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Back to the basics!
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Where we are:

Elastic leptron scattering determined the nucleon’s charge & magnetism
distributions in sphere with ⟨rch⟩ ≈ 0.84 fm

Large fraction of momentum in proton (x) carried by 3 valence quarks (2u,d),
but very small fraction of proton spin

Nucleons contain additional dynamically generated quark-antiquark pairs &
gluons each carrying low fraction of momentum

Quark & gluon longitudinal momentum fractions well mapped out

Nucleon spin & mass have large contributions from quark-gluon dynamics,
described by QCD
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How did we learn this?
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[FOCAL LOI]

Deep Inelastic Scattering (DIS)

Q2 = s · x · y
s center-of-mass energy squared

Q2 resolution power

x the fraction of the nucleon’s
momentum carried by the struck
quarks (0 < x < 1)

y inelasticity

As a probe, electron beams provide unmatched precision of the
electromagnetic interaction

Event-by-event, model independent leading order determination of
parton kinematics including sensitivity to particle’s spin is possible

Data at higher Q2 obtained indirectly from hadron-collider
measurements
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What we don’t know yet

The 3D distributions of sea quarks & gluons
and their spins in nucleon

How do the nucleon mass & spin emerge from
them and their interactions?

The details of interactions of color-charged
quarks and gluons with a nuclear medium

How are nuclear bindings and hadronic states
created from quark, gluons and their
interactions?

How does a dense nuclear environment affect
the quarks and gluons and their interactions?

The gluon density in nuclei

Is there a Color Glass Condensate?
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EIC vs HERA
[EIC CDR]

[HERA proposal]

EIC

Start date: ∼ 2031
Location: BNL
Budget: ∼ $2.4 billion

HERA

Machine parameters
Center-of-mass energy: 20 - 140 (318) GeV

▶ electrons: 2.5 - 18 (27.5) GeV
▶ protons: 40- 275 (920) GeV (ions: Z/A× Ep )

Luminosity: 1034 (1031) cm−2 s−1

Polarization: up to 70% (e & ion) (only e± up to 60% )

Ion species: p → U (A > 1 only in fixed target)

Detectors:
▶ full coverage: 1-2 (2)
▶ fixed target: 0 (2 - limited far-forward coverage)

EIC will have:
lower energy

variable C-o-M energy w/o significant
loss in luminosity

higher luminosity

+ Hadron polarization

+ Nuclear beams

+ Modern detector(s)
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How to access partons at EIC
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Detect scattered lepton (DIS) in
coincidence with identified hadrons
(SIDIS)

▶ measure correlation between different
hadrons as fct. of pT, z, η

▶ needs FF to correlate hadron type
with parton

Charged current DIS - W-exchange
direct access to the quark flavor no FF –
complementary to SIDIS

Jets
best observable to access parton
kinematics

tag partons through the sub-processes
and jet substructure

▶ di-jets: relative pT → correlated to kT

▶ tag on PDF
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2+1 dimensional Imaging of Quarks & Gluons

[EIC YR]

Nuclear Femtography

Structure mapped in terms of:
bT = transverse position
kT = transverse momentum

use different processes to
access different aspects of
distribution functions

PDFs: (SI)DIS cross sections

GPDs: Deep Exclusive Scattering (DES) cross sections like:
deeply virtual Compton scattering (DVCS) γ⋆ + p → γ + p
or production of a vector meson γ⋆ + p → V + p
Spin-dependent 2+1D coordinate space images

TMDs: SIDIS cross sections
Spin-dependent 3D momentum space images
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Nucleon Spin
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Charlotte v. Hulse

quark contribution: integral of g1 over x from 0 to 1

gluon contribution: dg1(x ,Q
2)/dlnQ2 → ∆g(x ,Q2)

Measured through DIS cross section asymmetry in oppositely
polarized collisions

Improved constraints on the spin of quarks/gluons
⇒ Constrain contribution of orbital angular momentum
(OAM) of partons to proton spin

Collisions with polarized deuterons/helium-3
⇒ Access to neutron spin
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Imaging Nuclei
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Kong Tu

DGLAP

predicts Q2 but not A-dependence
and x-dependence

Saturation models

predict A-dependence and
x-dependence but not Q2

Need: large Q2 lever-arm for fixed
x ,A-scan

Measure different structure function in
eA → constrain nPDF

Does the nucleus behave like a proton
at low-x?

