
µν and agree near J+ gives the same result for the flux.
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but close enough to J + we have that xjn ≃
√

Γjnpjn. This implies that∫ u2

u1

ddx ⟨0, in| : Tµν : |0, in⟩ kµdΣν =

= Re

∑
jn

∑
pl

∫ ∞

0
dω′′

∫ u2

u1

du ωω′√Γjnpjnξjnω′

(√
Γplpplχplω′ − (

√
Γplpplξplω′

) ,

(3.4)

where ω and ω′′ are the frequencies of the wave-packets pjn and ppl respectively. By

considering u2−u1 ≫ 1 we only the first term in the integrand contribues; furthermore by

repeating argument similar to the discussion in the above section we conclude that∫ ∞

0
|ξjnω′ | dω′ =

1

e2πω/κ − 1
. (3.5)

Therefore

1

u1 − u2

∫ u2

u1

ddx ⟨0, in| : Tµν : |0, in⟩ kµdΣν =

∫ ∞

0
Γω

ω

e2πω/κ − 1
, (3.6)

where Γω = limn→∞ Γjn is the fraction of wave-packet of frequency that would be absorbed

by the black hole.

3.1 Thermodynamic interpretation

The energy flux computed in (3.6) exactly compensate the thermal emission computed

above (see equation (2.29) for the number of emitted particles). This energy flux will cause

the area of the event horizon to decrease and so the black hole will not, in fact, be in

a stationary state. This can also be interpreted from the thermodynamic point of view

considering the standard entropy definition

dS

dE
=

1

T
; (3.7)

in the case of the black hole we discussed above that

T =
κ

2π
=

1

8πGM
. (3.8)

Therefore by using this temperature in the above definition and by identifying M as the

energy we have that

S =
A

4G
, (3.9)

where A is the area of the black hole. This entropy seems to suggests that the area of a

black hole can never decrease; nevertheless, due to the Hawking radiation discussed above,

⟨Tµν⟩ does not satisfy the energy condition assumed in the proof of the area law (i.e. the

law δA ≥ 0). Nevertheless it is clear that also the second law of thermodynamics for the

matter outside the black hole is violated; indeed the entropy Sm of the matter outside the

black hole can decrease by dropping matter inside the black hole. Notice however that
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the violation of the two laws compensate each other, in the sense that when δSm < 0 by

dropping matter in the black hole then δA > 0, whereas when δA < 0 the black hole emits

particles that increase the entropy of the matter outside the black hole δSm > 0. In order

to solve this problem Bekenstein proposed the generalized entropy [5]6

S′ = Sm +
A

4G
, (3.10)

and the second law, given by

δS′ ≥ 0 , (3.11)

is then valid. As shown above the black hole is not in a stationary states, because of

particle emission. This implies that the black hole is evaporating. The Penrose diagram is

given in figure 3; the generalized second law makes this process possible since the fact that

the area of the black hole is decreasing is compensate by the particle production.

The last comment concern the fact that the Hawking temperature is very small when the

mass of the black hole is smaller then the mass Plank. This implies the number of particle

produced by a massive (mass grater then the Planck mass) (per unit of time) black hole

is small. Therefore, even if the black hole is not in a stationary state it is a reasonable

assumption to consider the black hole in a sequence of stationary states (quasi-stationary

states).

4 Hawking radiation and tunneling

The derivation of the Hawking radiation presented above is the original one. It is quite

simple but it does not include non-perturbative effects and it does not really fit with

the usual pictorial picture. In fact the derivation presented above make explicitly use of

the equations of motion of the free fields and it is not clear the connection between that

derivation and the usual picture which account the fact that one of the particle of the

particle anti-particle pair created just inside of just outside the horizon can tunnel the

horizon changing sign of its energy.

