

A New Era of Electron-Ion Collider Physics The ePIC detector

Friederike Bock (ORNL) October 20, 2023

ENERGY

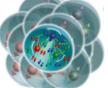
LOW X

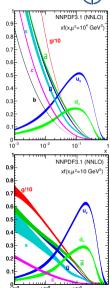
Back to the basics!

Where we are:

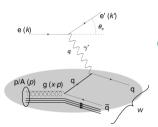
- Elastic leptron scattering determined the nucleon's charge & magnetism distributions in sphere with $\langle r_{ch} \rangle \approx 0.84$ fm
- Large fraction of momentum in proton (x) carried by 3 valence quarks (2u,d), but very small fraction of proton spin
- Nucleons contain additional dynamically generated quark-antiquark pairs & gluons each carrying low fraction of momentum
- Quark & gluon longitudinal momentum fractions well mapped out

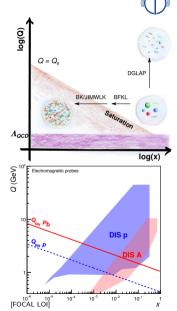
 Nucleon spin & mass have large contributions from quark-gluon dynamics, described by QCD


Proton early 1900s


Proton 1975

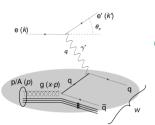
Proton 2015

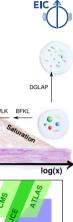

Proton in a nucleus

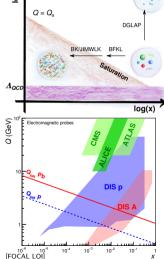

How did we learn this?

Deep Inelastic Scattering (DIS)

$$Q^2 = s \cdot x \cdot y$$

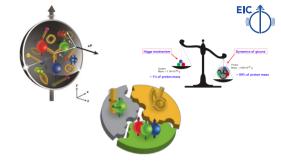

- s center-of-mass energy squared
- Q^2 resolution power
 - x the fraction of the nucleon's momentum carried by the struck quarks (0 < x < 1)
 - y inelasticity
- As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- Event-by-event, model independent leading order determination of parton kinematics including sensitivity to particle's spin is possible
- Data at higher Q² obtained indirectly from hadron-collider measurements


How did we learn this?


Deep Inelastic Scattering (DIS)

$$Q^2 = s \cdot x \cdot y$$

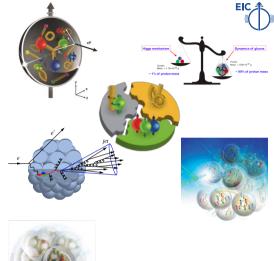
- s center-of-mass energy squared
- Q^2 resolution power
 - x the fraction of the nucleon's momentum carried by the struck quarks (0 < x < 1)
 - *y* inelasticity
- As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- Event-by-event, model independent leading order determination of parton kinematics including sensitivity to particle's spin is possible
- Data at higher Q^2 obtained indirectly from hadron-collider measurements



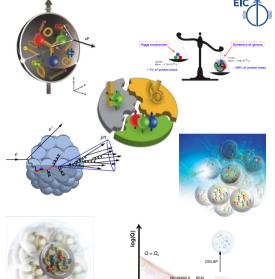
- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate

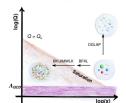
- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?

- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?



- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?


- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?



- The 3D distributions of sea quarks & gluons and their spins in nucleon
- How do the nucleon mass & spin emerge from them and their interactions?
- The details of interactions of color-charged quarks and gluons with a nuclear medium
- How are nuclear bindings and hadronic states created from quark, gluons and their interactions?
- How does a dense nuclear environment affect. the quarks and gluons and their interactions?
- The gluon density in nuclei
- Is there a Color Glass Condensate?