Diffractive J/ψ production for imaging
nucleus

Diffractive ϕ/ρ production as saturation
probe
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Kinematic Coverage
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±
: PhT < 1.6 GeV/c
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±
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±
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JLab 12

STAR W bosons

STAR 500 GeV -1 < η < 1 Collins

STAR 200 GeV -1 < η < 1 Collins
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Current polarized DIS data:

CERN DESY JLab-6 SLAC

current polarized BNL-RHIC pp data:

PHENIX π
0 STAR 1-jet W bosons

JLab-12
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Measurements with A ≥ 56 (Fe):

eA/μA DIS (E-139, E-665, EMC, NMC)
JLAB-12
νA DIS (CCFR, CDHSW, CHORUS, NuTeV)
DY (E772, E866)
DY (E906)
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Accelerator gives access to extensive
kinematic range

⇒ Now we need a detector to match
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Generalized detector design considerations
p/A beam electron beam

z

Central
Detector

Lepton
Endcap

Hadron
Endcap
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high-Q2 Large rapidity coverage for central detector

Specialized far-forward detectors for p
kinematics measurements

High precision low mass tracking

Hermetic coverage of tracking, electromagnetic
& hadronic calorimetry

High performance single track PID for π, K, p
separation

Large acceptance for diffraction, tagging, neutrons from nuclear breakup
many auxillary detectors integrated in beam line: low-Q2 tagger, Roman
pots, ZDCs . . .

High control of systematics
luminosity monitors, electron & hadron polarimetry

Highly integrated design between detector and machine for IR
[EIC YR]
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Luminosity dependence - Main measurements

Phase-I

Phase-II

Phase-III

design luminosity:

L = 1034 cm−2 s−1∫
Ldt = 100 fb−1 per year

∫
Ldt 1 fb−1 10 fb−1 10-100 fb−1

inclusive DIS

measure scattered electron

→ precision EM-Calorimetry

multi-dimensional binning:
x ,Q2

→ maximize x ,Q2 coverage &
determines interaction
region design

semi-inclusive DIS

measure scattered electron in
coincidence with identified
hadrons

multi-dimensional binning:
x ,Q2, z , θ,pT

→ maximize PID detector coverage
in whole phase space

Exclusive processes

measure all particles in event

→ hermetic tracking + hadronic
calorimetry

multi-dimensional binning:
x ,Q2, z , θ,pT

measure proton kinematics

→ strong constraints on far-forward
detector & interaction region
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The detector design process
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THe 2015  
LONG RANGE PLAN  

for NUCLEAR SCIENCE

 REACHING FOR THE HORIZON

The Site of the Wright Brothers’ First Airplane Flight

Define physics objectives & generic design parameters Realistic machine & detector concepts

2012 2015 2017 2020 Feb. 2021 Dec. 2021

Detector & machine design driven by physics objectives

Jan. 2020: BNL site selection

Extensive generic detector R&D for EIC for PID, tracking &
calorimetry

YR outlines general detector requirements for benchmark
physics observables

Mar. 2021: Call for Detector Proposals

Mar. 2022: ECCE chosen as reference design for detector 1

Jul. 2022: ePIC collaboration
now: TDR preparations
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Tracker layout

Ultra thin MAPS based Si-detectors,
gaseous detectors & AC-LGADs
Outer layers placed to provide seeds for
tracking & ideal track points
before/after PID detectors
New Magnet with BABAR dimensions
B = 1.7-2T

Technology mix
ITS3 MAPS based Si-detectors:
σ = 10µm, X/X0 ∼ 0.05− 0.55%/layer

Gaseous tracker:
σ = 55 µm, X/X0 ∼ 0.2%/layer

AC-LGADs:
σ = 30 µm, X/X0 ∼ 1.5− 6%/layer
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Tracking performance
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PWG requirement

Stringent requirements from Yellow Report for electron
resolution

Backward momentum resolution requirement hard to meet,
complemented by calorimetric resolution

YR requirement assumes Calorimetry & Tracking need to
fullfill requirements independently

Rapidly evolving tracker design, including background and
pattern recognition

E. Yeats, R. Cruz-Torres, N. Schmidt, S. Maple
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Cherenkov-PID
pfRICH hpDIRC dRICH

Optimized for charged pion, kaon & proton separation

Particular focus on large η coverage

Complemented by calorimetry & TOF

⇒ Global optimization process ongoing

[ECCE prop][ATHENA prop]
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ePIC Simulation
Single Particle

K/p
/K

e/Analog Coupled - Low Gain Avalanche Detectors
(AC-LGADs) with 25 ps time resolution resolution