This picture of tunneling of particles or anti-particles was making concrete and precise by

Parikh and Wilczek [6]. We will follow the original derivation of [6]. The idea is to use the

WKB approximation to compute Hawking radtion as tunneling

We first have to introduce coordinates which are not singular at the horizon. One possibility

is the metric 7

ds2 = −
(
1− 2M

r

)
dt2 + 2

√
2M

r
dtdr + dr2 + r2dΩ2 , (4.1)

where we send the Schwarzschild time

t→ t+ 2
√
2Mr + 2M ln

(√
r −

√
2M

√
r +

√
2M

)
. (4.2)

6Originally Bekenstein proposed the generalized entropy before the Hawking paper on black hole ra-

diation; the law was based on merely observations, but the Hawking radiation put solid ground on the

theoretical meaning of such an entropy.
7This coordinates are firstly used by Painlevé to criticize General Relativity for allowing singularities to

come and go.
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In this way the metric is explicitly non-singular in r = 2M . Observe that the coordinates

describe a stationary spacetime. We can define a vacuum state such that it annihilates

modes with negative frequency with respect to t. This is not the Unruh vacuum, but this

choice do not affect the late-time radiation. The radial null geodesic is given by

dr

dt
= ±1−

√
2M

r
. (4.3)

In [7] it was shown that when the mass of the balck hole is free to fluctuate, and self-

gravitating shells are considered we have that the shall of energy ω travels along a line

element which is

ds2 = −
(
1− 2(M − ω)

r

)
dt2 + 2

√
2(M − ω)

r
dtdr + dr2 + r2dΩ2 , (4.4)

In fact effectivelyM →M−ω. What follow is a WKB approximation. This approximation

can be easily justified by remember that, when an outgoing wave is traced back towards

the horizon, its wavelength is blue-shifted; the radial wave-number approaches infinity and

WKB is justified. We have now to compute the imaginary part of the action for an s-wave

outgoing particle with positive energy which crosses the horizon outwards from rin to rout.

It is

ImS = Im

∫ rout

rin

pr dr = Im

∫ rout

rin

∫ pr

0
dp dr . (4.5)

Without enerting the detail of the solution we have

ImS = Im

∫ M−ω

M

∫ rout

rin

dr

ṙ
dH = Im

∫ ω

0

∫ rout

rin

dr

1−
√

2(M−ω′)
r

(−dω′) , (4.6)

where we used the Hamilton equation

ṙ =
dH

dpr
, (4.7)

and we change variables in the integrated. The integral can be computed and we have

ImS = 4πω
(
M − ω

2

)
. (4.8)

In order to do that we have to deform the contour, such that ω → ω− iϵ, and set rin > rout.

Hawking radiation can be also regarded as pair creation outside the horizon, with the

negative energy particle tunneling into the black hole. The latter propagates back in time.

Observe that time-reversal corresponds to
√

2M
r → −

√
2M
r and since the anti-particle sees

a geometry of fixed black hole, then m→M + ω. Therefore, deforming the countour such

that ω → ω + iϵ, we have

ImS = Im

∫ −ω

0

∫ rin

rout

dr√
2(M+ω′)

r − 1
dω′ = 4πω

(
M − ω

2

)
. (4.9)

– 11 –



Finally the expondential part of the semi-classical emission rate is

Γ ∼ e−2 ImS = e−8πω(M−ω
2 ) = e∆SB.H. . (4.10)

The quadratic terms comes with conservation of energy, which raises the effective temper-

ature of the hole as it radiates. Following the standard argument, the linear contribution

in the exponential implies that the density is given by the the Planck spectral flux

ρ(ω) =
dω

2π

|T (ω)|2

e8πMω − 1
,

1

T
= 8πM , (4.11)

where T (ω) is the greybody trasmission coefficient. A fast way to see this is to observe

that the linear term is the Boltzmann weight when the temperature is T = 1/(8πM). In

[6] the same procedure is also proposed for charged balck holes.

5 The algebraic approach

Another possible approach to study quantum field theories is to use to made use of axioms,

inspired by free field theory, to construct directly the correlation functions in a mathemat-

ically rigorous way. The most important results are contained in the very famous book [8].

In this notes we will mainly follow [9]. Before going on we have to spend some time to

review those axioms.