EIC vs HERA

[EIC CDR]

Machine parameters

• Center-of-mass energy: 20 - 140 (318) GeV

► electrons: 2.5 - 18 (27.5) GeV

▶ protons: 40- 275 (920) GeV (ions: $Z/A \times E_p$)

• **Luminosity**: 10^{34} (10^{31}) cm⁻² s⁻¹

• **Polarization**: up to 70% (e & ion) (only e^{\pm} up to 60%)

• Ion species: $p \to U$ (A > 1 only in fixed target)

Detectors

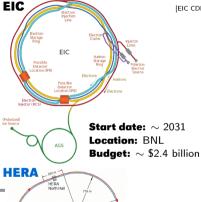
► full coverage: 1-2 (2)

► fixed target: 0 (2 - limited far-forward coverage)

EIC will have:

lower energy

variable C-o-M energy w/o significant


loss in luminosity

higher luminosity


+ Hadron polarization

+ Nuclear beams

+ Modern detector(s)

Location: BNI

[HERA proposal] 4/32

EIC vs HERA

Machine parameters

• Center-of-mass energy: 20 - 140 (318) GeV

► electrons: 2.5 - 18 (27.5) GeV

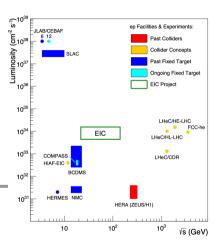
▶ protons: 40- 275 (920) GeV (ions: $Z/A \times E_n$)

• Luminosity: 10^{34} (10^{31}) cm⁻² s⁻¹

• **Polarization**: up to 70% (e & ion) (only e^{\pm} up to 60%)

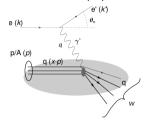
• Ion species: $p \to U$ (A > 1 only in fixed target)

Detectors:

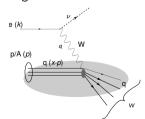

► full coverage: 1-2 (2)

► fixed target: 0 (2 - limited far-forward coverage)

EIC will have:


- lower energy
- variable C-o-M energy w/o significant
 - loss in luminosity
- higher luminosity

- + Hadron polarization
- + Nuclear beams
- + Modern detector(s)

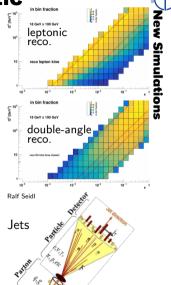


Neutral current (SI)DIS

Charged current DIS

How to access partons at EIC

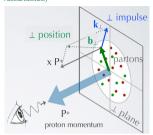
Neutral current (SI)DIS

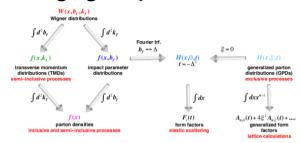

- Detect scattered lepton (DIS) in coincidence with identified hadrons (SIDIS)
 - ► measure correlation between different hadrons as fct. of p_T, z, η
 - needs FF to correlate hadron type with parton

Charged current DIS - W-exchange

 direct access to the quark flavor no FF – complementary to SIDIS

Jets


- best observable to access parton kinematics
- tag partons through the sub-processes and jet substructure
 - ▶ di-jets: relative p_T → correlated to k_T
 - ► tag on PDF


2+1 dimensional Imaging of Quarks & Gluons

Nuclear Femtography

- Structure mapped in terms of: $b_{\scriptscriptstyle T} =$ transverse position $k_{\rm T} = {\rm transverse \ momentum}$
- use different processes to access different aspects of distribution functions

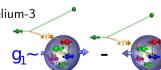
- PDFs: (SI)DIS cross sections
- **GPDs**: Deep Exclusive Scattering (DES) cross sections like: deeply virtual Compton scattering (DVCS) $\gamma^* + p \rightarrow \gamma + p$ or production of a vector meson $\gamma^{\star} + p \rightarrow V + p$ Spin-dependent 2+1D coordinate space images
- TMDs: SIDIS cross sections Spin-dependent 3D momentum space images

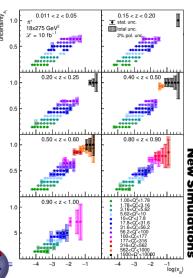
[EIC YR]

