CMS early Run 3 measurement of the $t\bar{t}$ cross-section (@DESY!)

FH Particle Physics Discussion 13.11.2023

Evan Altair Ranken for the DESY CMS group

Flashback: LHC Run 3 begins

5 July 2022:

The LHC raises the bar again, pushing to $\sqrt{s} = 13.6 \text{ TeV}$

• Late July:

- Ramp-up complete, ~1200 bunches circulating
- Physics-ready!
- Early September:
 - First preliminary Run 3 result from CMS with heavy DESY involvement

Now superseded by a publication in JHEP

arXiv:2303.10680

- Questions to address in this talk:
 - How did CMS and its DESY members achieve this timescale?
 - Are this and other "early measurements" worthwhile?
 - What did we do differently with this measurement?
 - What are the lessons from this measurement?

We will walk through the timeline:

- Start of Run 3
- Steps to a preliminary measurement!
- Updates to the publication
- Lessons

CMS upgrades for Run 3

- Many upgrades done during the long shutdown
- Preparing already for HL-LHC (Run 4)

Large group @ DESY! See <u>FH seminar by Andreas</u>

13.11.2023

LHC @ 13.6 TeV

- To date, CMS has recorded over 60 fb⁻¹ in Run 3
- Successful data-taking at our highest pileup values yet

LHC @ 13.6 TeV

- To date, CMS has recorded over 60 fb⁻¹ in Run 3
- Successful data-taking at our highest pileup values yet

This measurement targeted only 1fb⁻¹ of integrated luminosity From the first weeks of data-taking

At the start of Run 3, we are eager to analyze new data:

- First look at new energy frontier, want to test our models by measuring quantities sensitive to the LHC energy increase
- Vital to verify physics-readiness after years of upgrade work & commissioning at CMS

Why top quark pairs?

dilepton tt production e*. u* Involves a wide variety \diamond of particles lepton + jets W+ ! Uses information from all 📃 jet \diamond main detector components h e^+ Great for early analysis + \diamond validation of new data b W⁺ W jet 🗐 iet VIS Experiment at the LHC_CERN b Data recorded: 2022-Jul-27 18:33:11.804352 GMT Pun / Event / LS: 356309 / 137565256 / 15 e⁻, μ⁻ b W⁻ jet d,s ū.c tt event candidate, $\mu\mu$ channel

Why the tt cross section?

• As of 2022, the top quark pair production cross section ($\sigma_{t\bar{t}}$) had been measured at 5 energies, of which 4 measured at LHC experiments

• $p\overline{p} \rightarrow t\overline{t}$ measured first by CDF & D0 at the **Tevatron**

@ √s = 1.96 TeV

•
$$pp \rightarrow t\bar{t}$$

measured at the LHC by:

CMS and ATLAS $\sqrt{s} = 5.02, 7, 8, 13 \text{ TeV}$

+LHCb in the forward region √s = 7, 8, 13 TeV

Why the tt cross section?

 As of 2022, the top quark pair production cross section, σ_{tt}, had been measured at 5 energies, of which 4 measured at LHC experiments

- Cross section measurements boil down to counting events. However, there are many limiting factors
 - Luminosity
 - Lepton identification
 - Jet energy response
 - b-flavor jet tagging

Luminosity

Early luminosity estimates come from emittance scans at start/end of LHC fills

- BCM1F upgraded for Run 3: more channels, silicon diodes
 (joint project @ DESY + CERN)
- CMS has multiple luminometers, which showed good agreement

Hard to obtain absolute calibration

 LHC must run in a special configuration once per year: Van der Meers scans

(October 2022 + analysis time)

 Emittance scans are short scans much more vulnerable to systematic uncertainty

Luminosity / Z-counting

• **Drell-Yan** events involving a **Z boson** are particularly useful for early calibration

- Counting $Z \rightarrow \mu\mu$ events as an independent cross-check on luminosity:
 - \rightarrow combine with emittance scan results
 - → obtain best possible lumi estimate before VdM scans

CMS measurement strategy

DESY.

Channel combination: eµ, ee, µµ, e+jets, µ+jets

~1 fb⁻¹ of data

 \rightarrow use information from multiple channels to constrain nuisance parameters *in situ*

- Lepton selection: uniform between e/μ and across channels
 - ♦ p_{τ} > 35 GeV for all leptons → constraint of lepton ID efficiency performance

CMS measurement strategy

DESY.

