LUXE SAS Meeting, 16th October 2023

# Laser polarisation effects on positron

Yee Chinn Yap (DESY)

#### Introduction

- High-power laser systems are normally linearly polarised, and the peak electric field at focus is reduced by a factor of √2 if converted to circular polarisation.
- Circular polarisation assumed in earlier studies as predictions are easier to produce.
- \* Linear polarised samples available in ptarmigan v0.11.
- Goal: quantify what we can expect at the tracker going from circular to linear polarisation.
- \* Comparing samples from ptarmigan v0.8.1 (CP) to v0.11 (LP, LMA).
  - \* Linear laser polarisation along x.

## Comparison

- \* E-laser phase-0 highest ξ chosen, averaged over 10 BX.
- dt\_multiplier affects how close weights of positrons are to 1 (the smaller the better, but more CPU intensive).

| Ptarmigan versions                | v0.8.1   | v0.11       |        |
|-----------------------------------|----------|-------------|--------|
| Nominal ξ                         | 7        | 7           | 10     |
| Polarisation                      | Circular | Linear      |        |
| dt_multiplier                     | 0.5      | 0.2         |        |
| Waist                             | 3.38µm   | √2 x 3.38µm | 3.34µm |
| Average ξ <sub>rms</sub>          | 3.25     | 2.46        | 3.22   |
| # positrons (raw)                 | 40601    | 27025       | 108325 |
| <pre># positrons (weighted)</pre> | 67043    | 27374       | 140982 |

#### Positron rate

For a given laser waist (and \* RMS  $\xi$ ), the positron rate is larger for linear polarisation than for circular polarisation.

 $m\omega$ 



#### photon $\xi$ at creation (RMS)

- Summed over 10 BX.
- \* For LP,  $\xi_{nom} = 10$ ,  $\xi_{rms} = 10/sqrt(2) = 7.07$ .



#### Momentum in y

\* Double peak structure in CP not seen in LP. Much narrower distribution.



#### Momentum in x

\* CP is symmetric, while LP has much broader distribution in x than in y.



## $\xi$ dependence

- Now look at dependence on ξ. Use samples with weight biasing for statistics. Only 1 BX per ξ, plots normalised to unity.
- \* Positron energy tends to be lower and broader as  $\xi$  increases.



# $p_y \, dependence \, on \, \xi$

- \* Broadens with ξ.
- \* Note the different x-axis scale.



## $p_x \, dependence \, on \, \xi$

 More pronounced broadening in x than in y for linear polarisation (polarisation along x).



### Check: resolved polarisation

- Photon polarisation not resolved. See T. Blackburn's talk at e.g. collaboration meeting.
  - B-polarised (polarised perpendicular to laser E field) photons more likely to create e+e- pairs, but radiated photons are mostly Epolarised.
  - ✤ ~15-20% correction to the rate for LP, mostly unchanged for CP.
- To verify, run with latest ptarmigan version (1.3.3) and ask specifically for photon polarisation to be resolved.

| * | No obvious change in dispersion. | Phase-0 | # positrons (weighted) from TBX |                 |
|---|----------------------------------|---------|---------------------------------|-----------------|
|   |                                  |         | Not resolved                    | Resolved        |
|   |                                  | ξ=7 CP  | 68692 (v0.8.1)                  | 69204 (v1.3.3)  |
|   |                                  | ξ=10 LP | 141600 (v0.11)                  | 129289 (v1.3.3) |
|   |                                  | -       |                                 |                 |

# Tracking

- \* What does this mean for tracking?
- Is this ξ dependence measurable in the tracker?
- What kind of tracking performance can we expect for linear polarisation?
  - For linear polarisation, the higher ξ reach in phase-0 results in double the number of positrons than studied so far tracking.
  - However, the lack of dispersion in y means we can expect significantly higher than double the peak occupancy!

# Track $\phi$ (CP)



- \*  $\phi$  is a measure of p<sub>y</sub>.  $\phi$  measured from track fitting is quite smeared.
- \* However, width still shows a dependence on  $\xi$ .
  - Gaussian width = 0.065±0.002 (ξ=7), 0.046±0.004 (ξ=5),
    0.038±0.006 (ξ=4). Statistical uncertainty only.





- \* For best estimate of occupancies, need:
  - Positron weight=1
  - Run full digitisation to get detector response, since a particle usually results in ≥2 pixel hits.
- \* This is not available, so I get an estimate using extrapolation.
- Compare highest ξ reach in phase-0 for circular (ξ<sub>nom</sub>=7) vs linear (ξ<sub>nom</sub>=10) polarisation.
- Run tracker simulation using DDsim. Divide detector into roughly 10x10 pixels and count the number of particles to get occupancy map.
- Note: slightly different samples shown than before, use only 1 BX.

Occupancy (CP)

- ptarmigan v0.8.1 (CP, ξ<sub>nom</sub>=7) custom weight=1 sample. # positrons (raw)= 67442.
- Assuming ≥2 pixel hits per particle (2.6 pixels to be exact, from the average found in digitised samples): peak occupancy ~45%.



Occupancy (LP)

- ptarmigan v0.11 (LP, ξ<sub>nom</sub>=10) average weight=1.3 sample. # positrons (raw)=108759.
- Hits concentrated at middle of detector. Assuming ≥2 pixel hits per particle and fixed weight -> peak occupancy 100%.





- Polarisation has a strong effect on the particle yields as well as their properties.
- \* The dispersion carries information about  $\xi$ .
- With linear polarisation (along x), tracking is impossible for part of the detector at highest ξ already in phase-0.
- What if the polarisation is along y direction?



E

I compare both with  $\xi_{nom}=7$  here, but one should normally compare same max  $\xi$ .

3

2

Left: ptarmigan v0.8.1 (CP,  $\xi_{nom}=7$ ). Right: ptarmigan v0.11 (LP,  $\xi_{nom}=7$ ). \*

\*

2

3

4

5

6

Summed over 10 BX Max  $\xi = \xi_{\text{nom}}(7)$ Max  $\xi = \xi_{nom} / \sqrt{2} = 4.95$ < < >= 3.25  $<\xi>=2.46$ 2.5<mark>1e8</mark> 2.5 1e8 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0

### Momentum in y

- Left: ptarmigan v0.8.1 (CP, ξ<sub>nom</sub>=7). Right: ptarmigan v0.11 (LP, ξ<sub>nom</sub>=7)
- \* Note the scale in x-axis, momentum spread is 10x larger on the left.



#### Momentum in x

- \* Left: ptarmigan v0.8.1 (CP,  $\xi_{nom}=7$ ). Right: ptarmigan v0.11 (LP,  $\xi_{nom}=7$ ).
- The spread in x is of the same scale but shows the same single vs double peak structure.