5.1 The Wightman axioms and ”standard” results

For this short review I will use [10] and the Online Lecture by Slava Rychkov. It is

important to define the fields in quadruple (H, φ,Ψ, U), where

⋆ H is an Hilbert space;

⋆ φ : S(X) → operators in H, is a liner map and X is the spacetime. To connect with

the usual fields we first have to define the operators φ(x), which are more technically

called operator valued distributions, i.e. are distributions such that

φ(f) =

∫
ddx f(x)φ(x) , (5.1)

are operators acting on an Hilbert space H. This also ensure that φ(f)Ψ is a state

of finite norm.

⋆ Ψ is the (unique!!) vaccum, i.e. a unit vector of H, which is cylic with respect to

the algebra A of polynomials of {φ(f), f ∈ S(X)}, i.e. the set of vectors generated

by applying polynomials of the field operator to the vacuum is dense in the Hilbert

space H;

⋆ U a continuous representation of the symmetry group G in H.

The quadrule defined above has to satisfy the following axioms

– 12 –

https://youtu.be/9d9tPnigaBU?si=5McR8THMGpeoi8-S


(W1) φ(f1) . . . φ(fn)Ψ is continuous w.r.t. each state of the elements f1, . . . fn ∈ S(X);

(W2) Hermicity: φ(f)⋆ = φ(f) on AΨ;

(W3) Covariace:

U(g)Ψ = Ψ , U(g)φ(f)U(g−1) = φ(fg) , (5.2)

where fg = f(g−1x), for every f ∈ S(X), g ∈ G;

(W4) Locality: [φ(f), φ(h)] = 0 if the support of f and h are space-like separated;

(W5) Spectrum condition:Ψ is the ground state w.r.t. the time traslational group; i.e. its

infinitesimal generator is a positive operator.

From the assumption above many interesting theorems were proved. Among them the

PCT theorem, the spin-statics,the Haag, the Reeh-Schlieder theorems and many others.

For a review of some of them with proofs see e.g. my online notes. Here I will just state

the relevant ones for the following.

C1 (PCT) There is an unique conjugation J0 of H such that

J0φ(f1) . . . φ(fn)Ψ = φ(f †1) . . . φ(f
†
n)Ψ , (5.3)

where f †(x) = f(−x).

C2 (Reeh-Schlieder) Let Λ ⊂ X, and Λ open.Let A(Λ) be the subalgebra of A of poly-

nomials of the field φ(f) where supp f ⊂ Λ. Then A(Λ)Ψ is dense in H.

C3 (Bisognano-Wichmann)Let L(τ) be the one-parameter subgroup of G corresponding

to the Lorentz boosts 8 and let iK its infinitesimal generator. Then

J0ρe
−πKAψ = A⋆Ψ , ∀A ∈ A(X+) , (5.4)

where J0 is the PCT conjugation, ρ = U(ρ) where ρ is the partial inversion
(
x0, x1, x2, x3

)
→(

x0, x1,−x2,−x3
)
and X± are the submanifold of X such that x1 > |x0| and x1 <

−|x0| respectively.

The proof for Hawking radiation will concretely generalizes the Bisognano Wichmann the-

orem for the case in which the spacetime is not flat. The equation (5.4) will be interpreted

as the KMS condition for the thermal states.

Before going on we have to review the basics of statistical mechanics and thermal states.

In order to do that it is important to re-define the vacuum. Assuming that the dynamics

of the system is taken to be given by a continuous unitary representation V of the additive

reals, in H and such that A is closed under transformations A→ V (t)AV (−t). Let iK be

the generator of V (R). Take a vector Ψ such that AΨ is dense in H. If K is positive and

it satisfy the Kubo-Martin-Schwinger(KMS) condition(
exp

(
−1

2
βK

)
AΨ, exp

(
−1

2
βK

)
BΨ

)
= (B⋆Ψ, A⋆Ψ) , (5.5)

8More precisely L(τ)
(
x0, x1, x2, x3

)
=

(
x0 cosh(τ) + x1 sinh(τ), x1 cosh(τ) + x0 sinh(τ), x2, x3

)
.
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for every A,B ∈ A. Equivalently

J exp

(
−1

2
βK

)
AΨ = A⋆Ψ , (5.6)

for every A,B ∈ A, where J is the unique conjugation of H, i.e. the antilinear transfor-

mation such that J2 = 1 and (Jf, Jg) = (g, f). In order to justify this property we are

requiring to the ground state in order to be thermal we show here a standard derivation.