Combined PID & tracking detector

Positions optimized for low momentum e/π, π/K, K/p separation

Full η-coverage for simultaneous start time determination

Alternative barrel design with less X/X0
O. Hartbrich, N. Schmidt, Z. Ye
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Electromagnetic Calorimetry (1)
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Optimization criteria

Minimal acceptance gaps

Scattered electron detection & identification (energy resolution & E/p)

Shower separation within jets & good energy resolution (h-endcap)

Most stringent constraints in e-endcap & barrel

h-endcap with high granularity & good energy resolution

[ECCE prop]
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Electromagnetic Calorimetry (1)
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Optimization criteria

Minimal acceptance gaps

Scattered electron detection & identification (energy resolution & E/p)

Shower separation within jets & good energy resolution (h-endcap)

Most stringent constraints in e-endcap & barrel

h-endcap with high granularity & good energy resolution

[ECCE prop]
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Electromagnetic Calorimetry (2)
EEMC BEMC FEMC

EEMC - homogenous high resolution PbWO4 crystal ECal
FEMC - highly granular W-Scintilating Fiber calalorimeter
BEMC: - 6 layers of 0.5x0.5mm Astro-Pix Silicon layers, interleaved with Pb-SciFi calorimeter
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Hadronic Calorimetry

OHCAL
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η [-1 .. 1] [1 .. 4]

σE/E ~75%/√E + 15%* ~ 43% √E + 5.5%

depth ~4-5 λI ~7-8 λI

*Based on prototype beam tests and earlier experiments

Barrel HCal LFHCAL

OHCAL LFHCAL

D
.
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,
F
.
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Designed to complement tracking in
Particle-Flow algorithm
OHCAL/IHCAL

▶ Fe/Scint sampling calorimeter
▶ partial sPHENIX re-use & magnet

flux return

LFHCAL
▶ Fe/Scint & W/Scint sampling

calorimeter
▶ Highly segmented (7 long.

segments)
▶ W-segment as colimator

High granularity inserts for forward
E&HCal to extend η coverage to
η = 4
Electron end-cap HCAL as neutral
veto, shallow Fe/Scint calo

[ECCE prop]
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LFHCAL: The General Idea

4M Tower

8M Tower

insert
   

 

 
 

   
   
 

9.8 cm

19.6 cm

0.40 cm
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16mm tungsten plates

4 mm scin�llator �les16mm steel plates
transfer PCB

8M tower module  - 20 cm x 10 cm x 140 cm
- 8 5 cm x 5 cm LFHCal towers
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hadrons

HGCROC read-out
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top view 8M module 

8M �le assembly 

absorber
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detailed 8M �le assembly

Concept:
CALICE AHCal inspired W/Fe-Scintillator calorimeter with
SiPM on-tile-readout
Three construction units:

▶ 8M modules 10x20x140 cm3

▶ 4M modules out of 10x10x140 cm3

▶ Insert modules built out of 2 halves surrounding the
beam pipe

8M & 4M modules :
▶ 4 layers of tungsten + 61 layers of steel interleaved

with scintillator material
▶ Transverse tower size 5x5 cm2

▶ Multiple consecutive tiles summed to 7 longitudinal
segments per tower

Insert modules:
▶ 10 layers of tungsten + 54 layers of steel interleaved

with scintillator
▶ Hexagonal tiles of 8 cm2 each read-out individually
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LFHCal: General Facts on the Read-out
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Rec High granularity needed to try to distinguish shower
maxima close to beam pipe

8M & 4M modules:
read out in 7 layers longitudinally (5 or 10 SiPMs summed)
desirable min measurable tower energy < 0.5 MIP/segment,
max. ≈ 1500 MIP/segment

insert modules:
read out every single tile
desirable min measurable energy < 0.5 MIP/tile , max.
≈ 500 MIP/tile

SiPMs mounted to flexible PCBs, passive signal transfer to
back side of calorimeter using long transfer PCB

1 SiPM-HGCROC (up to 70 channels) per 8M module (56
channels) in the back, 320 HGCROCs for insert readout
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LFHCal in Numbers

22/32

8M & 4M modules

insert

8M & 4M modules
Acceptance: 1.2 < η < 3.5
Inner modules (R < 1m): machined scintillator tiles
& 3mm SiPMs → ∼ 11% = 83200 tile/ SiPMs
Outer modules: injection molded tiles & 1.3mm
SiPMs → ∼ 89% = 482560 tile/ SiPMs