Channel combination: eµ, ee, µµ, e+jets, µ+jets

~1 fb⁻¹ of data

 \rightarrow use information from multiple channels to constrain nuisance parameters *in-situ*

- Lepton selection: uniform between e/μ and across channels
- ID efficiencies depend on lepton kinematics, but these variables are not needed for a simple cross section measurement IF you don't bin into categories with different kinematics

 \rightarrow selection efficiencies $\varepsilon_{_{\mu}}$ and $\varepsilon_{_{e}}$ factorize!

ee yield ~ ϵ_e^2 e+jets yield ~ ϵ_e eµ yield ~ $\epsilon_e \epsilon_\mu$ µ+jets yield ~ ϵ_μ µµ yield ~ ϵ_μ^2

Efficiency correction = scale factor (SF) Different effect on different channels:

- \rightarrow distinguish ID SF from $\sigma_{_{tt}}$
- \rightarrow float+constrain ID SF in situ

Object selection + corrections

Lepton selection:

- p_T > 35 GeV
- cut-based IDs (70% signal efficiency) ported from Run-2

Jet selection: AK4 jets

- p_T > 30 GeV
- b tagging: Deepjet algorithm

Designed for early analysis:

b tagging efficiency

 Bin content follows binomial distribution in b-tagging efficiency ε_b

$$\epsilon_b^{N_{\mathrm{b-tag}}} \left(1-\epsilon_b
ight)^{N_{\mathrm{b-jet}}-N_{\mathrm{b-tag}}}$$

Floating efficiency parameter in the fit

Jet energy calibration (JEC)

- Take time to derive on new data
- Define hadronic W in lepton+jets channel with 2 highest p_T non-b-tagged jets

 \rightarrow derive coarse JEC, sensitive to large discrepancies in data/MC

 \rightarrow include additional uncertainty

Jet control plots

Jet energy calibration (JEC)

- Only preliminary calibrations were available
- Compared these with Run 2 JEC to define additional uncertainty
- Still, overall jet behavior looked good

μ+iets

300 350 400

13.11.2023

Fit outcome (preliminary result)

- Bins:
 - Lepton flavor
 b jet multiplicity
 Jet multiplicity
- **b-tag efficiency** scale factors determined by fit
- 6 % Luminosity unc. externalized, not drawn

$$\sigma_{t\bar{t}}^{\text{theory}} = 924^{+32}_{-40}(\text{scale} + \text{PDF} + \alpha_{\text{S}}) \text{ pb}$$

Result: <u>CMS-PAS-TOP-22-012</u>

 $\sigma_{t\bar{t}} = 887 \,{}^{+43}_{-41} \,(\text{stat} + \text{syst}) \pm 53 \,(\text{lumi}) \,\text{pb}$

^{~ 0.5%} statistical uncertainty

Lessons from the preliminary result

DESY.

- Many useful techniques, some unusual and some brand new, were used in the search for an early result
 - In situ estimation of...
 - lepton ID SF
 - b-tag SF with binning in N_{jet}
 - New/novel methods
 - Z-boson counting for luminosity
 - \rightarrow now a preprint using 2017 data!
 - Jet energy calibration (coarse cross-check only)

Lessons from the preliminary result

- Many useful techniques, some unusual and some brand new, were used in the search for an early result
 - ♦ In situ estimation of...
 - lepton ID SF
 - b-tag SF with binning in N_{jet}

- New/novel methods
 - Z-boson counting for luminosity
 - \rightarrow now a preprint using 2017 data!
 - Jet energy calibration (coarse cross-check only)

Note: these were influenced by the drive to obtain the result quickly, **but** were not dependent on its completion!

Updates for publication

- Wanted to push the precision as far as possible while keeping the basic measurement strategy
 - Luminosity
 - VdM scans delayed, ready in early 2023
 - 6% luminosity uncertainty \rightarrow 2.3%
 - Lepton ID scale factors
 - Use tag-and-probe method in Z-enriched sideband
 - Analysis-specific ID efficiencies using same dataset
 - 2% uncertainty $\rightarrow \sim 1\%$ (per lepton flavor)
 - Cross check
 - Event counting method in eµ channel, no b-tagging needed

Updates: jet energy

1.21 fb⁻¹ (13.6 TeV)

Z + jets tī Diboson /// Uncertainty

Single t 🕴 Data

×10³ CMS

1.2 eµ channel

> 1.0

1.21 fb⁻¹ (13.6 TeV)