6/32

ePIC detector F. Bock (ORNL) October 20, 2023

Nucleon Spin




$$\frac{1}{2}\hbar = \left\langle P, \frac{1}{2} | J_{QCD}^z | P, \frac{1}{2} \right\rangle = \frac{1}{2} \int_0^1 dx \Delta \Sigma(x, Q^z) + \int_0^1 dx \Delta G(x, Q^z) + \int_0^1 dx (\sum_q L_q^z + L_g^z)$$

- ullet quark contribution: integral of g_1 over x from 0 to 1
- gluon contribution: $dg_1(x,Q^2)/dlnQ^2 o \Delta g(x,Q^2)$
- Measured through DIS cross section asymmetry in oppositely polarized collisions
- Improved constraints on the spin of quarks/gluons
 ⇒ Constrain contribution of orbital angular momentum
 (OAM) of partons to proton spin

Collisions with polarized deuterons/helium-3

⇒ Access to neutron spin

Charlotte v. Hulse

 $Q = Q_0$

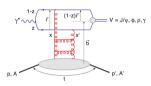
log(Q)

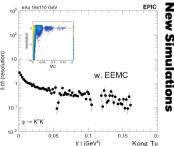
 Λ_{QCD}

Imaging Nuclei

DGI AP

Diffractive vector meson production


• predicts Q^2 but not A-dependence and x-dependence


Saturation models

predict A-dependence and x-dependence but not Q^2

Need: large Q^2 lever-arm for fixed x, A-scan

- Measure different structure function in $eA \rightarrow constrain nPDF$
- Does the nucleus behave like a proton at low-x?
- Diffractive J/ψ production for imaging nucleus
- Diffractive ϕ/ρ production as saturation probe

October 20, 2023

log(x) οΔυ 18v110 GeV -10 GeV2 0 01 < v < 0 85

F. Bock (ORNI)

BK/JIMWI K

log(Q) $Q = Q_c$ DGI AP BK/JIMWI K Λ_{QCD} log(x) οΔυ 18v110 GeV <O²<10 GeV² 0.01 < v < 0.85

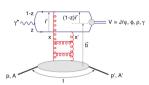
F. Bock (ORNI)

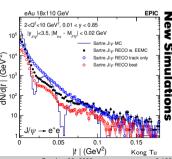
Imaging Nuclei

DGLAP

• predicts Q^2 but not A-dependence and x-dependence

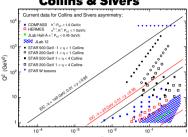
Saturation models

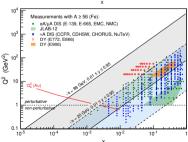

predict A-dependence and x-dependence but not Q^2

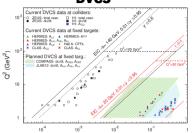

Need: large Q^2 lever-arm for fixed x. A-scan

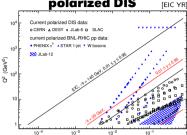
- Measure different structure function in $eA \rightarrow constrain nPDF$
- Does the nucleus behave like a proton at low-x?
- Diffractive J/ψ production for imaging nucleus
- Diffractive ϕ/ρ production as saturation probe

Diffractive vector meson production

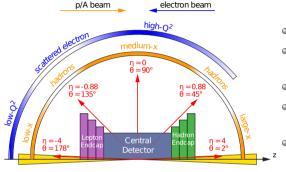



Kinematic Coverage

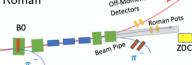

9/32



DVCS

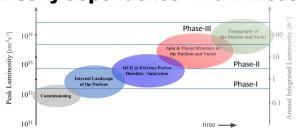

Accelerator gives access to extensive kinematic range

⇒ Now we need a detector to match



Generalized detector design considerations

- Large rapidity coverage for central detector
- Specialized far-forward detectors for p kinematics measurements
- High precision low mass tracking
- Hermetic coverage of tracking, electromagnetic
 & hadronic calorimetry
- High performance single track PID for π , K, p separation
- Large acceptance for diffraction, tagging, neutrons from nuclear breakup many auxillary detectors integrated in beam line: low- Q^2 tagger, Roman pots. ZDCs . . .
- High control of systematics
 luminosity monitors, electron & hadron polarimetry