The density matrix of the theory is ρ = e−βK . Then at the level of the correlation functions

⟨A(t)B(t′)⟩β = Z−1Tr
[
e−βKA(t)B(t)

]
=

= Z−1Tr
[
e−βKeiKtAe−iKteiKt′Be−iKt′

]
=

= Z−1Tr
[
e−βKeiKtAe−iKteβKe−βKeiKt′Be−iKt′

]
=

= Z−1Tr
[
e−βKeiKt′Be−iKt′eiK(t+iβ)Ae−iK(t+iβ)

]
=

= ⟨B(t′)A(t+ iβ)⟩β

(5.7)

It is already clear at this point that the Bisognano-Wichmann conclusion, in equation (5.4)

it is very reminiscent of a thermal state. Before going to the curved background case let

us first study the case of an uniformly accelerated observer (Rindler spacetime).

5.2 Uniformly accelerated observer

The best description for the uniformly accelerated observer is the Rindler spacetime. We

have to introduce the coordinates (ξ, τ, x2, x3), where ξ ∈ R+ and τ ∈ R, such that

x0 = ξ sinh τ , x1 = ξ cosh τ . (5.8)

The metric for X+ is therefore

ds2 = ξ2dτ2 − dξ2 − (dx2)2 − (dx3)2 . (5.9)

As usual the acceleration of the observer is α = 1/ξ. If L+(R) is the one-parameter

isometries corresponding to time translations for the accelerated observer, i.e.

L+(τ)
(
ξ, τ ′, x2, x3

)
=
(
ξ, τ ′ + τ, x2, x3

)
, (5.10)

then, by invoking the Reeh-Schlieder and the Bisognano-Wichmann theorem we conclude

that the restriction of the state Ψ to A(X+) is a thermal state satisfying the KMS condition

w.r.t. the time-translation group L+(R), i.e.

J exp
(
−πK+

)
AΨ = A⋆Ψ , (5.11)

for every A ∈ A(X+), where iK+ is the generator of L+(R) and J = J0ρ. Observe that

this result implies that Ψ, which is the ground state for the inertial observer, corresponds

to a thermal state for the accelerated observer. Observe that the temperature is given by

T = 1/2π, as expected. However this is the temperature associated with τ instead of the

proper time τα. By rescaling the time from τ to τα we have the observed temperature

which is

Tα =
α

2π
. (5.12)

This is the rigorous proof of the Unruh’s result.
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5.3 Quantum fields on Manifolds

We have now to formulate the axiomatic approach fro the curved background case. We

consider space-time manifolds of the form R2 × Y , with the metric of the form

ds2 = A(t2 − ω2, y)(dt2 − dω2)−B(t2 − ω2, y)dσ2(y) , (5.13)

where A,B are positive valued smooth functions and dσ2 is a positive metric on Y . If

we consider X± defined by ω > |t| and ω < −|t| we have that the X± are isometric with

R± × R× Y under

ω = ξ cosh τ , t = ξ sinh τ , (5.14)

so that

ds2 = A(−ξ2, y)(ξ2dτ2 − dy2)−B(−ξ2, y)dσ2(y) . (5.15)

Observe that from those metric it is clear that, in general, t → t + c is not an isometry

for this space-time metric. However it does become an isometry when restricted to E,E′

defined by ω± t = 0 respectively. This is equivalent to say that ∂/∂t is a Killing vector on

E and E′. Those surfaces corresponds to past and future event horizons respectively. Also

time translations τ → τ + c are isometries on those surfaces and in fact these are Lorentz

transformations t→ t cosh b+ ω sinh b, ω → ω cosh b+ t sinh b. In formula

L±(τ)(ξ, τ ′, y) = (ξ, τ + τ ′, y) . (5.16)

E ∼ R× Y and we can use coordinates (t, y). The restriction of L(τ) on E is

LE(τ)(t, y) =
(
te−τ , y

)
. (5.17)

Furthermore the time translations are

TE(t)(t
′, y) = (t′ + t, y) . (5.18)

