The H2M Test Chip

From Design to Testing

Sara Ruiz Daza on behalf of the Tangerine Collaboration

SiDet Meeting, DESY 24 October 2023

The Tangerine Project

Towards Next Generation Silicon Detectors

- Research and development of **new silicon sensors** for future lepton and electron-ion colliders, and test beam telescopes.
- Project goal: development of a sensor with high spatial (~ 3 μm) and time resolution (1-10 ns), and a low material budget (~ 50 μm Si).
- Exploiting monolithic sensors based on a novel 65 nm CMOS imaging technology with a small collection electrode.
- Comprising **all the steps of sensor R&D**: electronics design, sensor design based on simulations, prototype testing.

DESY Chip V2

Overview

- ► Design
 - ► Analog front-end
 - Digital front-end
 - ► Monte Carlo Simulations of the sensor

► Testing

- ► DAQ System
- ► First lab measurements
- First test beam measurements
- ► Summary & Outlook

H2M (Hybrid to Monolithic) test chip

CERN

- DESY, CERN & IFAE collaboration
- Goal: Port a known hybrid pixel architecture into a monolithic design + Exercise digital-on-top design.
- Monolithic pixel sensor chip design in a 65 nm CMOS imaging process
 - **Pixel matrix**: 64x16 pixels
 - Pixel pitch: 35 µm
 - Total sensitive area: 2.24 × 0.56 mm²
 - Sensor: n-gap layout (2.5 µm gap size)
- Each pixel:
 - analog front-end: collection electrode, CSA, discriminator.
 - **digital logic:** 8-bit counter, 4 acquisition modes: ToT, ToA, photon counting, triggered binary readout.

Analog front-end

Designed at DESY by Christian Reckleben and his team.

Digital logic

Designed at CERN.

- **Configuration:** 8 bits shifted from bottom to top of the column and latched to the pixels.
- **Readout:** 8 bits are shifted from top to bottom of the column.

Frame-based modes (Timepix4/Medipix4)

Number of clock cycles:

Threshold crossing \rightarrow threshold crossing

After calibration ToT ~ collected charge

Photon counting

- Number of clock cycles:
 Threshold crossing → shutter closed
- Number of threshold crossings

- 8-bit counter
- 100 MHz acquisition clock \Rightarrow 10 ns binning

Triggered acquisition mode

- Counter preset with the trigger latency value.
- Start counting whit the discriminator crossing edge.
- Counting reaches overflow (8 bits = 254 values)
 → carry signal
- External strobe signal provided, synchronised with the clock period (10 ns)
- If carry signal AND strobe are in coincidence, we have a hit.

Depending on the pixel configuration: the pixel stores its own hit or combines data from a group of pixels.

- For the expected threshold operation (150-300 electrons):
 - ► Efficiency > 97%
 - ► Spatial resolution in X: 9.5 9.9 µm
- Observed small differences for the V_{bias} applied (small undeleted region around the collection electrode for low V_{bias})

ER1 Production

The design was submitted to the foundry in December 2022.
 → Engineering Run 1 (ER1) submission.

- First chips from wafers manually diced at CERN received at the end on July 2023.

End of design... ... beginning of testing

Preparation for testing

The Caribou Data Acquisition System

> Zynq-Board:

- User connects via ssh/Ethernet
- Runs Linux system with DAQ and control software
- An FPGA runs custom hardware blocks for data processing

CaR board (Control and Readout Board):

- Physical interface between Zynq-Board ↔ Chipboard
- Contains all peripherals needed to interface and run the chip (eg. adjustable voltage/current references, pulser control...)

Chipboard:

- Application-specific detector carrier board
- Mostly passive components + detector chip

What did we need to prepare to test H2M?

← The <u>chipboard</u>, the <u>FPGA firmware</u> and the <u>DAQ software framework</u>.