Highly integrated design between detector and machine for IR

[EIC YR]

Luminosity dependence - Main measurements

design luminosity:

$$\mathbf{L} = \mathbf{10^{34}} \ \mathrm{cm^{-2}} \ \mathrm{s^{-1}}$$
 $\int \mathbf{Ldt} = 100 \ \mathrm{fb^{-1}} \ \mathrm{per} \ \mathrm{year}$

\int Ldt **1 fb** $^{-1}$

10 ${ m fb}^{-1}$

in

10-100 ${ m fb}^{-1}$ Exclusive processes

- measure scattered electron
- → precision EM-Calorimetry
- multi-dimensional binning: x, Q^2
- → maximize x, Q² coverage & determines interaction region design

- measure scattered electron in coincidence with identified hadrons
- multi-dimensional binning: x, Q^2 , z, θ , p_T
- ightarrow maximize PID detector coverage in whole phase space

- measure all particles in event
- → hermetic tracking + hadronic calorimetry
- multi-dimensional binning: x, Q^2 , z, θ , p_T
- measure proton kinematics
- → strong constraints on far-forward detector & interaction region

2012

The detector design process

Define physics objectives & generic design parameters

Realistic machine & detector concepts

- Detector & machine design driven by physics objectives
- Jan. 2020: BNL site selection
- Extensive generic detector R&D for EIC for PID, tracking & calorimetry
- YR outlines general detector requirements for benchmark physics observables
- Mar. 2021: Call for Detector Proposals
- Mar. 2022: ECCE chosen as reference design for detector 1

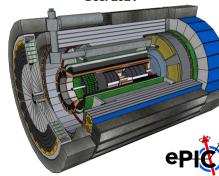
The detector design process

Define physics objectives & generic design parameters

2020

Realistic machine & detector concepts

12 / 32

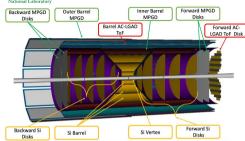

Feb. 2021

Dec. 2021

- Detector & machine design driven by physics objectives
 Jan. 2020: BNL site selection

2015

- Extensive generic detector R&D for EIC for PID, tracking & calorimetry
- YR outlines general detector requirements for benchmark physics observables
- Mar. 2021: Call for Detector Proposals
- Mar. 2022: ECCE chosen as reference design for detector 1
- Jul. 2022: ePIC collaboration
- now: TDR preparations

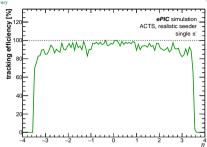


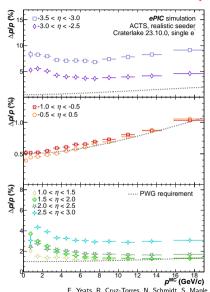
Tracker layout

13 / 32

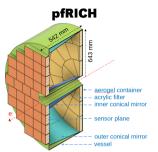
- Ultra thin MAPS based Si-detectors, gaseous detectors & AC-LGADs
- Outer layers placed to provide seeds for tracking & ideal track points before/after PID detectors
- New Magnet with BABAR dimensions
 B = 1.7-2T

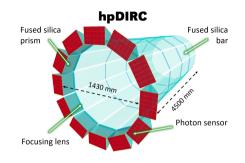
Technology mix

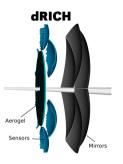

- ITS3 MAPS based Si-detectors: $\sigma = 10 \mu \text{m}, X/X_0 \sim 0.05 0.55\%/\text{layer}$
- Gaseous tracker: $\sigma = 55 \ \mu\text{m}, \ X/X_0 \sim 0.2\%/\text{layer}$
- **AC-LGADs**: $\sigma = 30 \ \mu \text{m}, \ X/X_0 \sim 1.5 6\%/\text{layer}$