Let E± be defined as subspace such that t ≥ 0 and t < 0 respectively. Those are both stable

under LE but not under TE . A quantum field onX is defined as a quintuple (F ,H, φ,Ψ,L),

where F = S(R2)×S(Y ) and L is an unitary representation of R in H, such that it satisfy

the generalization of the Wightmann axioms

A1) φ(f1⊗g1) . . . φ(fn⊗gn)Ψ is continuous in f1, . . . , fn ∈ S(R2), g1, . . . gn ∈ S(Y ). This

point is necessary to define Withmann functions, but it will not be necessary here;

A2) Hermiticity: φ(f)⋆ = φ(f);

A3) Covariance (w.r.t. L(R)):

L(τ)Ψ = Ψ , L(τ)φ(f)L(−τ) = φ(fτ ) , (5.19)

where fτ (x) = f(L(τ)x).

A4) Locality: [φ(f), φ(h)] = 0 if the support of f and h are space-like separated;
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A5) This is much more complicated since the Hamiltonian is not defined everywhere.

However we substitute it with an axiom designed to yield a field on the sub-manifold

E, which does have time translations. Let {h1n} . . . {hk,n} be a k arbitrary sequences

of positive S(R) functions such that
∫
dthjn(t) = 1 and supphj,n → 0, as n → ∞.

For Fj ∈ S(R)× S(Y ) let

F̃j,n(t, ω, y) =
∂

∂t
Fj

(
t− ω

2
, y

)
hj,n(t+ ω) . (5.20)

Then φ(F̃1,n) . . . φE(F̃k,n)Ψ converges to a multilinear vector function Φ(F1, . . . Fk)

such that

a. ΦE(e1 ⊗ g1, . . . , ek ⊗ gk) is continous w.r.t. e1, . . . ek ∈ S(R), g1, . . . , gk ∈ S(Y ).

b. Exist F1, . . . Fk such that ΦE is not constant and

Fl,τ (xE) = Fl(LE(−τ)xE) . (5.21)

The latter axiom is desined such that the field φ induced a field φE on the event horizon

E. This is done by

φE(t, y) = − ∂

∂t
φ(t,−t, y) . (5.22)

In fact it is possible to prove (see [9] for the proof) that there is a field (FE ,HE , φE ,Ψ,LE)

on E such that ΦE(F1, . . . Fk) = φ(F1) . . . φ(Fk)Ψ and

E1. φE(e1⊗ g1) . . . φE(en⊗ en)Ψ is continuous w.r.t. e1, . . . ek ∈ S(R), g1, . . . , gk ∈ S(Y );

E2. Hermiticity: φE(F )
⋆ = φE(F );

E3. Covariance (w.r.t. L(R)): LE(τ) is the restriction of the L(τ) on HE and

LE(τ)Ψ = Ψ , LE(τ)φ(F )LE(−τ) = φ(Fτ ) , (5.23)

where Fτ (x) = F (LE(τ)xE).

E4. Locality: [φ(F ), φ(h)] = 0 if the support of F and F are space-like separated;

E4’. Further Locality: [φ(e1 ⊗ g1), φ(e2 ⊗ g2)] = 0 if the support of e1 and e2 are disjoint;

E5. Covariance: There is a continous unitary representation TE of R on HE such that

TE(t)Ψ = Ψ , TE(t)φE(F )TE(−t) = φE(Ft) , (5.24)

where Ft(xE) = F (TE(−t)xE).

E6. Spectrum condition:The generator of TE , K is a selfadjoint, positive operator.

Now E1-E6 are very similar to the Wighmann axioms which are enough to show that

gravitation induces thermal states as we shown in the case of the Rindler space-time.

Indeed the following results can be proved
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R1. Let I be in interval in R and AE(I) the algebra of polynomials in {φE(e ⊗ g)|e ∈
S(R), supp e ⊂ I, g ∈ S(Y )}. Then AE(I) is dense in HE .

R2. There is an unique conjugation JE of HE such that

JEφE(F1) . . . φE(Fk)Ψ = φE(F
†
k ) . . . φE(F

†
1 )Ψ , (5.25)

where F †(t, y) = F (−t, y).