DAQ System

- Sensitive part **outside** of the the chipboard.
- \rightarrow Reduce material budget.
- 6 test chips on chipboards
 - \rightarrow 3 of them are being tested without issues.
 - \rightarrow 3 of them show problems related with the circuit start-up. Under investigation

Chipboard

IV measurements and DACs scan

- PWell and Sub biasing at the same values. \rightarrow Similar behaviour for all the assemblies.
- The analog periphery consists of 6 biasing DACs that are used for biasing the front-end to the desired operating point. \rightarrow Expected behaviour for the three working assemblies.

analog_out_ctrl	Monitored DAC	Description
0	-	-
1	IBIAS	CSA and comparator bias current DAC
2	ITRIM	Trim DAC bias current DAC
3	IKRUM	Krummenacher current DAC
4	VTHR	Threshold voltage DAC
5	VREF	Reference voltage DAC
6	VTPULSE	Test pulse voltage DAC

Trimming

- Based on noise measurements.
- Scan of the global threshold for the 16 possible **threshold trimming DACs**.
- The <u>mean</u> of the distributions represents the most common turn-on threshold for the pixels in that conditions.
- The <u>width</u> represents the threshold dispersion between pixels (very broad for the 16 distributions).
- A target baseline of 65 is selected.
- For each pixel, the trimming DAC is adjusted to that one that makes the most common turn-on threshold closest (and higher) to the target baseline.

Currently being improved by Judith

Sr90 source measurements

- Signal distinguished from noise.
- Charge sharing observed (even with a small epitaxial layer).

We are ready for test beam measurements!

Test beam measurements

Test beam campaigns

- H6 beam line, 120 GeV/c charged pions.
- Timepix3 reference telescope.
 - Pointing resolution ~ 1.8 μm
 - Track time resolution ~ 1 ns

- Beamline 22, electron beam ~4.8 GeV.
- Alpide reference telescope.
 - Pointing resolution ~ 3 μ m

Test beam measurements @ SPS

• **Trigger Logit Unit (TLU):** provides global clock (40 MHz) and T0 for the telescope and DUT.

• H2M:

- ToT mode
- Gated with SPS spill signal
- Shutter window of 150 µs
- Readout time ~ 500 µs
- Timepix3:
 - In data-driven mode
 - Selecting region of interest (ROI)

Turning on the beam...

Turning on the beam... hitmap & correlations!

- Analysis with the Corryvreckan Framework.
- **Correlations** with the reference Timepix3 plane (rotated 180° along the row axis).
- Homogenous hitmap: few noisy pixels and one unresponsive.

Chip is working!

ToT distribution

ToT distribution

• We also recorded data for different thresholds and bias voltages \rightarrow analysis is ongoing.

Test Beam Measurement @ DESY

- **Trigger Logit Unit (TLU):** provides global clock (40 MHz) and T0 to all devices.
- Trigger signal:
 - Coincidence of Telepix AND scintillator
 - ROI defined on Telepix
- H2M:
 - ToA mode
 - Shutter opened after previous readout
 - Shutter closed with trigger signal
 - Readout time ~ 500 µs

Alignment of the DUT

- Relative alignment to triggers using material budget imaging.
 - \rightarrow Large kink angles corresponds to regions with high material budget.

Alignment of the DUT

• Identification of elements in the chipboard.

Ready to take data!

DESY. | The H2M test chip | Sara Ruiz Daza, 24-10-2023

Chipboard

front side

Chipboard

back side

ToA and cluster size distribution

ToA distribution

Dominated by 25 ns trigger binning → can be fixed in the analysis with scintillator timestamp.

- Dominated by cluster size 1.
- Larger cluster size in the edges and corners due to charge sharing.

ToA mode works!

٠

In-pixel efficiency map

- Observed an in-pixel efficiency map pattern
 - \rightarrow Seems related to where the analog and digital front-ends are placed. Work in progress
- Same effect is observed for different bias voltages and hit detection thresholds. Also at the SPS test beam.

Summary & Outlook

Summary

- Full hybrid design ported to monolithic pixel sensor chip design a 65 nm CMOS imaging process.
- Successful first lab measurements.
- First test beam campaigns at SPS and DESY.
 - ✓ **Slow control** (read/write registers).
 - ✓ **ToT and ToA** modes tested.
 - ✓ **Integration** with the reference places and trigger signal.
 - ✓ **Digital and analog circuities** working as expected.

Outlook

- Understanding of the efficiency patterns.
- Continuing test beam analysis.
- Four more weeks of test beam in 2023.
- **Optimisation** of the parameters + calibration.
- Testing the **triggered** and **photon counting modes**.

Thank you!

Contact

Deutsches Elektronen-Sara Ruiz DazaSynchrotron DESY

sara.ruiz.daza@desy.de

www.desy.de