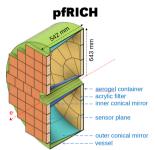
Tracking performance

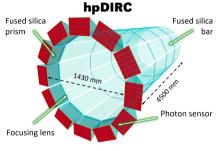

- Stringent requirements from Yellow Report for electron resolution
- Backward momentum resolution requirement hard to meet, complemented by calorimetric resolution
- YR requirement assumes Calorimetry & Tracking need to fullfill requirements independently
- Rapidly evolving tracker design, including background and pattern recognition



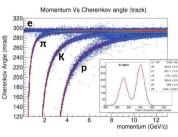


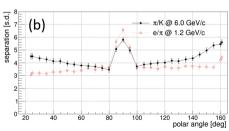
Cherenkov-PID

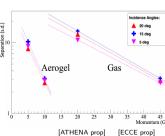


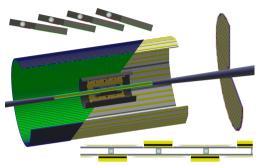

- Optimized for charged pion, kaon & proton separation
- Particular focus on large η coverage
- Complemented by calorimetry & TOF
- ⇒ Global optimization process ongoing

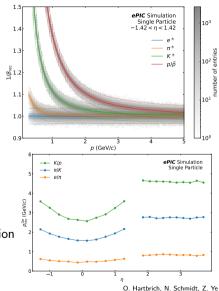



Cherenkov-PID



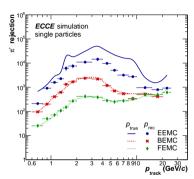


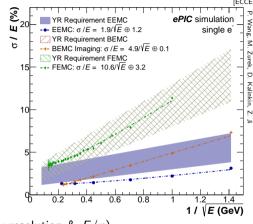




Time of flight (TOF)

- Analog Coupled Low Gain Avalanche Detectors (AC-LGADs) with 25 ps time resolution resolution
- Combined PID & tracking detector
- Positions optimized for low momentum e/π , π/K , K/p separation
- \bullet Full η -coverage for simultaneous start time determination
- Alternative barrel design with less X/X_0

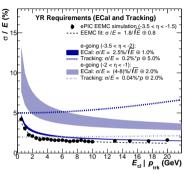


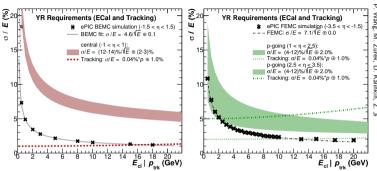


Electromagnetic Calorimetry (1)

17/32

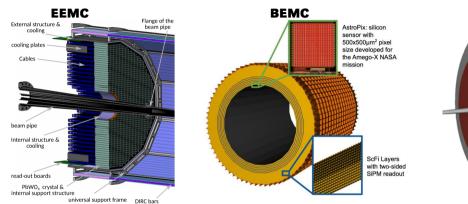
Optimization criteria

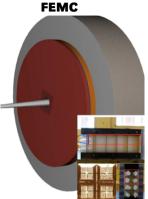

- Minimal acceptance gaps
- Scattered electron detection & identification (energy resolution & E/p)
- Shower separation within jets & good energy resolution (h-endcap)
- Most stringent constraints in e-endcap & barrel
- h-endcap with high granularity & good energy resolution



Electromagnetic Calorimetry (1)

17 / 32


Optimization criteria

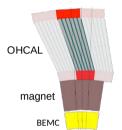

- Minimal acceptance gaps
- Scattered electron detection & identification (energy resolution & E/p)
- Shower separation within jets & good energy resolution (h-endcap)
- Most stringent constraints in e-endcap & barrel
- h-endcap with high granularity & good energy resolution

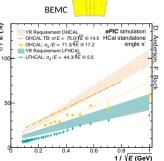
Electromagnetic Calorimetry (2)