R3. Let A±
E be the algebra of polynomials in {φE(F )|F ∈ S(R) × S(Y ), suppF ⊂ E±}.

Then Ψ is cyclic w.r.t. A± in HE and

JE exp (∓πKE)AEΨ = A⋆
EΨ , (5.26)

for every AE ∈ A±
E . Since E+ is stable under LE(R) it follows that Ψ satisfy the

KMS condition w.r.t. L(R) for the restriction of φE on E+. The temperature (the

non-oberved one) is T = 1/2π.

The proofs of those two theorems are really similar to those of the Reeh-Schlider, PCT and

Bisognano-Wichmann theorems. The differences are technical: for references see [9].

Finally we have to discuss the results for fields in X±. Those are fields φ± whose test

functions have support in X±. Denoted by L± the unitary representation of R in H±

defined by

L±(τ)Ψ = Ψ , L±(τ)φ±(f)L±(−τ) = φ±(fτ ) , (5.27)

it is clear that L± is the restriction of L on X±. Similarly, because of E3, LE is the

restriction of L on E. To conclude what we need we need one more assumption. Observe

that HE ⊂ H+ since A+
EΨ is dense in HE and by A5 vectors in A+

EΨ can be approximated

arbitrarily closely by vector in A+Ψ. What we actually need is either

C1. HE = H+; This is related to the assumption that the fields on X+ can be determined

by fields in E in such a way A′
E ⊂ A+′

where A′
E and A+′

are the weak commutants.

In fact if PE is the projection from A+ to AE , it has to lie in A′
E and therefore

||(1− PE)AΨ||2 = ((1− PE)AΨ, AΨ) = (A⋆AΨ, (1− PE)Ψ) = 0 , (5.28)

since PE ∈ A′
E ⊂ A+′

.

C2. The restriction of Ψ on A+ corresponds to an equilibrium state of the field on X+ at

some temperature (possibly zero). This is an assumption on the stablity of the state

of the field on X+.

Under all the assumption A and either C1 or C2 it is possible to prove that the restriction

of Ψ to the field on X+ corresponds to a thermal state of temperature T = 1/2π, w.r.t.

the dynamical group L+(R), i.e. there is a conjugation J of H such that

J exp
(
−πK+

)
AΨ = A⋆Ψ . (5.29)
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Observe that from the metric the proper time for a local observer in X+ is given by

τp =
√
A(−ξ2, y)τ , (5.30)

and therefore the local temperature is

T =
1

2π
√
A(−ξ2, y)

. (5.31)

This is exactly the generalization of the Hawking temperature. The proof of the statement

above is given in all the details in [9].

A Conformally equivalent metrics

We prove here that a null geodesic for for a metric is a null geodesic also for any conformally

equivalent metric. The trajectory of a null geodesic is

gµνẊ
µẊν = 0 (A.1)

and this trajectory is the same for ĝµν in fact

ĝµνẊ
µẊν = e2ωgµνẊ

µẊν = 0 . (A.2)

The same is true if we consider a space/time-like curve, since e2ω > 0. However observe that

the geodesic equations in one metric is different from the geodesic equation in the other one

and therefore time/space-like geodesics in one metric are not necessarily time/space-like

geodesics in the other one.

B Schwarzschild solution

Let’s solve the Einstein equations for a particular case: let’s assume that the system is

static, which means that is invariant under spacetime translations and temporal inversion,

and spherically symmetric. A particular solution for the Minkowski case is

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
Let’s use it as a starting point and let us deformed it; a general ansaz satisfying the above

conditions is

ds2 = −e2A(r)dt2 + e2B(r)dr2 + e2C(r)
(
dθ2 + sin2 θdφ2

)
Assuming that ∂rC(r) is not vanishing, introducing the coordinate r̃ = eC(r) and redefining

r̃ = r one can obtain

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
We have only two function to be found: A(r) and B(r). Let’s use the Einstein equation in

vacuum when Tµν = 0. Let’s use the Vielbein formalism 9 and consider

e0 = eA(r)dt e1 = eB(r)dr e2 = rdθ e3 = r sin θdφ

9The same calculation without using the Vielbein formalism is provided in [11].
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We want to find the spin connection. In order to do that we have to impose the null torsion