→ 565,760 SiPMs, 60,928 read-out channels

Insert modules
Acceptance: 3.5 < η < 4.4
360 hexagonal tiles/layer, staggered positions in
different layers

→ 23400 SiPMs/tiles & read out channels
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LFHCal: Impact of Radiation Damage on Design

A

B
C

Radiation Regions

A: R > 1 m: < 5 · 109 neq/cm2/year

B: R < 1 m: 109 − 1011 neq/cm2/year

C: ∼ 1011 neq/cm2/year

Mitigation for different regions:

A: 8M & 4M modules with inaccesible SiPMs

▶ 1.3× 1.3 mm2 SiPMs & injection molded
scintillator

B: 8M & 4M modules with inaccesible SiPMs

▶ 3× 3 mm2 SiPMs & scint. mach. from
cast material

C: Insert modules

▶ Scintillator & SiPM assemblies
accessible during longer shutdowns
(after removal of dust cover)

▶ Replacement or annealing of SiPMs &
tiles possible
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LFHCal simulations
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No strong η or φ performance dependence

Standalone standard LFHCal performance sufficient to η ≈ 3.2
complemented by insert beyond that

Ongoing studies to improve clusterization algorithm using ML
started during several workshops

▶ ePIC Calorimeter Workshop (Apr. 23’)
▶ HGS-HIRe Power Week - Machine Learning (Jul. 23’)

Meets YR requirements
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LFHCal: Recent test beams

Dates:
SPS: 6th − 13th Sept.
PS: 11th − 18th Oct.

Setup:
Parasitic to FoCal-H/FoCal-E at SPS and PS
Setup consists out of maximum 14 layers of 8M tile assemblies
Sept: w/o absorber layers
Oct: w/ absorber layers (4 tungsten, 10 steel)
Read-out: CAEN DT5202 64ch CITIROC SiPM readout unit
or H2GCROC

Main expected measurements:
Light yields per tile
Shower profile measurements with different absorbers
Cross talk estimates of different tiles
Use it as testing setup for SiPM-H2GCROC
If placed behind FoCal-H, measure part of leakage
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LFHCal test beam: First Results
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Far-forward Region

Roman Pots

Off -Momentum Detectors

Zero-Degree Calorimeter

B0pf combined function magnet

Focusing Quadrupoles

B1apf

PbW04 
EMCAL

PbWO4 EMCal

Si Tracker

B0 system for
charged-particle measurement
in forward direction &
neutral-particle tagging

off-momentum detectors
measure charged particles with
different rigidity than the
beam, e.g., those following
decay and fission.

roman pot detectors
charged particles measurement
close to beam envelope

zero-degree calorimeter
measures neutral particles at
small angles.

Detector Acceptance

Zero-Degree Calorimeter (ZDC) θ < 5.5 mrad (η > 6)
Roman Pots (2 stations) 0 < θ < 5.0 mrad (η > 6)
Off-Momentum Detectors (2 stations) θ < 5.0 mrad (η > 6)
B0 detector 5.5 < θ < 20.0 mrad (4.6 < η < 5.9)

[ECCE prop]
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Far-backward Region

Low Q2-tagger
clean photo-production signal for
10−3 < Q2 < 10−1

Double-layer AC-LGAD
tracker at 24 & 37m from IP

PbWO4 ECal
(20cm x 2cm2 crystals)

This area is designed to measure scattered
electrons at small, far-backward angles
Strong technology synergies with central
detector systems

Luminosity Monitor
e + p → e γ p
e + Au → e γ Au
AC-LGAD and PbWO4 ECal to provide δL/L ∼ 1% or
rel. L determination exceeding 10−4 precision

[EIC YR] [ECCE prop]
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The EIC is coming
fast!

Exiting times ahead!

Thank you!



Back-up



Color Glass Condensate?

log(x)

lo
g
(Q
)

Saturation

BK/JIMWLK BFKL

DGLAP

ΛQCD

Q = Qs

CGC?

[EIC YR]

e interacts over distances L ∼ (2mNx)−1

For L > 2RA ∼ A1/3 probe cannot distinguish between
nucleons in front or back

Probe interacts coherently with all nucleons

⇒ Enhancement of Qs with A → non-linear QCD regime
reached at significantly lower energy in A than in
proton

Di-Hadron or Di-Jet Correlations

Low p/A gluon n density (ep): pQCD 2 → 2 process predicts
⇒ back-to-back di-jet

High gluon density (eA): 2 → many process
⇒ expect broadening of away-side

EIC allows to study the evolution of Qs with x
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Diffractive Vector Meson Production
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