- **EEMC** homogenous high resolution PbWO₄ crystal ECal
- FEMC highly granular W-Scintilating Fiber calalorimeter
- BEMC: 6 layers of 0.5x0.5mm Astro-Pix Silicon layers, interleaved with Pb-SciFi calorimeter

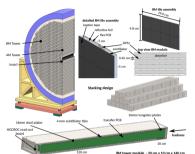
Hadronic Calorimetry

 Designed to complement tracking in Particle-Flow algorithm


OHCAL/IHCAL


- ► Fe/Scint sampling calorimeter
- ► partial sPHENIX re-use & magnet flux return

LFHCAL


- ► Fe/Scint & W/Scint sampling calorimeter
- ► Highly segmented (7 long. segments)
- ► W-segment as colimator
- High granularity inserts for forward E&HCal to extend η coverage to $\eta=4$
- Electron end-cap HCAL as neutral veto, shallow Fe/Scint calo

OHCAL

LFHCAL

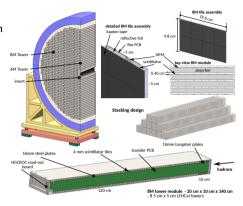
	Barrel HCal	LFHCAL
η	[-1 1]	[14]
$\sigma_{\rm E}/{\rm E}$	~75%/√E + 15%*	~ 43% √E + 5.5%
depth	~4-5 λ ₁	~7-8 λ _ι

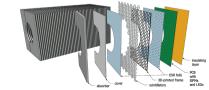
*Based on prototype beam tests and earlier experiments

[ECCE prop]

LFHCAL: The General Idea

Concept:

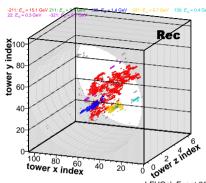

- CALICE AHCal inspired W/Fe-Scintillator calorimeter with SiPM on-tile-readout
- Three construction units:
 - ► 8M modules 10x20x140 cm³
 - ► 4M modules out of 10x10x140 cm³
 - Insert modules built out of 2 halves surrounding the beam pipe

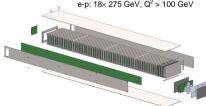

8M & 4M modules:

- 4 layers of tungsten + 61 layers of steel interleaved with scintillator material
- ► Transverse tower size 5×5 cm²
- Multiple consecutive tiles summed to 7 longitudinal segments per tower

Insert modules:

- ▶ 10 layers of tungsten + 54 layers of steel interleaved with scintillator
- ► Hexagonal tiles of 8 cm² each read-out individually





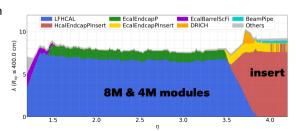
LFHCal: General Facts on the Read-out

LFHCal, Event 30 e-p: 18× 275 GeV, Q² > 100 GeV

- High granularity needed to try to distinguish shower maxima close to beam pipe
- 8M & 4M modules: read out in 7 layers longitudinally (5 or 10 SiPMs summed) desirable min measurable tower energy < 0.5 MIP/segment, max. $\approx 1500 \text{ MIP/segment}$
- insert modules: read out every single tile desirable min measurable energy < 0.5 MIP/tile, max. $\approx 500 \text{ MIP/tile}$
- SiPMs mounted to flexible PCBs, passive signal transfer to back side of calorimeter using long transfer PCB
- 1 SiPM-HGCROC (up to 70 channels) per 8M module (56 channels) in the back, 320 HGCROCs for insert readout

LFHCal in Numbers

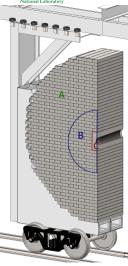
22 / 32


8M & 4M modules

- Acceptance: $1.2 < \eta < 3.5$
- Inner modules (R < 1m): machined scintillator tiles & 3mm SiPMs $\rightarrow \sim 11\% = 83200$ tile/ SiPMs
- Outer modules: injection molded tiles & 1.3mm SiPMs $\rightarrow \sim 89\% = 482560$ tile/ SiPMs
- \rightarrow 565,760 SiPMs, 60,928 read-out channels