condition and the condition ∇µηab = 0 (which defines the Levi-Civita connection); these

two conditions can be written as

dea + ωa
b ∧ eb = 0 ωab = −ωba

The first equation is

ω0
b ∧ eb = ω0

1 ∧ e1 + ω0
2 ∧ e2 + ω0

3 ∧ e3 = −de0 = −ȦeAdr ∧ dt

Where we read ω0
2 ∝ e2, ω0

3 ∝ e3 and ω0
1 ∧ e1 = ȦeA−Bdt ∧ e1. Then one can write

ω1
b ∧ eb = ω1

1 ∧ e1 + ω1
2 ∧ e2 + ω1

3 ∧ e3 = −de1 = 0

from which ω1
2 ∝ e2, ω1

3 ∝ e3 and ω1
0 ∝ e0 and so the first solution is ω0

1 = ȦeA−Bdt. From

the equation

ω2
b ∧ eb = ω2

1 ∧ e1 + ω2
2 ∧ e2 + ω2

3 ∧ e3 = −de2 = −dr ∧ dθ

one can conclude that ω2
3 ∝ e3 and so ω0

2 = 0 e ω1
2 = −e−Bdθ. The last equation is

ω3
b ∧ eb = ω3

1 ∧ e1 + ω3
2 ∧ e2 + ω3

3 ∧ e3 = −de3 = − sin θdr ∧ dφ− r cos θdθ ∧ dφ

form which ω0
3 = 0 and so ω1

3 = − sin θe−Bdφ and ω2
3 = − cos θdφ.

Summarizing
ω0

1 = ȦeA−Bdt ω0
2 = 0

ω0
3 = 0 ω1

3 = − sin θe−Bdφ

ω2
3 = − cos θdφ ω1

2 = −e−Bdθ

Recalling that the curvature tensor is

Ra
b = dωa

b + ωa
c ∧ ωc

b

with simple steps one can find

R0
1 = −

(
Ä+ Ȧ2 − ȦḂ

)
e−2Be0 ∧ e1 R0

2 = − Ȧ
r e

−2Be0 ∧ e2

R0
3 = − Ȧ

r e
−2Be0 ∧ e2 R1

2 =
Ḃe−2B

r e1 ∧ e2

R1
3 =

Ḃe−2B

r e1 ∧ e3 R2
3 =

1−e2B

r e2 ∧ e3

From which the Ricci tensor is10

R00 =

(
Ä+ Ȧ2 − ȦḂ +

2Ȧ

r

)
e−2B R11 =

(
−
(
Ä+ Ȧ2 − ȦḂ

)
+

2Ḃ

r

)
e−2B

R22 = R33 =

(
−Ȧ+ Ḃ +

e2B − 1

r

)
e−2B

r

10Observe that R22 = R33, as we expected from the symmetry of the problem.
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The fact that Gab = 0 means that Rab = 0 and so R00 +R11 = 0 which means Ȧ+ Ḃ = 0.

From this one can conclude B = −A+ c but rescaling properly the time and setting c = 0

the result is A = −B. Moreover R22 = 0 means that

e2A = 1 +
c

r

and the equation R00 −R11 is automatically solved.

In order to find the value of c one can recall that for r → ∞ the metric has to be flat. So

using the weak field approximation

h00 = − c
r
= −2Φ = 2

GM

r
⇒ c = −2GM

In conclusion for an spherically symmetric object 11 the metric is

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
This is the Schwarzschild solution.

C Proof of equation (2.10)

In order to prove equation (2.10) simply substistute bi and b†i with their decomposition in

ai and a†
i . In particular

⟨0, in| b†ibi |0, in⟩ =
∑
j

∑
l

⟨0, in| (αila
†
l − βilal)(αijaj − βija

†
j) |0, in⟩ =

=
∑
j

∑
l

⟨0, in|βilβijala
†
j |0, in⟩ =

=
∑
j

∑
l

δjlβilβij =
∑
j

|βij |2 .

(C.1)
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