- New jet calibrations for 2022 data,
- reconstruction algorithm including subtraction of neutral hadrons (PUPPI)

×10⁴ CMS

Fit outcome (published result)

13.11.2023

Uncertainties

+Ŧ	cross sostion				
<u>LL Cross section</u>		Source	Uncertainty (%)	= Resulting uncertainty in σ_{i}	tī
		Lepton ID efficiencies	1.6	1	
		Trigger efficiency	0.3		
	2 clear leading	JES	0.6	Fit constraint (obs.	.) — +1o impact (obs.) — -1o impact (obs.)
	2 clear leading	b tagging efficiency	1.1	CMS Fit constraint (exp.) +1σ impact (exp.) -1σ impact (exp.)
	uncertainties:	Pileup reweighting	0.5	Supplementary	$\hat{r} = 0.959 \pm 0.025$
	lepton, b-tag eff.	ME scale, t ī	0.5	Supplementary	I = 0.939 ± 0.023
		ME scale, backgrounds	0.2	Electron ID SF	
		ME/PS matching	0.1	b tag SF 0.	980 ± 0.009
		PS scales	0.3	tW cross section	
		PDF and α_{s}	0.3	Top pT correction	
	Many "3 rd place"	Top quark $p_{\rm T}$	0.5	Diboson cross section	
	ividity 5 place	tW background	0.7	Pileup	
	uncertainties	<i>t</i> -channel single-t background	l 0.4	BG model stat. (u+iets) 2 b 3 i	
		Z+iets background	0.3	Muon reconstruction SF	
		W+iets background	< 0.1	JES: FlavorQCD	
		Diboson background	0.6	t-channel single top cross section	
Not statistics limited		OCD multijet background	03	b mistag SF	
		Statistical uncertainty	0.5	BG model stat. (µ+jets) 1 b 3 j	
Lumi comparable to		Combined uncertainty	2.5	Muon trigger efficiency (data)	
		Integrated luminosity	2.3	BG model stat. (μ+jets) 1 b 4 j	
		integrated fulfillosity	2.3	BG model stat. (μ+jets) 1 b 5 j	- -
IIK	einood stat+syst unc.	Total unc (with lumi)	3 /	Z+jets cross section	
			J.4	PDF α_s	
				-2 -1	0 1 2 -0.01 0 0.01 (Â-Α)/ΔΑ Δε

Results

 The top quark pair production cross section was measured at a 5th energy by CMS

First physics publication of Run 3!

- The DESY CMS group was heavily involved in every stage of the analysis
- **"Early analysis"** requires a different sort of problem solving, has risks and rewards

... but the journey is also important!

$$\sigma_{t\bar{t}} = 881 \pm 23(\text{stat.} + \text{syst.}) \pm 20(\text{lumi.}) \text{ pb}$$
$$\sigma_{t\bar{t}}^{\text{theory}} = 924^{+32}_{-40}(\text{scale} + \text{PDF} + \alpha_{\text{S}}) \text{ pb}$$

Are "early measurements" worth it?

• From an **outside** perspective, they give a first look at the data

 \rightarrow need an enticing physics target!

- From the perspective of someone inside a large collaboration like CMS, early analysis can be like driving off-road
 - Need to think outside of the box
 - Incentive to find new, creative ways to solve problems
 - More motivation to develop measurementspecific techniques
- \rightarrow These things benefit **everyone**!

Thank you!

Backup

Full sqrt(s) plot

*ATLAS result not yet updated

Final lepton pT distributions

13.11.2023

Analysis setup

- **Data-driven estimation:**
 - Z+jets events \Diamond in ee, $\mu\mu$ channels
 - **QCD** multijet events \diamond in I+jets channels

- ×10² CMS 1.21 fb⁻¹ (13.6 TeV) 8 ee/uu channels tī Diboson Single t /// Uncertainty Events / 20 GeV N b 0 Z + iets Data Data / pred. 0.1 2.0 1.0 300 400 100 200 m_{ll} (GeV) Z-mass peak sideband studied 2.5 eu channel 2.0
- Cut and count cross-check in eµ channel
 - Separate measurement performed via event counting in highest-purity channel
 - No b-tagging selection, only ≥ 2 Jets \diamond \rightarrow check on consistency of result

13.11.2023

Run 3 tt cross section at CMS-DESY | Evan Ranken

Events 1.0

0.5

- 1.5 8

Data