Insert modules

- Acceptance: $3.5 < \eta < 4.4$
- 360 hexagonal tiles/layer, staggered positions in different layers
- \rightarrow 23400 SiPMs/tiles & read out channels


parameter	LFHCal 8M & 4M modules	insert modules
inner x,y (R)	-20 cm > x > 40 cm, -30 cm > y > 30 cm	R > 17 cm
outer R (x,y)	R < 270 cm	-20 cm > x > 40 cm -30 cm > y > 30 cm
η acceptance	$1.2 < \eta < 3.5$	$3.5 < \eta < 4.4$
tower information		
x, y	5 cm	≈ 3 cm
z (active depth)	130 cm	130 cm
z read-out	$\approx 7 \text{ cm}$	≈ 7 cm
interaction lengths	$6.5 \lambda/\lambda_0$	$7.5 \lambda/\lambda_0$
# towers	8704	
# modules		2
8M	1050	
4M	76	
# read-out channels	$7 \times 8704 = 60,928$	23400

LFHCal: Impact of Radiation Damage on Design

Radiation Regions

A: $R > 1 \text{ m: } < 5 \cdot 10^9 \text{ neq/cm}^2/\text{year}$

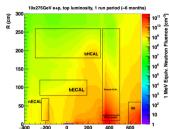
B: $R < 1 \text{ m: } 10^9 - 10^{11} \text{ neq/cm}^2/\text{year}$

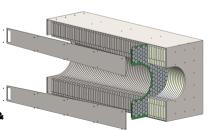
C: $\sim 10^{11} \text{ neq/cm}^2/\text{year}$

Mitigation for different regions:

A: 8M & 4M modules with inaccesible SiPMs

► 1.3 × 1.3 mm² SiPMs & injection molded scintillator

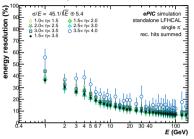

B: 8M & 4M modules with inaccesible SiPMs

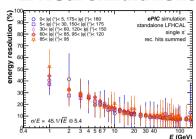

► 3 × 3 mm² SiPMs & scint. mach. from cast material

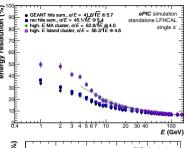
C: Insert modules

 Scintillator & SiPM assemblies accessible during longer shutdowns (after removal of dust cover)

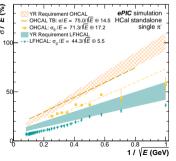
Replacement or annealing of SiPMs & tiles possible







LFHCal simulations



- No strong η or φ performance dependence
- Standalone standard LFHCal performance sufficient to $\eta \approx 3.2$ complemented by insert beyond that
- Ongoing studies to improve clusterization algorithm using ML started during several workshops
 - ▶ ePIC Calorimeter Workshop (Apr. 23')
 - ► HGS-HIRe Power Week Machine Learning (Jul. 23')
- Meets YR requirements

LFHCal: Recent test beams

Dates:

SPS: 6th - 13th Sept.
 PS: 11th - 18th Oct.

Setup:

- Parasitic to FoCal-H/FoCal-E at SPS and PS
- Setup consists out of maximum 14 layers of 8M tile assemblies

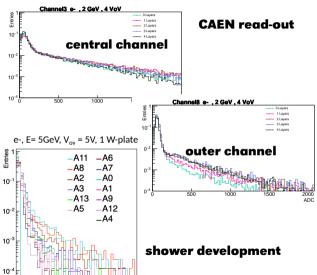
Sept: w/o absorber layers

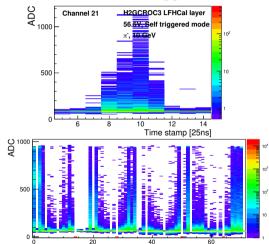
Oct: w/ absorber layers (4 tungsten, 10 steel)

 Read-out: CAEN DT5202 64ch CITIROC SiPM readout unit or H2GCROC

Main expected measurements:

- Light yields per tile
- Shower profile measurements with different absorbers
- Cross talk estimates of different tiles
- Use it as testing setup for SiPM-H2GCROC
- If placed behind FoCal-H, measure part of leakage

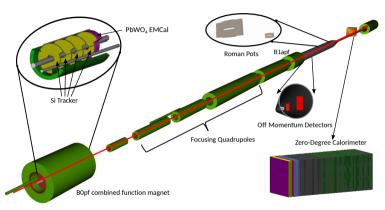




LFHCal test beam: First Results

H2GCROCv3a in self triggered mode

1000


2000

ADC

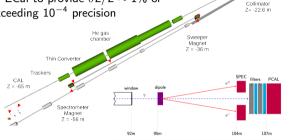
Far-forward Region

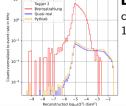
Detector	Acceptance
Zero-Degree Calorimeter (ZDC)	$ heta < 5.5 ext{mrad} (\eta > 6)$
Roman Pots (2 stations)	$0 < \theta < 5.0 \text{ mrad } (\eta > 6)$
Off-Momentum Detectors (2 stations)	$\theta < 5.0 \text{ mrad } (\eta > 6)$
B0 detector	$5.5 < \theta < 20.0 \text{ mrad } (4.6 < n < 5.9)$

- **B0** system for charged-particle measurement in forward direction & neutral-particle tagging
- off-momentum detectors measure charged particles with different rigidity than the beam, e.g., those following decay and fission.
- roman pot detectors charged particles measurement close to beam envelope
- zero-degree calorimeter measures neutral particles at small angles.

[ECCE prop] 27 / 32

F. Bock (ORNL) ePIC detector


Far-backward Region


Luminosity Monitor

 $e + p \rightarrow e \gamma p$ $e + Au \rightarrow e \gamma Au$

AC-LGAD and PbWO₄ ECal to provide $\delta L/L \sim 1\%$ or

rel. L determination exceeding 10⁻⁴ precision

Low Q2-tagger


clean photo-production signal for $10^{-3} < Q^2 < 10^{-1}$

- Double-laver AC-LGAD tracker at 24 & 37m from IP
- PbWO₄ ECal

 $(20cm \times 2cm^2 \text{ crystals})$

- This area is designed to measure scattered electrons at small, far-backward angles
- Strong technology synergies with central detector systems [FIC YR] [ECCE prop]

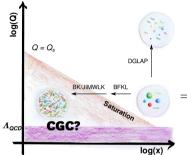
Z = -18.5 m

Long Lead Procurement items design maturity: ~90%
Plan is tracked through EVMS & Change control process

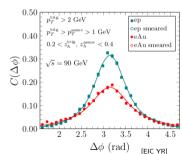
Need TDR for LLPs

The EIC is coming fast!

Exiting times ahead!

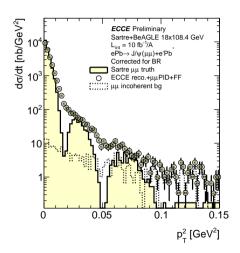


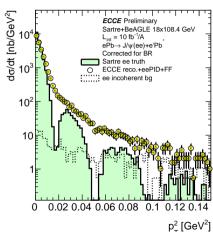
Color Glass Condensate?



- e interacts over distances $L \sim (2mNx)^{-1}$
- For $L>2R_A\sim A^{1/3}$ probe cannot distinguish between nucleons in front or back
- Probe interacts coherently with all nucleons
- \Rightarrow Enhancement of Q_s with $A \to {
 m non-linear}$ QCD regime reached at significantly lower energy in A than in proton

Di-Hadron or Di-Jet Correlations


- Low p/A gluon n density (ep): pQCD $2 \rightarrow 2$ process predicts \Rightarrow back-to-back di-jet
- High gluon density (eA): 2 → many process
 ⇒ expect broadening of away-side
- EIC allows to study the evolution of Q_s with x



Diffractive Vector Meson Production

